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Abstract

In this paper, we have obtained exact static spherical symmetric soliton-like solutions to the electromagnetic and scalar nonlinear induction
field equations taking into account the own gravitational field of the elementary. The results show that the metric tensor functions are regular
with localized energy density. Moreover, the total energy of the nonlinear induction fields is bounded and the total charge of elementary
particles has a finite value. The importance of the own gravitational field of elementary particles and the role of the nonlinearity of fields in
the determination of these solutions have been proved.
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1. Introduction

The soliton is a particular, spatially localized solution of nonlinear differential equations. Its experimental and mathematical properties and
exceptional stability, have amazed the scientific world [1, 2].
One of the domains of application of the soliton concept is elementary particle physics, where soliton solutions of nonlinear differential field
equations are used as models to describe the configuration of elementary particles [3, 4]. These solutions, as suggested by Rajaraman [5],
allow to model elementary particles as not being material points but extended objects with a complex spatial configuration. The complete
description of elementary particles with all their physical characteristics (charge, spin) is possible only in the framework of the field
interaction theory and quantum mechanic [6]. The choice of the field equations is one of the main problems of the nonlinear theory. It
has given rise to a lot of work in the particle physics domain. For example, Korteweg et al. [7] gave the theoretical interpretation to the
observation of J. S. Russell [8] by solving the KdV equation. Schwarzschild exhibited a spherical symmetric solution describing the static
exterior of a gravitational source called Schwarzschild solution which remained for a long time only a mathematical result. His weak field
approximation described correctly the mechanic of the solar system. Its global interpretation (especially for the inner solution) in terms of
space-time containing a black hole was only understood many years later. Other exact solutions were discovered afterward. For instance,
the works of Kerr-Newmann [9], Wiltshire [10], Wald [11] and the famous Carter-Penrose diagram, constitute references for the study of
the singularity of static spherical and symmetric solutions. R. Pellicer et al. [12] generalized the solutions to the Born-Infeld nonlinear
electrodynamics equation based on the work of Plebanski [13]. They discovered a new class of non-singular static spherical symmetric
solutions to the modified Einstein-Maxwell equation, some of whose tensors are close to those of Riessner-Nordström. Bronnikov et al. [14]
solved the equation to the nonlinear scalar, electromagnetic and own gravitational fields. They obtained particular static spherical symmetry
solutions on the basis of predefined strong and weak criteria relating to singularity, regularity and localization. They concluded the existence
of a system of even particle-antiparticles and gave applications. Rybakov et al. [15, 16] determined soliton-like solutions of the equation to
the nonlinear electromagnetic field interacting with the scalar field in the spherical and/or cylindrical symmetric metric in the presence to
the own gravitational field of the elementary particles by briefly exploring the particular case where S(k,ξ ) = ξ . They found that with the
calibrated invariance function P(I) = P0(λ I −N)2, the metric tensor function are regular function and the energy of the field is finite. They
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obtained a solution describing a massive system but the total charge of elementary particles was not examined. Recently, A. Adomou et
al. [17–20] established spherical symmetric soliton solutions to the spinor and gravitational field equations using several bilinear invariants.
In these works related to solitons, only the case where S(k,ξ ) = ξ is often addressed. The aim of this paper is to determine the exact static
spherical symmetric soliton-like solutions to the electromagnetic and scalar nonlinear induction fields equation taking into account the
own gravitational field of the elementary particles by considering all forms of the function S(k,ξ ), using the calibrated invariance function
P(I) = P0(N −λ I)2, under the condition N > λ I. To achieve this, Section 2 gives a brief overview of the basic equations. In Section 3, the
obtained solutions are presented. A discussion and a comparative study are included in Section 4. The role of the own gravitational field of
elementary particles and the influence of the nonlinearity fields in obtained solutions are studied in detail in Section 5. Section 6 is devoted to
the conclusion and future work.

