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Abstract

It’s by now well known that the harmonic superspace provides a
strong framework for constructing general hyperKähler metrics. Origi-
nal results in this issue are given by the Taub-Nut and Egushi-Hanson
metrics exhibiting both U(1) Pauli-Gursey isomertie as shown by Gib-
bon et all in [1]. It’s also shown that there exist series of potential
depending explicitly on the harmonics variables u± on the sphere S2.
Based on these knowledge and on previous contributions to the pro-
gram of metrics building [2, 3], we contribute by presenting a special
hyperKähler potential H+4 leading to an α-parametrized Liouville equa-
tion on the harmonic superspace.
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1 General Setting

The problem of hyperKähler metrics building is an interesting question of
hyperKähler geometry that can be nicely solved in the harmonic superspace
(HS) [4, 5, 2] if one knows how to solve the following nonlinear differential
equations on the sphere S2:

∂++q+ − ∂++

(

∂V 4+

∂(∂++q̄+)

)

+
∂V 4+

∂q̄+
= 0

∂++q̄++ + ∂++

(

∂V 4+

∂(∂++q̄+)

)

− ∂V 4+

∂q+
= 0 (1)
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where q+ = q+(z, z̄, u±) and its conjugates q̄+ = q+(z, z̄, u±) are complex
fields defined globally on R2 ⊗ S2 ≈ C ⊗ S2, respectively, parametrized by
the local analytic coordinates z, z̄ and the harmonic variables u±. The symbol
∂++ = u+i ∂/∂u−i stands for the harmonic derivative and V 4+ = V 4+(q, u)
is an interacting potential depending in general on q+, q̄+, their derivatives
and the u±’s. Note that the fields q+ and q̄+ may be expanded in powers of
harmonic variables (for the bosonic part) preserving the total U(1) charge, in
each term of the expansion as shown here below:

q+(z, z̄, u) = u+
i ϕi(z, z̄) + u+

i u+
j u−

k ϕ(ijk)(z, z̄) + . . . (2)

(2), which fix the u–dependence of the q+’s, is in fact the pure bosonic pro-
jection of a two dimensional N = 4 supersymmetric HS superfield equation
of motion. The remaining equations carry the spinor contributions. They
describe among others the space time dynamics of the physical degrees of
freedom, namely the four bosons ϕi(z,̄z); i = 1, 2 and their D = 2 N = 4
supersymmetric partners, see for example [6].

An equivalent way of writing (2) is to use the Howe–Stelle–Townsend (HST)
realization of the D = 2 N = 4 hypermultiplet (04, (1/2)4) [7]. In this repre-
sentation, that we can write

∂++2ω − ∂++

[

∂H4+

∂(∂++ω)

]

+
∂H4+

∂ω
= 0 , (3)

where ω = ω(z, z̄, u) is a real field defined on C⊗ S2 and whose leading terms
of its harmonic expansion read as:

ω(z, z̄, u) = u+
i u−

j f ij(z, z̄) + u+
i u+

j u−
k u−

ℓ gijkℓ(z, z̄) + . . . (4)

Similary as for (1), the interacting potential H4+ depends in general on ω, its
derivatives and on the harmonics. In the remarkable case where the potentials
V 4+ and H4+ do not depend on the derivatives of the fields q+ and ω, (1)
reduce to

∂++ q+ +
∂V 4+

∂q+
= 0 (5)

∂++2 ω +
∂H4+

∂ω
= 0 . (6)

Remark that the solutions of these equations depend naturally on the po-
tentials V 4+ and H4+ and then the finding of these solutions is not an easy
question. There are only few examples that had been solved exactly.

The first model:
Is the Taub–Nut model leading to the well–known Taub–Nut metric of the

four dimensional euclidean gravity. Its potential V 4+(q+, q̄+) is given by [5]
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V 4+ =
λ

2
(q+q̄+)2 , (7)

where λ is a real coupling constant. According to this potential, the equation
of motion is

∂++ q+ + λ(q+q̄+)q̄+ = 0 (8)

whose solution reads as [5]

q+(z, z̄, u) = u+
i ϕi(z, z̄) exp−λ(u+

k u−
ℓ ϕkϕ̄ℓ) . (9)

