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Abstract

This paper focuses on the dynamics and active control of chemical oscillations governed by a forced generalized Rayleigh oscillator. The
Melnikov method is used to analytically determine the critical parameters for the onset of chaotic motions. The analytical results are
confirmed by numerical simulations. The bifurcation structures obtained show that the model displays a rich variety of dynamical behaviors
and remarkable routes to chaos. The effects of the control gain parameters on the behavior of the system are analyzed and the results obtained
have shown the control efficiency.
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1. Introduction

Chaos theory is one of the most exciting and rapidly expanding research topics of recent decades [1]. Chaos occurs only in deterministic
nonlinear dynamical systems. Indeed, from a theoretical perspective, virtually anything that happens over time could be chaotic [2–6]. In the
literature, studies of chaos [3, 5, 7–10] and the nonlinear dynamic phenomena have been carried out in several areas (physics, mathematics,
communications, chemistry, biology, physiology, medicine, ecology, hydraulics, geology, engineering, atmospheric sciences, oceanography,
astronomy, the solar system, sociology, literature, economics, history, international relations, and in other fields). This sufficiently shows the
multidisciplinary character of chaos theory. Obviously, the control of chaos in nonlinear oscillations appears today an important subject of
investigation for scientific community because of its multiple applications in various fields.
In chemistry, most of the studies carried out on oscillating chemical reactions have revealed non-equilibrium phenomena such as complex
oscillations, bistability, and quasi-chaotic behavior [11]. The different types of motion obtained in nonlinear systems are mostly dependent
on several factors including: the nature of the nonlinearity, the choice of system parameters and the initial conditions [12–15]. It is therefore
important to suppress or if possible control the sources of instabilities in some systems in order to be able to use them in applications. To this
end, depending on the nature of the problem considered, several control techniques have been developed in the literature [16–19]. These
methods are: OGY-method, passive controls, active controls and semi-active controls. The work carried out on the active control technique is
the most numerous [20]. However, research is also actively continuing on other control techniques. Recent studies have used the passive
method to control chaotic behavior. For example, Olabodé et al. [21] used the passive control technique to suppress the instabilities occurring
during regular and chaotic oscillatory states of plasma. These authors have shown that the oscillatory states being sources of instability
of the plasma, a passive control technique would be appropriate to regulate both the chaotic oscillations and the high amplitude of the
oscillations which can occur respectively in chaotic and non-chaotic states. Olabodé et al. [22] studied the passive control of horseshoes
chaos in dissipative nonlinear chemical oscillations. Using the BZ reactions, they showed how the stress parameter of the nonlinear chemical
system, the control parameter and the fluid seep can affect the critical conditions for the appearance of chaotic movements obtained when the
passive control force is applied.

Copyright © 2018 Author. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.
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We consider in this work the Briggs-Rauscher reaction model. It belongs to a category of nonlinear chemical reactions well developed in the
scientific literature. We made this choice because it has already been demonstrated that a modified Van der Pol-Duffing oscillator can be used
to model the nonlinear chemical oscillations like BZ reactions [21–26]. Since the control of regular and irregular motions is an interesting
issue in several areas [27], the dynamical behavior of a forced generalized Rayleigh oscillator, which constitutes a new model for describing
the nonlinear chemical oscillations, may be investigated. For this, we use the Melnikov method to analyze the chaotic behavior of this new
chemical oscillator. By acting on certain control parameters, we hope to significantly reduce or eliminate the chaotic behavior in order to
bring the chemical system to a stationary state or a state of regular motion. The focus of this work is therefore to improve the understanding
and strengthen the knowledge on the horseshoes chaos and active control in nonlinear chemical oscillations modeled by a forced generalized
Rayleigh oscillator with asymmetric potential. The originality of this work is brought by the introduction of impure (xẋ2) and pure (ẋ3)
cubic damping terms to modified Van der pol-Duffing oscillator recently used in the chaotic dynamics of nonlinear chemical oscillations.
The structure of this research paper is arranged as follows: in Section 2, we present the model, equilibrium points and their stabilities. In
Section 3, we derive the Melnikov criterion for homoclinic chaos. Bifurcation structures and routes to chaos are investigated in Section 4. In
Section 5, we apply an active control strategy to suppress or reduce the chaotic behavior in our chemical system. The last section is devoted
to the conclusion of this work.