2. Basic equations

In this research work, we opt for the static spherical symmetric metric:

ds2 = e2γ dt2 − e2α dξ
2 − e2β

[
dθ

2 + sin2(θ) dϕ
2
]
, (1)

where the functions α, β and γ depend only on the radial component ξ =
1
r

and verify the coordinate condition [21]:

α = 2β + γ. (2)

In general relativity, Einstein’s equation is:

Gν
µ =−χT ν

µ . (3)

This equation contains the Einstein tensor (Gν
µ ); the Einstein gravitational constant (χ) and the energy momentum metric tensor (T ν

µ ).
From Eq.(1), Eq.(2) and Eq.(3), the non-zero components of Einstein’s tensor equation are written as [17] :

G0
0 = e−2α (2β

′′−2γ
′
β
′−β

′2)− e−2β =−χ T 0
0 (4)

G1
1 = e−2α (2γ

′
β
′+β

′2)− e−2β =−χ T 1
1 (5)

G2
2 = e−2α (β ′′+ γ

′′−2γ
′
β
′−β

′2) =−χ T 2
2 (6)

G2
2 = G3

3 (7)

T 2
2 = T 3

3 (8)

where (′) denotes the first derivative with respect to ξ .
The Lagrangian of the interacting nonlinear electromagnetic, scalar and the own gravitational fields has the form:

L =
R

2 χ
− 1

4
Fi jF i j +

1
2

ϕ,iϕ
,i
ψ(I) (9)

where I = Ai Ai is the chronometric invariant; ψ(I) = 1+ λ φ(I) is some arbitrary function characterizing the interaction between the
nonlinear electromagnetic and scalar fields; Ai( A(ξ ),0,0,0) is the 4-vector potential; λ represents the parameter of the nonlinearity.
In the absence of a magnetic monopole and a current source, we write the scalar and the electromagnetic field equations corresponding to the
Lagrangian Eq.(9) [16]:

1√
−g

∂

∂ξ ν

[√
−ggνµ

ϕ,µ ψ(I)
]
= 0, (10)

1√
−g

∂

∂ξ µ

[√
−gFνµ

]
−ϕ,iϕ

,i
ψI(I)Aν = 0. (11)

The energy-momentum metric tensor reads:

T ν
µ = ϕ,µ ϕ

,ν
ψ(I)−FµiFν i +ϕ,iϕ

,i
ψI(I)Aν Aµ −δ

ν
µ

[
−1

4
Fi jF i j +

1
2
(ϕ,iϕ

,i)ψ(I)
]
. (12)

Using Eq.(12), the explicit form of the non-zero components of the energy-momentum metric tensor are:

T 0
0 =

1
2

e−2α [e−2γ (A′)2 +C2P(I)+2e−2γC2PI(I)(A)2] (13)
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T 1
1 =−T 2

2 =−T 3
3 =

1
2

e−2α [−C2P(I)+ e−2γ (A′)2]. (14)

The scalar field equation Eq.(10) has a solution:

dϕ

dξ
=

C
ψ(I)

=CP(I). (15)

The nonlinear electromagnetic field equation Eq.(11) is reduced to:

(e−2γ A′)′−C2e−2γ PI(I)A = 0. (16)

From Eq.(5) and Eq.(6), we find the Liouville equation which takes the form [21]:

(β + γ)′′ = e2(β+γ) (17)

with the solution :

S(k,ξ ) = e−(β+γ) =


sinh(kξ )

k
, k > 0

ξ , k = 0
sin(kξ )

k
, k < 0

(18)

Summation of Eq.(4) and Eq.(5), leads to:

β
′′− e2(β+γ) =−χ

2
e−2γ [−C2P(I)+ e−2γ (A′)2]. (19)

From Eq.(16), Eq.(17) and Eq.(19), we obtain:

γ
′′ =

1
2

χ(AA′e−2γ )′. (20)

The first integral of Eq.(20) reads:

γ
′(ξ ) =

1
2

χ(AA′e−2γ )+Y, (21)

For Y = 0, the solution of Eq.(21) is:

e2γ =
χA2

2
+H, (22)

where H is the constant of integration, which under the regular condition of the components of metric tensor, we write Eq.(22) in the form:

e2γ =
χA2

2
+1. (23)

