Edge Semientire Cutvertex Graph

Venkanagouda M. Goudar
Sri Gouthama Research centre,(Affiliated to Kuvempu University), Department of Mathematics, Sri Siddhartha Institute of Technology,
Tumkur, Karnataka- 572105
Email: vmgouda@gmail.com

Abstract

In this communications, the concept of the edge semientire cutvertex graph is introduced. We present characterization of graphs whose edge semientire cutvertex graph is planar, nonouterplanar. Further, Also we establish a characterization of graphs whose edge semientire cutvertex graphs are eularian, hamiltonian and the graphs whose crossing number one.

Keywords: crossing number, cutvertex graph, edge semientire graph, inner vertex number, line graph, outerplanar.

1 Introduction

The concept of lict graph $n(G)$ of a graph G was introduced by Kulli and M H Muddebihal [3], is the graph whose vertex set is the union of the set of edges and the set of cutvertices of G in which two vertices are adjacent if and only if the corresponding edges of G are adjacent or the corresponding members of G are incident. A new concept of a graph valued functions called the edge semientire graph $e_{e}(G)$ was introduced by Kulli [4]. For the planar graph G, the edge semientire graph is the graph whose vertices can be put in one to one correspondence with the edges and regions of G in such a way that two vertices of $e_{e}(G)$ are adjacent if and only if the corresponding elements of G are adjacent. The line graph $L(G)$ of a graph G is the graph whose vertex set coincides with the edge set of G and in which two vertices are adjacent if and only if the corresponding edges are adjacent in G. A regionvertex is a vertex in edge semientire graph corresponding to the region of G .

The edge semientire cutvertex graph of a planar graph G denoted by $e_{c}(G)$ and is defined as the graph whose vertex set is the union of the set of edges, set of cutvertices and set of regions of G in which two vertices are adjacent if and only if the corresponding edges are adjacent, edges are incident to the cutvertex, edges are lies on the region and cutvertices are adjacent in G.
The edgedegree of an edge is defined in [4]. The inner vertex number $i(G)$ of a graph G is the minimum number of vertices not belonging to the boundary of the exterior region in any embedding of G in the plane. A graph G is said to be minimally nonouterplanar if $\mathrm{i}[\mathrm{G}]=1$, as was given by Kulli [5]. The regionvertex is a vertex obtained from the region of G and the vertex which has finite region is called inner regionvertex.
All the undefined terms may be referred to Harary ${ }^{2}$. All graphs considered here are finite, undirected and without loops or multiple edges and a graph G contains at least two cutvertices.

2 Preliminaries

We need the following Theorems for the proof of our further results.
Theorem 2.1: If G is a (p, q) graph whose vertices have degree d_{i} then $L(G)$ has q vertices and q_{L} edges where $q_{L}=-q+1 / 2 \sum d_{i}^{2}$.

Theorem 2.2: The line graph $L(G)$ of a graph G has crossing number one if and only if G is planar and 1 or 2 holds:

1. The maximum degree $\Delta(G)$ is 4 and there is unique non cutvertex of degree.
2. The maximum degree $\Delta(G)$ is 5, every vertex of degree 4 is a cutvertex, there is a unique vertex of degree 5 and has atmost 3 edges in any block.

Theorem 2.3: A connected graph G is isomorphic to its line graph if and only if it is a cycle.

Theorem 2.4: The lict graph $n(G)$ is planar if and only if deg $v \leq 3$.

Theorem 2.5: The edge semi entire graph $e_{e}(G)$ is planar if and only if
$1 \quad G$ is a tree
2. $d e g v \leq 3$ for every vertex v of G.

Theorem 2.6: Let G be a plane graph. A necessary and sufficient condition for $e_{e}(G)$ to be eulerian is that each of the following holds:

1. Each edge of G is adjacent to even number of elements
2. Each region of G has even number of elements adjacent to it.

Theorem 2.7: If G is a hamiltonian plane graph, then $e_{e}(G)$ is also Hamiltonian

3 Edge Semientire Cutvertex Graph ec(G) of a Planar Graph G

We start with a few preliminary results.
Remark 3.1: For any graph $G, L(G) \subset n(G)$ and $e_{e}(G) \subset e_{c}(G)$.

