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Abstract 

In this communications, the concept of the edge semientire cutvertex 
graph is introduced. We present characterization of graphs whose edge 
semientire cutvertex graph is planar, nonouterplanar. Further, Also we 
establish a characterization of graphs whose edge semientire cutvertex 
graphs are eularian, hamiltonian and the graphs whose crossing 
number one. 
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1 Introduction 

The concept of lict graph n(G) of a graph G was introduced by Kulli and M H 

Muddebihal [3], is the  graph whose vertex set is the union of the set of edges and 

the set of cutvertices of G in which two vertices are adjacent if and only if the 

corresponding edges of G are adjacent or the corresponding members of G are 

incident. A new concept of a graph valued functions called the edge semientire 

graph ee(G) was introduced by Kulli [4]. For the planar graph G, the edge 

semientire graph is the graph whose vertices can be put in one to one 

correspondence with the edges and regions of G in such a way that two vertices of 

ee(G) are adjacent if and only if the corresponding elements of G are adjacent. The 

line graph L (G) of a graph G is the graph whose vertex set coincides with the 

edge set of G and in which two vertices are adjacent if and only if the 

corresponding edges are adjacent in G. A regionvertex is a vertex in edge 

semientire graph corresponding to the region of G. 
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The edge semientire cutvertex graph of a planar graph G denoted by ec(G) and is 

defined as the graph whose vertex set is the union of the set of edges, set of 

cutvertices and set of regions of G in which two vertices are adjacent if and only if 

the corresponding edges are adjacent, edges are incident to the cutvertex, edges 

are lies on the region and cutvertices are adjacent in G.  

The edgedegree of an edge is defined in [4]. The inner vertex number i(G) of a 

graph G is the minimum number of vertices not belonging to the boundary of the 

exterior region in any embedding of G in the plane. A graph G is said to be 

minimally nonouterplanar if i[G] =1, as was given by Kulli [5]. The regionvertex 

is a vertex obtained from the region of G and the vertex which has finite region is 

called inner regionvertex.  
All the undefined terms may be referred to Harary

2
. All graphs considered here 

are finite, undirected and without loops or multiple edges and a graph G contains 

at least two cutvertices. 

 

2 Preliminaries 

We need the following Theorems for the proof of our further results. 

   Theorem 2.1: If G is a (p, q) graph whose vertices have degree di then L(G) has 

q vertices and qL edges where  qL =  - q+ ½ ∑di
2 
 . 

 

   Theorem 2.2: The line graph L(G) of a graph G has crossing number one if and 

only if G is planar and 1 or 2 holds: 

1. The maximum degree  (G) is 4 and there is unique non cutvertex of degree. 

2. The maximum degree  (G) is 5, every vertex of degree 4 is a cutvertex, 

there is a unique vertex of degree 5 and has atmost 3 edges in any block. 

 

   Theorem 2.3: A connected graph G is isomorphic to its line graph if and only if 

it is a cycle. 

 

   Theorem 2.4: The lict graph n(G) is planar if and only if deg v  3. 

 

   Theorem 2.5: The edge semi entire graph e e  (G) is planar if and only if 

1 G is a tree  

2. deg v  3 for every vertex v of G. 
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   Theorem 2.6: Let G be a plane graph. A necessary and sufficient condition for 

ee(G) to be eulerian is that each of the following holds: 

1. Each edge of G is adjacent to even number of elements 

2. Each region of G has even number of elements adjacent to it. 

 

   Theorem 2.7: If G is a hamiltonian plane graph, then ee(G) is also Hamiltonian 

 

3 Edge Semientire Cutvertex Graph ec(G) of a Planar 
Graph G  

We start with a few preliminary results. 

   Remark 3.1: For any graph G, L (G)  n (G)  and   ee(G)   ec (G).   

 

   Remark 3.2: For any graph G, ec(G) is nonseparable. 

In the following Theorem, we obtain the number of vertices and edges in edge 

semientire cutvertex graph.  

 

   Theorem 3.1: For any (p, q) graph G whose vertices have degree di, cutvertices 

,cci   regions r,  li be the number of edges to which cutvertex ci belongs and ek 

be the number of edges in which the region rk lies, then the edge semientire 

cutvertex graph ec(G) has (q + c+ r) vertices and  ∑[
2

2

id
+li] +ek +

 
2

1ii cc

edges. 

 

   Proof. 3.1: By definition of ec(G), the number of vertices is the sum of edges, 

cutvertices and regions of G. Hence ec(G) has ( q + c +r ) vertices. Further the 

number of edges in n(G) is the sum of number of edges incident with cutvertices 

in G, the number of edges in L(G). Since the number of edges in L(G) has  - q + ∑ 

2

2

id
 and the number of edges in a cutvertex graph is 

 
2

1ii cc
, hence the number 

of edges in ec(G) is the sum of edges in n(G) and the number of edges bounded by 

the regions is ek. In addition, the total number of edges that lie on the region ∑ri of 

G is q. Thus the number of edges in ec(G) is, 
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E[ec(G)] = - q + ∑ [
2

2

id
 +li] + q +ek+

 
2

1ii cc
. 