Putting Eq.(23) into Eq.(16), we get :

±(ξ +ξ0) =
∫ dA(

χA2

2
+1

)√
C2P(I)+K

, (24)

where ξ0 = const, K = const.
The solution of the Eq.(24) will lead to the expression of the electric scalar potential A(ξ ) knowing the concrete form of P(I). Knowing this
potential, we could rewrite the relation Eq.(13) which will allow us to obtain the energy density per unit invariant volume T (ξ ) and total
energy of the nonlinear induction fields interaction E f :

T (ξ ) = T 0
0 (ξ )

√
3
−g (25)

E f =
∫

ξc

0
T 0

0

√
3
−gdξ . (26)

In generally from (11) one gets [22]:

jν =−ϕ,iϕ
,i
ψI(I)Aν . (27)

Expanding it, we obtain the following components of the 4-vector current density jν :

j0 =−e−2(γ+α) C2 PI(I)A, (28)

j1 = j2 = j3 = 0. (29)
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The charge density ρe(ξ ), the charge density per unit invariant volume ρ(ξ ) and the total charge Q of elementary particles verify the
relations:

ρe(ξ ) =−C2e−(2α+γ) PI(I)A, (30)

ρ(ξ ) =−C2e−2γ A PI(I) sinθ , (31)

Q =−C2
∫

ξc

0
e−2γ A

dP(I)
dI

sinθ dξ . (32)

Let us determine in Sec.3, the exact static spherical symmetric solutions to the Einstein’s equation, the electromagnetic and scalar nonlinear
induction field equations by choosing P(I) in the form:

P(I) = P0 (N −λ I)2 , (33)

where P0, N are some dimensionless constants satisfy N > λ I and P(I) = 1 in ξ = 0.

3. Exact static spherical symmetric solutions of the Einstein, the electromagnetic and scalar nonlin-
ear induction field equations

Substituting of Eq.(33) in Eq.(24), the electric scalar potential, solution of the nonlinear electromagnetic field equation Eq.(16) is given:

A(ξ ) =

√
N

λ (1−σ2)
tanh [b(ξ +ξ0)] , (34)

where b =C
√

NP0λ (1−σ2) and σ2 =
χN
2λ

From Eq.(2), Eq.(18), Eq.(23) and Eq.(34), the solutions of Einstein’s equation are established as:

g00 =
cosh2 [b(ξ +ξ0)]−σ2(

1−σ2
)

cosh2 [b(ξ +ξ0)]
, (35)

g11 =−
(
1−σ2)

S4
cosh2 [b(ξ +ξ0)]

cosh2 [b(ξ +ξ0)]−σ2
, (36)

g22 =
g33

sin2(θ)
=−

(
1−σ2)

S2
cosh2 [b(ξ +ξ0)]

cosh2 [b(ξ +ξ0)]−σ2
, (37)

where S = S(k,ξ ).
From Eq.(13), Eq.(18), Eq.(25), Eq.(26), Eq.(34), Eq.(35), Eq.(36) and Eq.(37), the chronometric invariant I(ξ ), the energy density T 0

0 (ξ ),
the energy density per unit invariant volume T (ξ ) and the total energy E f of the nonlinear induction fields verify the relations:

I =
N sinh2 [b(ξ +ξ0)]

λ
[
cosh2 [b(ξ +ξ0)]−σ2

] , (38)

T 0
0 (ξ ) =

S4N2P0C2

2cosh2 [b(ξ +ξ0)]

[
1−σ2

cosh2 [b(ξ +ξ0)]−σ2
+

1
cosh2 [b(ξ +ξ0)]

− 4sinh2 [b(ξ +ξ0)]

cosh2 [b(ξ +ξ0)]−σ2

]
, (39)