Note that the knowledge of this solution is an important step towards iden-
tifying the metric of the manifold parametrized by the bosonic fields ϕi(z, z̄)
and ϕ̄i(z, z̄) of the D = 2 N = 4 supersymmetric nonlinear Taub–Nut σ–
model. The latter possesses an action whose bosonic part reads as ( see [2]
and references therein)

STN
B = −1

2

∫

dz dz̄
(

gij∂zϕ
i∂z̄ϕ

j + ḡij∂zϕ̄i∂z̄ϕ̄j + 2hi
j∂zϕ

j∂z̄ϕ̄i

)

(10)

Moreover, using the HST representation of the D = 2 N = 4 hypermultiplet,
(6) may be rewritten as

[

∂++ + λ
ω

↔

∂ ++ ω̄

(1 + 2ωω̄)

]2

· ω = 0 , (11)

where ω̄ is the complex conjugate of ω and ω
↔

∂ ++ ω̄ = ω∂ω̄ − ∂ω · ω̄. Here
also, this equation is exactely solvable. The solution reads as

ω(z, z̄, u) = u+
i u−

j f ij(z, z̄) exp (−iλβ) (12)

where
β = u+

k u−
ℓ

[

f 0f̄ (kℓ) − f̄ 0f (ij)+ ∈rs f (ks) f̄ (ℓr)
]

. (13)

The second model:
Is the Eguchi-Hanson model whose potential reads as [5]

H4+(ω) =
[

u+
i u+

j ξ(ij)
]2

/ω2 , (14)

where ξij is an SU(2) real constant triplet.

2 Solvable Models

We focus our attention on (3) and look for potentials leading to exact solutions
of this equation. The idea is based on suggesting new plausible integrable
equations by proceeding by formal analogy with the known integrable two
dimensional conformal Liouville equation [2, 3].
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2.1 The HS Liouville Potential

H4+(ω, u) = −1

2

(

ξ++

λ

)2

exp 2λω (15)

this result is established in [2] and lead to extract important physical and
mathematical properties. We derived the following non linear differential equa-
tion of motion

λ ∂++2ω − ξ++2 exp 2λω = 0 (16)

defining the integrable Liouville field theory. The explicit solution of this
nonlinear differential equation reads as

ξ++ exp λω =
u+

i u+
j f ij(z, z̄)

1 − u+
k u−

ℓ fkℓ(z, z̄)
. (17)

Here we showed, among others, that the integrability of this model is a con-
sequence of the existence of a symmetry generated by the following conserved
current

t4+ = (∂++ω)2 − 1

λ
∂++2ω (18)

∂++ t4+ = 0 .

This representation of the current t4+, which in some sense resembles to the
Liouville current, can also be obtained by using the field theoretical method
or again with the help of an extended Miura transformation which reads, in
the general situation, as

(∂++n − W 2n+) =
n

Π
j=1

(∂++ − V ++
j ) , (19)

where the fields V ++
j , j = 1, . . . , n, obeys the traceless condition namely

n
∑

j=1

V ++
j = 0. (20)

2.2 A ∂++ω− Dependent Potential

In this section, devoted to a presentation of a new result, we assume that the
potential in (3) depends also on the harmonic derivative of the field ω. We
assume then the following

H4+(ω, ∂++ω, u) = −1

2

(

ξ++

λ

)2

exp 2λω + α
(

∂++ω
)2

(21)
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shown easily to give rise to the following non linear differential harmonic equa-
tion of motion

λ (1 − 2α) ∂++2ω − ξ++2 exp 2λω = 0 (22)

This equation is similar to the previous HS 2d-Liouville field equation of motion
modulo a factor term namely λ (1 − 2α). Setting α = 0 one recovers the
Liouville equation corresponding to the case where the interacting potential
H4+ is independent of the derivative of ω. We have to underline the singularity
of the value α = 1

2
, a problem that we can overcome by making the following

rescaling
ξ++ →

√
1 − 2αξ++, (23)

for α 6= 1
2
. Using this, we can then conclude that both the interacting potential

H4+(ω, u) and H4+(ω, ∂++ω, u) drive us to the same HS Liouville equation of
motion

λ∂++2ω − ξ++2 exp 2λω = 0.

We conclude then that we can associate to the α-HS Liouville equation of mo-
tion the same stress energy momentum tensor t4+. This α-HS parametrization
deserves more discussion, this task will be reexamined in our next work.
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