= ∑[
2

2

id
 +li] + ek +

 
2

1ii cc
. 

 

A criterion for edge semientire cutvertex graph to be planar is presented in our 

next theorem. 

 

   Theorem 3.2: For any graph G, the edge semientire cutvertex graph ec(G) is 

planar if and only if  G is a path. 

 

   Proof 3.2: Suppose ec(G) is planar. Assume that G is not a path.  If there exists 

a cutvertex   v of degree 3 and edges e, f, g are incident to v. The cutvertex along 

with e, f, g form K4 as a subgraph and the regionvertex is adjacent to K4 to form 

K5 – x as a subgraph. Hence ec(G) is non-planar, a contradiction. Thus necessity is 

proved. 

For sufficiency, suppose G is a path Pt with t  1. For t =1, the result is obvious. 

For    t >1, by definition, each block of lict graph n(G) is K3 and which has (t-1) 

blocks. In addition, G has exactly one region, the regionvertex together with block 

form (t – 1) number of K4 – x  sub graphs in ec(G). Also the adjacency in 

cutvertices does not affect the planarity. Hence ec(G) is planar. 

Further we develop the nonouterplanar of ec(G) in the following theorem. 

 

   Theorem 3.3: For any planar graph G, the edge semientire cutvertex graph 

ec(G) is always nonouterplanar. 

 

   Proof 3.3: We have the following cases: 

   Case 3.1. Suppose G has a vertex v of degree 3 and edges e, f, g are incident to 

v. The cutvertex along with e, f, g form K4 as a subgraph and  the regionvertex is 

adjacent to K4 to form K5 – x as a subgraph. Hence ec(G) is non outerplanar. 

 

   Case 3.2. Suppose G is a path Pt with  t  1. For t =1, the result is obvious. For t 

>1, by definition, each block of lict graph n(G) is K3 and which has (t-1) blocks. 

In addition, G has exactly one region, the regionvertex together with block form (t 

– 1) number of K4 – x  sub graphs in ec(G). Clearly the internal edges ej for all j 

of G becomes the inner vertex numbers and is i[ec( G)] >1. Thus ec(G) is 

nonouterplanar. 
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The next theorem gives the minimally nonouterplanar ec(G). 

   Theorem 3.4: For any planar graph G, the edge semientire cutvertex graph 

ec(G) is minimally  nonouterplanar if and only if  G is a path P4. 

 

   Proof 3.4: Suppose edge semientire cutvertex graph ne(G) is minimally  

nonouterplanar. Assume that G is a graph other than P4. By the theorem 10, ec (G) 

has inner vertex number greater than 1, which is not minimally non outerplanar, a 

contradiction. Thus necessity is proved. 

For sufficiency, suppose G is a path P4. By the definition of lict graph, each block   

is K3 and which has 2 blocks. In addition, G has exactly one region, the 

regionvertex together with block form two copies of K4 – x  in ec(G). Clearly the 

internal edges ej of G becomes the inner vertex numbers and is i[ec( G)] =1. Hence 

ec(G) is minimally nonouterplanar. 

In the next Theorem, we characterize the edge semientire cutvertex graph in terms 

of crossing number one. 

 

   Theorem 3.5: The edge semientire cutvertex graph ec(G) has a crossing number 

one if and only if  the following  conditions hold: 

1. deg v  3, for any vertex v of G and  

2. G has unique vertex of degree 3, which is  a cutvertex.  

 

   Proof 3.5: Suppose ec(G) has crossing number one. Then it is non planar. By 

Theorem 9, deg v 3 for any vertex v of G. We now consider the following cases: 

   Case 3.3. Assume G has a cutvertex u of degree 4. Then the edges incident to 

this cutvertex together with the cutvertex form K5 as a subgraph in n(G), the 

edges joined by the cutvertices and  the regionvertex is adjacent to at least one 

vertex of K5 in ec(G). This gives C [ec(G)]>1,a contradiction.  

   Case 3.4.  Assume G has at least two vertices of degree 4. Suppose v1and v2 are 

two non cutvertices of degree 4. Then L (G) has at least two crossings, by 

Theorem 2, C[ne(G)]>1, a contradiction. Suppose v1and v2 are two cutvertices of 

degree 4. Then cutvertices v1and v2 together with their corresponding incident 

four edges to form two K6 as sub graphs in n(G) and hence in ec(G).Hence  

C[ec(G)]>1,a contradiction. Thus necessity is proved. 

For sufficiency, suppose G holds both the conditions of the Theorem. Let v1 be 

the cutvertex of degree 3. Then by Theorems 2 and 3, n (G) has crossing number 

one and hence ec(G) has crossing number one.  