Remark 3.2: For any graph $G, e_{c}(G)$ is nonseparable.
In the following Theorem, we obtain the number of vertices and edges in edge semientire cutvertex graph.

Theorem 3.1: For any (p, q) graph G whose vertices have degree d_{i}, cutvertices $\left|c_{i}\right|=c$, regions $r, \quad l_{i}$ be the number of edges to which cutvertex c_{i} belongs and e_{k} be the number of edges in which the region r_{k} lies, then the edge semientire cutvertex graph $e_{c}(G)$ has $(q+c+r)$ vertices and $\sum\left[\frac{d_{i}{ }^{2}}{2}+l_{i}\right]+e_{k}+\frac{c_{i}\left(c_{i}-1\right)}{2}$ edges.

Proof. 3.1: By definition of $e_{c}(G)$, the number of vertices is the sum of edges, cutvertices and regions of G. Hence $e_{c}(G)$ has ($q+c+r$) vertices. Further the number of edges in $n(G)$ is the sum of number of edges incident with cutvertices in G, the number of edges in $L(G)$. Since the number of edges in $L(G)$ has $-q+\sum$ $\frac{d_{i}{ }^{2}}{2}$ and the number of edges in a cutvertex graph is $\frac{c_{i}\left(c_{i}-1\right)}{2}$, hence the number of edges in $e_{c}(G)$ is the sum of edges in $n(G)$ and the number of edges bounded by the regions is e_{k}. In addition, the total number of edges that lie on the region $\sum \mathrm{r}_{\mathrm{i}}$ of G is q. Thus the number of edges in $e_{c}(G)$ is,

$$
\begin{aligned}
& \mathrm{E}\left[\mathrm{e}_{\mathrm{c}}(\mathrm{G})\right]=-\mathrm{q}+\sum\left[\frac{d_{i}{ }^{2}}{2}+\mathrm{l}_{\mathrm{i}}\right]+\mathrm{q}+\mathrm{e}_{\mathrm{k}}+\frac{c_{i}\left(c_{i}-1\right)}{2} . \\
& =\sum\left[\frac{d_{i}^{2}}{2}+\mathrm{l}_{\mathrm{i}}\right]+\mathrm{e}_{\mathrm{k}}+\frac{c_{i}\left(c_{i}-1\right)}{2} .
\end{aligned}
$$

A criterion for edge semientire cutvertex graph to be planar is presented in our next theorem.

Theorem 3.2: For any graph G, the edge semientire cutvertex $\operatorname{graph} e_{c}(G)$ is planar if and only if G is a path.

Proof 3.2: Suppose $e_{c}(G)$ is planar. Assume that G is not a path. If there exists a cutvertex v of degree 3 and edges $\mathrm{e}, \mathrm{f}, \mathrm{g}$ are incident to v . The cutvertex along with e, f, g form $\left\langle K_{4}\right\rangle$ as a subgraph and the regionvertex is adjacent to K_{4} to form $K_{5}-x$ as a subgraph. Hence $e_{c}(G)$ is non-planar, a contradiction. Thus necessity is proved.
For sufficiency, suppose G is a path P_{t} with $t \geq 1$. For $t=1$, the result is obvious. For $t>1$, by definition, each block of lict graph $n(G)$ is K_{3} and which has ($t-1$) blocks. In addition, G has exactly one region, the regionvertex together with block form ($t-1$) number of $\left\langle K_{4}-x\right\rangle$ sub graphs in $e_{c}(G)$. Also the adjacency in cutvertices does not affect the planarity. Hence $e_{c}(G)$ is planar.
Further we develop the nonouterplanar of $e_{c}(G)$ in the following theorem.