T (ξ ) = M

(1−σ
2)

cosh [b(ξ +ξ0)][
cosh2 [b(ξ +ξ0)]−σ2

]5/2
+

1

cosh [b(ξ +ξ0)]
[
cosh2 [b(ξ +ξ0)]−σ2

]3/2
− 4sinh2 [b(ξ +ξ0)]cosh [b(ξ +ξ0)][

cosh2 [b(ξ +ξ0)]−σ2
]5/2

 ,

(40)

E f = M
[
(1−σ

2)E f1 +E f2 −4E f3

]
, (41)

where M =
N2P0C2

2
(
1−σ2)3/2 sinθ , E f1 =

∫ ξc
0

cosh [b(ξ +ξ0)][
cosh2 [b(ξ +ξ0)]−σ2

]5/2
dξ , E f2 =

∫ ξc
0

1

cosh [b(ξ +ξ0)]
[
cosh2 [b(ξ +ξ0)]−σ2

]3/2
dξ

E f3 =
∫ ξc

0
sinh [b(ξ +ξ0)]

2 cosh [b(ξ +ξ0)][
cosh2 [b(ξ +ξ0)]−σ2

]5/2
dξ .
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After a series of mathematical transformations, we obtain E f1 and E f2 in the form:

E f1 = R1

 sinh [b(ξc +ξ0)][
cosh2 [b(ξc +ξ0)]−σ2

]3/2
− sinh(bξ0)[

cosh2(bξ0)−σ2
]3/2

+2R2

 sinh [b(ξc +ξ0)]√
cosh2 [b(ξc +ξ0)]−σ2

− sinh(bξ0)√
cosh2(bξ0)−σ2

 ; (42)

E f2 =
2σP

σ2 −1

 sinh [b(ξc +ξ0)]√
cosh2 [b(ξc +ξ0)]−σ2

− sinh(bξ0)√
cosh2(bξ0)−σ2

+P ln |
σ sinh [b(ξc +ξ0)]−

√
cosh2 [b(ξc +ξ0)]−σ2

σ sinh [b(ξc +ξ0)]+
√

cosh2 [b(ξc +ξ0)]−σ2
|

+P ln |
σ sinh(bξ0)−

√
cosh2(bξ0)−σ2

σ sinh(bξ0)+
√

cosh2(bξ0)−σ2
|, (43)

where R1 =
1

3b(1−σ2)
, R2 =

1
3b(1−σ2)2 , P =− 1

2bσ3 .

The integral E f3 being difficult to obtain, we will make its extension on [0,+∞] then deduce its localization on [0,ξc]. To do this, we consider
the following formula from the standard table of integrals [23] :∫

∞

0

sinhµ−1 xcoshν−1 x(
cosh2 x−β

)ρ dx= 2B
(

µ

2
,1+ρ − µ +ν

2

)
×F

(
ρ,1+ρ − µ +ν

2
;1+ρ − ν

2
,β

)
;β /∈ (1,∞), Re(µ)> 0, 2Re(1+ρ)> Re(ν +µ).

(44)

In this expression, B(a,b) is the Bêta function and F(a,b;c,m) is the Gauss hyper-geometric function. So, we obtain:

E f3 <
∫

∞

0

sinh [b(ξ +ξ0)]
2 cosh [b(ξ +ξ0)][

cosh2 [b(ξ +ξ0)]−σ2
]5/2

dξ , (45)

E f3 < F
(

5
2

;1;
5
2

;σ
2
)
×2B

(
3
2
,1
)
, (46)

E f3 <
4

3(1−σ2)
. (47)

Thus, we have:

E f < ∞. (48)

Moreover, the expressions Eq.(30), Eq.(31) and Eq.(32) are transformed into:

ρe(ξ ) =
2P0C2S4N3/2

√
λ sinh [b(ξ +ξ0)]

cosh2 [b(ξ +ξ0)]
√

cosh2 [b(ξ +ξ0)]−σ2
, (49)

ρ(ξ ) =
2C2P0

√
λ
[
N(1−σ2)

]3/2 sinh [b(ξ +ξ0)]

cosh [b(ξ +ξ0)]
−1 [cosh2 [b(ξ +ξ0)]−σ2

]2 sinθ , (50)

Q =−CNP1/2
0

[ (
1−σ2)

cosh2 [b(ξc +ξ0)]−σ2
−

(
1−σ2)

cosh2 [bξ0]−σ2

]
sinθ . (51)

In Sec.4, we will discuss the influence of the function S(k,ξ ) on the obtained solutions.