In the next theorem we characterize the eulerian ec(G). 
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   Theorem 3.6: For any planar graph G, the edge semientire cutvertex graph 

ec(G) is  eulerian if and only if i)G is a caterpillar with spine P5 and non-leaves 

vertices u, v, w having degree (3,2,3) respectively. ii). G is a graph obtained by a 

path P3 joining the cycles C2n for all n to the edge vertices of P3. 

 

   Proof. 3.6: Suppose edge semientire cutvertex graph ec(G) is  eulerian. Assume 

that G is a tree other than caterpillar as mention above. We have the following 

cases: 

   Case 3.5. If  T is a path Pn=u1, e1, u2, e2,…xn-1, un then, each block of lict graph 

n(G) is K3 and which has (n-1) blocks. In addition, G has exactly one region, the 

regionvertex together with block form (n – 1) number of K4 – x  sub graphs in 

ec(G). Also the cutvertices are adjacent. Here the vertices x1, x2, …xn-1 are 

adjacent to exactly five vertices and  degree of these vertices are even. Hence, it is 

noneulerian, a contradiction. 

   Case 3.6. Suppose T is not a path and it contains odd degree of vertices. By the 

definition of edge semientire cutvertex graph, ec(G) contains a regionvertex  of 

odd degree, which is noneulerian. Further, suppose T contains even number of 

edges. By the definition of edge semientire cutvertex graph, the vertex xi of odd 

degree which was the edge in G of even edgedegree. Hence ec(G) is noneulerian, a 

contradiction. 

   Case 3.7. Assume that G is a graph obtained by a path P3 joining the cycles Cn 

for all n to the edge vertices of P3. By the definition of edge semientire cutvertex 

graph, the  interior regionvertices  ri and rj  have degree odd, and hence ec(G) is 

noneulerian. 

   Case 3.8. Assume that G is a graph obtained by a path P4 joining the cycles C2n 

for all n. By the definition of edge semientire cutvertex graph, the internal edge ei 

of G becomes a vertex of odd degree which is noneulerian, a contradiction. Thus 

necessity is proved. 

For sufficiency, suppose G satisfies both conditions. We have the following cases: 

   Case 3.9. G is a caterpillar with spine P5 and non-leaves vertices u, v, w having 

degree (3,2,3) respectively. Clearly, graph G contains eight edges. Each pendent 

edge ei is adjacent to two edges and incident to a cutvertex. By the definition of 

edge semientire cutvertex graph, the vertices ei have degree even. Hence ec(G) is 

eulerian.  

   Case 3.10. Suppose G is a graph obtained by a path P3 joining the cycles C2n for 

all n to the edge vertices of P3. By the definition of lict graph, each vertex is of 

odd degree. By the definition of edge semientire cutvertex graph, both inner 

regionvertices have degree even and the exterior regionvertex is also even. Hence 

ec(G)  is eulerian. 

In the next theorem we characterize the hamiltonian ec(G). 
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   Theorem 3.7: For any planar graph G, the edge semientire cutvertex graph 

ec(G) is always hamiltonian.  

 

   Proof. 3.7: Suppose G is any graph. We have the following cases: 

   Case 3.11.Let G is a path and has exactly one regionvertex. Let   V[n(G)] =(e1, 

e2,... en)  ( c1, c2,… cn-2) where ( c1, c2,… cn-2) are cutvertices of G. Since each 

block is a triangle and each block consist vertices as    B1= ( e1c1e2),                   

B2= ( e2c2e3),… Bn= ( en-1cn-2en).In ne(G), the regionvertex w is adjacent to (e1, 

e2,... en). Hence V[ec(G)] =(e1, e2,... en)  ( c1, c2,… cn-2)   w form a cycle as w 

e1c1 e2c2e3 ... en-1 cn-1cnw containing all the vertices of ec(G). Clearly ec(G) is 

hamiltonian. 

   Case 3.12.Let G is a tree and has exactly one regionvertex. Let [n(G)] =(e1,e2,... 

en)  ( c1, c2,… cj) where ( c1, c2,… cj) are the cutvertices of G. Clearly, each 

block is K3 if degree of the cutvertex is two and is K4 if degree of the cutvertex is 

three. In ec(G), the regionvertex w is adjacent to ( c1, c2,… cj). By the remark 2, 

ec(G) is nonseparable. Clearly, the vertices ( e1, e2,... en)  ( c1, c2,… cj) w form  

w e1c1e2c2e3 e4….cjenw containing all the vertices of ec(G). Hence ec(G) is 

hamiltonian. 

   Case 3.13 If G is the graph other than above types of graphs, then by Remark 2, 

ec(G) is nonseparable, hence ec(G) is hamiltonian.  

   Case 3.14. If G is hamiltonian graph, then by theorem 7, ee(G) is hamiltonian 

and hence ec(G) is hamiltonian. 
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