Theorem 3.3: For any planar graph G, the edge semientire cutvertex graph $e_{c}(G)$ is always nonouterplanar.

Proof 3.3: We have the following cases:
Case 3.1. Suppose G has a vertex v of degree 3 and edges e, f, g are incident to v . The cutvertex along with e, f, g form $\left\langle\mathrm{K}_{4}\right\rangle$ as a subgraph and the regionvertex is adjacent to K_{4} to form $K_{5}-x$ as a subgraph. Hence $e_{c}(G)$ is non outerplanar.

Case 3.2. Suppose G is a path P_{t} with $t \geq 1$. For $t=1$, the result is obvious. For t >1, by definition, each block of lict graph $n(G)$ is K_{3} and which has ($\mathrm{t}-1$) blocks. In addition, G has exactly one region, the regionvertex together with block form (t -1) number of $\left\langle K_{4}-x\right\rangle$ sub graphs in $e_{c}(G)$. Clearly the internal edges e_{j} for all j of G becomes the inner vertex numbers and is $i\left[e_{c}(G)\right]>1$. Thus $e_{c}(G)$ is nonouterplanar.

The next theorem gives the minimally nonouterplanar $\mathrm{e}_{\mathrm{c}}(\mathrm{G})$.
Theorem 3.4: For any planar graph G, the edge semientire cutvertex graph $e_{c}(G)$ is minimally nonouterplanar if and only if G is a path P_{4}.

Proof 3.4: Suppose edge semientire cutvertex graph $n_{e}(G)$ is minimally nonouterplanar. Assume that G is a graph other than P_{4}. By the theorem 10, $\mathrm{e}_{\mathrm{c}}(\mathrm{G})$ has inner vertex number greater than 1 , which is not minimally non outerplanar, a contradiction. Thus necessity is proved.
For sufficiency, suppose G is a path P_{4}. By the definition of lict graph, each block is K_{3} and which has 2 blocks. In addition, G has exactly one region, the regionvertex together with block form two copies of $\left\langle\mathrm{K}_{4}-\mathrm{x}\right\rangle$ in $\mathrm{e}_{\mathrm{c}}(\mathrm{G})$. Clearly the internal edges e_{j} of G becomes the inner vertex numbers and is $i\left[e_{c}(G)\right]=1$. Hence $e_{c}(G)$ is minimally nonouterplanar.
In the next Theorem, we characterize the edge semientire cutvertex graph in terms of crossing number one.

Theorem 3.5: The edge semientire cutvertex graph $e_{c}(G)$ has a crossing number one if and only if the following conditions hold:

1. $\quad \operatorname{deg} v \leq 3$, for any vertex v of G and
2. G has unique vertex of degree 3, which is a cutvertex.

Proof 3.5: Suppose $e_{c}(G)$ has crossing number one. Then it is non planar. By Theorem 9 , deg $\mathrm{v} \geq 3$ for any vertex v of G . We now consider the following cases:

Case 3.3. Assume G has a cutvertex u of degree 4. Then the edges incident to this cutvertex together with the cutvertex form $\left\langle\mathrm{K}_{5}\right\rangle$ as a subgraph in $\mathrm{n}(\mathrm{G})$, the edges joined by the cutvertices and the regionvertex is adjacent to at least one vertex of $\left\langle K_{5}\right\rangle$ in $e_{c}(G)$. This gives $C\left[e_{c}(G)\right]>1$, a contradiction.
Case 3.4. Assume G has at least two vertices of degree 4. Suppose v_{1} and v_{2} are two non cutvertices of degree 4 . Then $L(G)$ has at least two crossings, by Theorem 2, $\mathrm{C}\left[\mathrm{n}_{\mathrm{e}}(\mathrm{G})\right]>1$, a contradiction. Suppose v_{1} and v_{2} are two cutvertices of degree 4 . Then cutvertices v_{1} and v_{2} together with their corresponding incident four edges to form two $\left\langle\mathrm{K}_{6}\right\rangle$ as sub graphs in $n(G)$ and hence in $e_{c}(G)$.Hence $C\left[e_{c}(G)\right]>1$, a contradiction. Thus necessity is proved.
For sufficiency, suppose G holds both the conditions of the Theorem. Let v_{1} be the cutvertex of degree 3. Then by Theorems 2 and $3, n(G)$ has crossing number one and hence $e_{c}(G)$ has crossing number one.
In the next theorem we characterize the eulerian $\mathrm{e}_{\mathrm{c}}(\mathrm{G})$.