4. Discussion

The electric scalar potential A(ξ ), the component g00(ξ ) of the metric tensor, the energy and the charge densities per unit invariant volume
(T (ξ ),ρ(ξ )) are regular functions, independent of the concrete form of the function S(k,ξ ).
Fig.1 and Fig.2 give a graphic illustration:
In Fig.1(a), A(0) = 0, the solution of the equation to the electromagnetic and scalar fields of nonlinear induction and taking into account the
own gravitational field of elementary particles describes a massless system contrary to the massive system obtained by [16].
In Fig.1 (b), the regularity condition of the component of the metric tensor g00 in infinite space imposes the nullity of the integration constant
ξ0.
In Fig.2 (a), the energy density per unit invariant volume is an asymptotic and localized function. Its depth and width of localization depend
on the value of the integration constants.
In Fig.2 (b), the charge density per unit invariant volume is also an asymptotic and localized function, with depth and width of localization
varying with the values of the constants integration.
Let us point out from Eq.(48) and Eq.(51) that, the total charge of elementary particles is a finite quantity and the total energy of fields is
limited.
On the other hand, the components g11, g22, g33 of the metric tensor, the energy and charge densities

(
T 0

0 ,ρe
)

depend on the concrete form
of the function S(k,ξ ).
In order to respect the regularity conditions [16], the obvious and trivial form S(k,ξ ) = ξ is often used. Let us analyze the solutions of field
and Einstein equations of Sec.3 using the limited development in kξ of all concrete forms of S(k,ξ ) in the following different cases:
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Figure 1: (a)-Electric scalar potential A(ξ ) , (b)-Component g00 of the metric tensor. The parameter values used for these simulation are: λ = 39; ξ0 = 0;

C = N = 2; χ = 8π and θ =
π

2
.

Figure 2: (a)-Energy density per unit invariant volume T (ξ ) and (b)- Charge density per unit invariant volume. The parameter values used for these

simulation are: λ = 39; ξ0 = 0; C = N = 2; χ = 8π and θ =
π

2
.

Case 1: k > 0

The concrete form of S(k,ξ ) is:

S(k,ξ ) =
sinh(kξ )

k
. (52)

The limited development of Eq.(52) to low order in kξ , introduced in Eq.(36), Eq.(37), Eq.(39) and Eq.(49) lead respectively to:

g11 =−
(
1−σ2)[

ξ +
k2ξ 3

6

]4
cosh2 [b(ξ +ξ0)]

cosh2 [b(ξ +ξ0)]−σ2
, (53)

g22 =
g33

sin2(θ)
=−

(
1−σ2)[

ξ +
k2ξ 3

6

]2
cosh2 [b(ξ +ξ0)]

cosh2 [b(ξ +ξ0)]−σ2
, (54)

T 0
0 (ξ ) =

N2P0C2
[

ξ +
k2ξ 3

6

]4

2cosh2 [b(ξ +ξ0)]

[
1−σ2

cosh2 [b(ξ +ξ0)]−σ2
+

1
cosh2 [b(ξ +ξ0)]

− 4sinh2 [b(ξ +ξ0)]

cosh2 [b(ξ +ξ0)]−σ2

]
, (55)

ρe(ξ ) =

2P0C2N3/2
√

λ

[
ξ +

k2ξ 3

6

]4

sinh [b(ξ +ξ0)]

cosh2 [b(ξ +ξ0)]
√

cosh2 [b(ξ +ξ0)]−σ2
. (56)