Theorem 3.6: For any planar graph G, the edge semientire cutvertex graph $e_{c}(G)$ is eulerian if and only if i)G is a caterpillar with spine P_{5} and non-leaves vertices u, v, w having degree $(3,2,3)$ respectively. ii). G is a graph obtained by a path P_{3} joining the cycles $C_{2 n}$ for all n to the edge vertices of P_{3}.

Proof. 3.6: Suppose edge semientire cutvertex graph $e_{c}(G)$ is eulerian. Assume that G is a tree other than caterpillar as mention above. We have the following cases:

Case 3.5. If T is a path $P_{n}=u_{1}, e_{1}, u_{2}, e_{2}, \ldots x_{n-1}, u_{n}$ then, each block of lict graph $\mathrm{n}(\mathrm{G})$ is K_{3} and which has ($\mathrm{n}-1$) blocks. In addition, G has exactly one region, the regionvertex together with block form ($n-1$) number of $\left\langle K_{4}-x\right\rangle$ sub graphs in $\mathrm{e}_{\mathrm{c}}(\mathrm{G})$. Also the cutvertices are adjacent. Here the vertices $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}-1}$ are adjacent to exactly five vertices and degree of these vertices are even. Hence, it is noneulerian, a contradiction.
Case 3.6. Suppose T is not a path and it contains odd degree of vertices. By the definition of edge semientire cutvertex graph, $\mathrm{e}_{\mathrm{c}}(\mathrm{G})$ contains a regionvertex of odd degree, which is noneulerian. Further, suppose T contains even number of edges. By the definition of edge semientire cutvertex graph, the vertex x_{i} of odd degree which was the edge in G of even edgedegree. Hence $e_{c}(G)$ is noneulerian, a contradiction.

Case 3.7. Assume that G is a graph obtained by a path P_{3} joining the cycles C_{n} for all n to the edge vertices of P_{3}. By the definition of edge semientire cutvertex graph, the interior regionvertices r_{i} and r_{j} have degree odd, and hence $e_{c}(G)$ is noneulerian.
Case 3.8. Assume that G is a graph obtained by a path P_{4} joining the cycles $C_{2 n}$ for all n . By the definition of edge semientire cutvertex graph, the internal edge e_{i} of G becomes a vertex of odd degree which is noneulerian, a contradiction. Thus necessity is proved.
For sufficiency, suppose G satisfies both conditions. We have the following cases:
Case 3.9. G is a caterpillar with spine P_{5} and non-leaves vertices u, v, w having degree $(3,2,3)$ respectively. Clearly, graph G contains eight edges. Each pendent edge e_{i} is adjacent to two edges and incident to a cutvertex. By the definition of edge semientire cutvertex graph, the vertices e_{i} have degree even. Hence $e_{c}(G)$ is eulerian.

Case 3.10. Suppose G is a graph obtained by a path P_{3} joining the cycles $C_{2 n}$ for all n to the edge vertices of P_{3}. By the definition of lict graph, each vertex is of odd degree. By the definition of edge semientire cutvertex graph, both inner regionvertices have degree even and the exterior regionvertex is also even. Hence $e_{c}(G)$ is eulerian.
In the next theorem we characterize the hamiltonian $\mathrm{e}_{\mathrm{c}}(\mathrm{G})$.