Case 2: k < 0

S(k,ξ ) =
sin(kξ )

k
. (57)
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The relations Eq.(57) at low order in kξ in those Eq.(36), Eq.(37), Eq.(39) and Eq.(49) verify the equalities:

g11 =−
(
1−σ2)[

ξ − k2ξ 3

6

]4
cosh2 [b(ξ +ξ0)]

cosh2 [b(ξ +ξ0)]−σ2
, (58)

g22 =
g33

sin2(θ)
=−

(
1−σ2)[

ξ − k2ξ 3

6

]2
cosh2 [b(ξ +ξ0)]

cosh2 [b(ξ +ξ0)]−σ2
, (59)

T 0
0 (ξ ) =

N2P0C2
[

ξ − k2ξ 3

6

]4

2cosh2 [b(ξ +ξ0)]

[
1−σ2

cosh2 [b(ξ +ξ0)]−σ2
+

1
cosh2 [b(ξ +ξ0)]

− 4sinh2 [b(ξ +ξ0)]

cosh2 [b(ξ +ξ0)]−σ2

]
, (60)

ρe(ξ ) =

2 P0 C2 N3/2
√

λ

[
ξ − k2ξ 3

6

]4

cosh2 [b(ξ +ξ0)]

sinh [b(ξ +ξ0)]√
cosh2 [b(ξ +ξ0)]−σ2

. (61)

Case 3: k = 0

S(k,ξ ) = ξ . (62)

Substituting Eq.(62) into Eq.(36), Eq.(37), Eq.(39), Eq.(49), we obtain:

g11 =−
(
1−σ2)

ξ 4
cosh2 [b(ξ +ξ0)]

cosh2 [b(ξ +ξ0)]−σ2
, (63)

g22 =
g33

sin2(θ)
=−

(
1−σ2)

ξ 2
cosh2 [b(ξ +ξ0)]

cosh2 [b(ξ +ξ0)]−σ2
, (64)

T 0
0 (ξ ) =

N2 P0 C2ξ 4

2cosh2 [b(ξ +ξ0)]

[
1−σ2

cosh2 [b(ξ +ξ0)]−σ2
+

1
cosh2 [b(ξ +ξ0)]

− 4sinh2 [b(ξ +ξ0)]

cosh2 [b(ξ +ξ0)]−σ2

]
, (65)

ρe(ξ ) =
2 P0 C2 N3/2

√
λξ 4

cosh2 [b(ξ +ξ0)]

sinh [b(ξ +ξ0)]√
cosh2 [b(ξ +ξ0)]−σ2

. (66)

Fig.3 and Fig.4 are a summary illustration of the properties of all the solutions obtained in each of the different cases above:

Figure 3: (a)-Components g11 of the metric tensor , (b)-Components g22 of the metric tensor, using the values for the parameters as in Fig.1 and
k = 0; ±1.6; ±40 .

In Fig.3 (a) and Fig.3(b), the components g11, g22 and g33 of the metric tensor present a gravitational singularity not controllable by change
of variable in infinite space whatever the form of the function S(k,ξ ) as stated in [24].
In Fig.4(a), the energy densities T 0

0 (ξ ) are asymptotic, localized functions, all canceling in infinite space. The width of the location and the
depth vary according to the values of the integration constants, especially that of k.
In Fig.4(b), the charge densities ρe(ξ ) exhibit the same properties as the energy densities in Fig.4(a) but are positive defined.
We will focus in Sec.5 on the influence to the own gravitational field of the elementary particles and on the role of the nonlinearity fields in
obtained soliton-like solutions.
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Figure 4: (a)- Energy densities T 0
0 (ξ ) and (b)- Charge densities ρe(ξ ) using the values for the parameters as in Fig.1 and k = 0; ±1.6; ±40 .