Theorem 3.7: For any planar graph G, the edge semientire cutvertex graph $e_{c}(G)$ is always hamiltonian.

Proof. 3.7: Suppose G is any graph. We have the following cases:
Case 3.11.Let G is a path and has exactly one regionvertex. Let $V[n(G)]=\left(e_{1}\right.$, $\left.e_{2}, \ldots e_{n}\right) Y\left(c_{1}, c_{2}, \ldots c_{n-2}\right)$ where ($\left.c_{1}, c_{2}, \ldots c_{n-2}\right)$ are cutvertices of G. Since each block is a triangle and each block consist vertices as $\quad B_{1}=\left(e_{1} c_{1} e_{2}\right)$, $B_{2}=\left(e_{2} c_{2} e_{3}\right), \ldots B_{n}=\left(e_{n-1} c_{n-2} e_{n}\right)$.In $n_{e}(G)$, the regionvertex w is adjacent to (e_{1}, $\left.e_{2}, \ldots e_{n}\right)$. Hence $V\left[e_{c}(G)\right]=\left(e_{1}, e_{2}, \ldots e_{n}\right) Y\left(c_{1}, c_{2}, \ldots c_{n-2}\right) Y$ w form a cycle as w $e_{1} c_{1} e_{2} c_{2} e_{3} \ldots e_{n-1} c_{n-1} c_{n} W$ containing all the vertices of $e_{c}(G)$. Clearly $e_{c}(G)$ is hamiltonian.

Case 3.12.Let G is a tree and has exactly one regionvertex. Let $[\mathrm{n}(\mathrm{G})]=\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots\right.$ $\left.e_{n}\right) Y\left(c_{1}, c_{2}, \ldots c_{j}\right)$ where ($\left.c_{1}, c_{2}, \ldots c_{j}\right)$ are the cutvertices of G. Clearly, each block is K_{3} if degree of the cutvertex is two and is K_{4} if degree of the cutvertex is three. In $e_{c}(G)$, the regionvertex w is adjacent to ($\left.c_{1}, c_{2}, \ldots c_{j}\right)$. By the remark 2 , $e_{c}(G)$ is nonseparable. Clearly, the vertices ($\left.e_{1}, e_{2}, \ldots e_{n}\right) Y\left(c_{1}, c_{2}, \ldots c_{j}\right) Y$ w form $w e_{1} c_{1} e_{2} c_{2} e_{3} e_{4} \ldots c_{j} e_{n} w$ containing all the vertices of $e_{c}(G)$. Hence $e_{c}(G)$ is hamiltonian.

Case 3.13 If G is the graph other than above types of graphs, then by Remark 2, $e_{c}(G)$ is nonseparable, hence $e_{c}(G)$ is hamiltonian.
Case 3.14. If G is hamiltonian graph, then by theorem 7, $e_{e}(G)$ is hamiltonian and hence $e_{c}(G)$ is hamiltonian.

References

[1] Harrary, F. Annals of New York Academy of Science, (1977) 175: 198.
[2] Harrary, F. Graph Theory, Addison- Wesley Reading Mass, (1969) , p.72, 107.
[3] Kulli. V. R. and Akka. D. G., Journal mathematical Science, (1980), Vol.14, No. 6, P. 585- 588.
[4] V.R.Kulli and M.H. Muddebihal, Lict Graph and Litact Graph of a Graph, Journal of Analysis and Computation, (2006),Vol. 2.No. 133-43.
[5] V R Kulli ., On minimally nonouterplanar graphs, Proceeding of the Indian National Science Academy, (1975), Vol 41, part A, No. 3 ,pp 275 - 280.
[6] Sedlacek. J.,Proceeding of the Symposium smolenics, Academic Press, New York, (1963), P. 145.
[7] Y B Maralabhavi and Venkanagouda M Goudar., Lict edge semientire graph of a planar graph., in the journal of Discrete Mathematical Sciences and Cryptography, (2007), vol 10, pp. $433-438$.