5. Solutions in flat space-time and in linear case

5.1. Solutions in flat space-time

In the absence to the own gravitational field of elementary particles, the metric Eq.(1)becomes:

ds2 = dt2 −dξ
2 −

[
dθ

2 + sin2(θ) dϕ
2
]
. (67)

The nonlinear electromagnetic field equation Eq.(16) becomes :

A′′−C2PI(I)A = 0, (68)

which has the solution:

±C(ξ +ξ0) =
∫ dA√

P(I)
. (69)

Using Eq.(33), the relation Eq.(69) gives the expression of the electric scalar potential:

A(ξ ) =

√
N
λ

tanh [u(ξ +ξ0)] , (70)

where u =C
√

NP0λ .
The energy and charge densities per unit invariant volume (T (ξ ),ρ(ξ )) verify the following expressions:

T (ξ ) =
P0N2 C2

cosh4 [u(ξ +ξ0)]

[
1−2sinh2 [u(ξ +ξ0)]

]
sinθ , (71)

ρ(ξ ) = 2C2 P0 N3/2
√

λ
sinh [u(ξ +ξ0)]

cosh3 [u(ξ +ξ0)]
sinθ . (72)

Fig.5 below, shows the influence of the own gravitational field of the elementary particles on the solutions established in Sec.4.

Figure 5: (a)-Electric scalar potential A(ξ ) , (b)- Energy density per unit invariant volume T (ξ ) and (c)- Charge density per unit invariant volume ρ(ξ )
keeping the values for the parameters as in Fig.1 and Fig.2.

In Fig.5 (a), we see that in the absence of the own gravitational field of the elementary particles, the electric scalar potential Eq.(70) remains
a regular but of smaller amplitude than the one obtained in Fig.1(a).
In Fig.5 (b), the energy density per unit invariant volume has the same properties as those obtained by taking into account the own gravitational
field of the elementary particles but with almost equal depth.
In Fig.5 (c), the charge density per unit invariant volume has a more extensive depth in the absence of the elementary particle gravitational
field, is asymptotic and localized in an interval whose width depends on the integration constants .
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The total energy of fields E f and the total charge Q of elementary particles are given by the expressions:

E f = R3

[
tanh3(uξ0)− tanh3 [u(ξc +ξ0)]− tanh(uξ0)+ tanh [u(ξc +ξ0)]

]
, (73)

Q =−
2C N P1/2

0
3

[
sinθ

cosh3 [u(ξc +ξ0)]
− sinθ

cosh3 [uξ0]

]
(74)

where R3 =
C N3/2 P1/2

0

λ 1/2
sinθ .

5.2. Linear solutions

In the absence of the non-linearity of the fields, the coupling is minimal :

ψ(I) = P(I) = P0 N2 = 1. (75)

The linear equations of the electromagnetic and scalar fields are:

(e−2γ A′)′ = 0, (76)

dϕ

dξ
=C. (77)

Their solutions are:

A(ξ ) = K
∫

e2γ dξ , K = const, (78)

ϕ(ξ ) =Cξ +D, C = const, D = const. (79)

The non-zero components of the energy-momentum metric tensor are:

T 0
0 (ξ ) =

1
2

e−2α [e−2γ (A′)2 +C2], (80)

T 1
1 =−T 2

2 =−T 3
3 =

1
2

e−2α [e−2γ (A′)2 −C2]. (81)

The sum of the Einstein tensor
(

1
1

)
+

(
2
2

)
gives the equation Eq.(17). On the other hand that

(
0
0

)
+

(
1
1

)
leads to:

β
′′− e2(β+γ) =−χ K2

2
e2γ . (82)

From Eq.(17) and Eq.(82), we obtain:

γ
′′ =

χ K2

2
e2γ . (83)

For K2 =−1, the relation Eq.(83) becomes:

γ
′′ =−χ

2
e2γ , (84)

which has the solution:

e2γ =
2η2

χ

1
cosh2(ηξ )

, η
2 = const. (85)

The regularity of Eq.(85) in the infinite space, allows to have:

e2γ =
1

cosh2(ηξ )
, η

2 =
χ

2
. (86)

From Eq.(2), Eq.(18) and Eq.(86), we establish the solutions of Einstein’s equation:

g00 =
1

cosh2(ηξ )
, (87)
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g11 =−cosh2(ηξ )

S4 , (88)

g22 =
g33

sin2(θ)
=−cosh2(ηξ )

S2 . (89)

From Eq.(87), Eq.(88) and Eq.(89), the electric scalar potential A(ξ ),the energy density T 0
0 (ξ ), the energy density per unit invariant volume

T (ξ ), the total energy of field interaction E f , the components of 4-vector current density ( j0, j1, j2, j3), the charge density ρe(ξ ) and the
total charge of elementary particles Q verify the relations:

A(ξ ) =
i
η

tanh(ηξ ), (90)

T 0
0 (ξ ) =

S4

2cosh2(ηξ )

[
C2 − 1

cosh2(ηξ )

]
, (91)

T (ξ ) =
1
2

[
C2 cosh(ηξ )− 1

cosh(ηξ )

]
sinθ , (92)

E f =
1

2η

[
π

2
+C2 sinh(ηξc)−2arctan(eηξc)

]
sinθ , (93)

j0 = j1 = j2 = j3 = 0, (94)

ρe(ξ ) = ρ(ξ ) = 0, (95)

Q = 0. (96)

The component of the metric tensor g00(ξ ) is a regular function while the other components of this tensor present a singularity in infinite
space as obtained in the nonlinear case. The energy density is a regular and localized function whatever the form of the function S(k,ξ ).
The total energy of the interaction fields is bounded but the electric scalar potential is imaginary. This solution is a soliton-like solution.
For K2 ̸=−1, the relation Eq.(83) has a solution:

e2γ =− 2η2

χ K2
1

cosh2(ηξ )
, η

2 = const. (97)

Its regularity in the infinite space, imposed:

e2γ =
1

cos2(ξ )
, K2 =

2
χ

, η
2 =−1. (98)

From Eq.(2), Eq.(18) and Eq.(98), the solutions of the Einstein equation are as follows:

g00 =
1

cos2(ξ )
, (99)

g11 =−cos2(ξ )

S4 , (100)

g22 =
g33

sin2(θ)
=−cos2(ξ )

S2 . (101)

From Eq.(99), Eq.(100) and Eq.(101), the electric scalar potential A(ξ ),the energy density T 0
0 (ξ ), the energy density per unit invariant

volume T (ξ ), the total energy of field interaction E f , the components of 4-vector current density ( j0, j1, j2, j3), the charge density ρe(ξ )
and the total charge of elementary particles Q verify the relations:

A(ξ ) =

√
2
χ

tan(ξ ), (102)
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T 0
0 (ξ ) =

S4

2cos2(ξ )

[
C2 +

2
χ cos2(ξ )

]
, (103)

T (ξ ) =
1
2

[
C2 cos(ξ )+

2
χ cos(ξ )

]
sinθ , (104)

E f =
1
2

[
2
χ

ln
[

tan
(

π

4
+

ξc

2

)]
+C2 sin(ξc)

]
sinθ , (105)

j0 = j1 = j2 = j3 = 0, (106)

ρe(ξ ) = ρ(ξ ) = 0, (107)

Q = 0. (108)

For ξ ̸= π

2
, solutions obtained have the same properties as those established in the case where K2 =−1.

6. Conclusion

It has been proved that with the limited development to low order in kξ of the different forms of the function S(k,ξ ), we can solve the
Einstein equation, the electromagnetic and scalar nonlinear induction equation by taking into account the own gravitational field of the
elementary particles as in the case most often approached S(k,ξ ) = ξ . The obtained results show that taking into account or not the own
gravitational field of the elementary particles, the metric tensor function are regular. All energy densities are localized, have a depth and a
width of localization whose interval varies according to the values of the integration constants. The total energy of nonlinear induction fields
and the total charge of the elementary particles are finite. These solutions describe massless systems contrary to the massive ones obtained
by Rybakov et al. [16]. They give a new orientation to Heisenberg’s prediction that the determination of the masses of elementary particles
could not be done in quantum mechanic. These solutions are of soliton-like solutions and constitute a model can be used to describe the
complex internal configuration of elementary particles. In the near future, we will do similar work but with the 4-vector potential chosen in
the form A( A0,0, A2, A3).
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