2. Model, equilibrium points and their stabilities

2.1. Model

The generic model for nonlinear oscillations used in this study is based on the kinetic scheme which given by the following chain of
equations [21, 22, 28, 29]:

A k1−→U,

B+U k2−→ 2U,

D+U
k3−→ products,

U k4−→U ′,

B+U ′
k5−→V,

V
k6−→U ′+ products

where, the incoming fluxes of the respective species A,B, and D, and the inverse of the resident time, k1 , are controlled externally. It has
been shown that, if one derives the kinetic equations under the assumptions of the law of mass action, steps (1)-(4) may give a bistability and
that steps (4)-(6) may be handled as a feedback on the constraint parameter of the autocatalytic step, inducing oscillations of the studied
type for suitable values of the amplitude feedback parameter, k5 [28]. We will assume thereafter that the sink of the product is a first order
reaction. Thus, using the laws of mass action and conservation, we get after some mathematical transformations that the self-oscillations in
some nonlinear chemical systems can be defined as follows:u̇ =−u3 +µ0u− kν−λ ,

ν̇ =
u−ν

τ

(1)

where u and ν designate the concentration of the two intermediate species, λ is the constraint parameter because it acts as constant negative
feedback for the system, k is the second constraint parameter on which feedback values depend and τ is the characteristic evolution time of
the feedback −kν . Several nonlinear phenomena (bifurcations, multistability, chaotic behavior, etc.) appear when reactive chemical species
act with the catalytic surface. To study these complex phenomena, many works [30] suggest to model by nonlinear oscillator equations such
as for example the Van der Pol oscillator which is widely used. By adopting the same approach, we aim to reduce the number of species
needed to control the dynamics of chemical reactions described by Eq. (1). Taking into account Eq. (1) and using the following similar
linear transformation equations made in [4]x = ν ,

y =
1
τ
[−µ0u+(k−µ0)ν ]

(2)

with

ẋ = y, (3)

we obtain after some algebraic manipulations, a generalized Rayleigh oscillator equation:

ẍ−µ

(
ν− x2 +ηxẋ− 1

3
η

2ẋ2
)

ẋ+αx+βx3− γ = 0 (4)

where γ =
λ µ0

τ
, β =

(µ0− k)3

τµ0
, η =

τ

µ0− k
, ν =

µ0(1+ τµ0)− k
3τ(µ0− k)2 , µ = 3

(
1− k

µ0

)2
and α =

1
µ0τ2

[
(µ0− k)(2µ0− k)− τµ3

0
]

Since

several studies have shown that when the system is subjected to an external excitation, many dynamic behaviors appear, we have taking into
account in this paper an external sinusoidal excitation of the form F cos(ωt). Thus the new chemical oscillator can be written through Eq.(4)
as follows:

ẍ−µ

(
ν− x2 +ηxẋ− 1

3
η

2ẋ2
)

ẋ+αx+βx3− γ = F cos(ωt) (5)
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where x, ẋ and ẍ represent respectively the displacement, velocity and acceleration. F and ω are respectively the amplitude and the frequency
of the parametric and external excitations. For the specific case where γ = η = 0 , µ =−µ and if ν = 1, Eq.(5) is reduced to the equation of
classical Van der Pol-Duffing oscillator. In addition, it is important to underline that Eq.(5) contains a specific case used in [31]. At present,
we investigate in the following subsection the equilibrium points and their stabilities.

2.2. Equilibrium points and their stabilities

We determine in this subsection the equilibrium points of the autonomous chemical system given by Eq.(4) as well as their stabilities. To
determine the equilibrium state, it is necessary to set the condition ẋ = ẏ = 0 [32]. So, we found as equilibrium state S = (xe,0) where xe the
fixed point verifies the following equation:

x3
e + pxe +q = 0 (6)

where p =
α

β
and q =− γ

β
. The roots of Eq.(6) can be derived as:

xe1 = ξ1
3

√
−q

2
+
√

∆+ξ2
3

√
−q

2
−
√

∆ (7)

xe2 =
3

√
−q

2
+
√

∆+ 3

√
−q

2
−
√

∆ (8)

xe1 = ξ2
3

√
−q

2
+
√

∆+ξ1
3

√
−q

2
−
√

∆ (9)

where ∆ =
q2

4
+

p3

27
, ξ1 =

−1+ j
√

3
2

, ξ2 =
−1− j

√
3

2
. According to cadran discriminant, when ∆ > 0, there exists one equilibrium point,

which can be obtained from Eq.(8). However, the autonomous chemical system given by Eq.(4) possesses two equilibrium points when
∆ = 0 . For ∆ < 0 Eq.(6) admits three equilibrium points, which can be obtained from (7)-(8).
In order to determine the stability of each equilibrium point, it is necessary to linearize Eq.(4) around equilibrium points. Thus, the Jacobian
matrix around equilibrium points is given by:

J =

[
0 1

−α−3βx2
e µ(ν− x2

e)

]
(10)

Thus, the characteristic equation associated to the previous matrix is:

r2 +Y (xe)r+Z(xe) = 0 (11)

where Y (xe) = µ(x2
e −ν) and Z(xe) = α +3βxe. If D is the discriminant of Eq.(11), then we have: D = Y 2(xe)−4Z(xe). Therefore, the

eigenvalues r solution of Eq.(11) are given by

r1,2 =−
1
2

Y (xe)+
1
2

√
D (12)

From Eq.(12), the stability of the equilibrium points can be analyzed not only according to the sign of D but also of the sign Y of and Z .
Then we have the following possibilities:

• when D > 0 and Z < 0 Eq.(11) has two real roots with opposite signs, which implies that the equilibrium point is an unstable saddle
point;

• when D < 0, Y > 0 and Z > 0, Eq.(11) has two real roots with negative signs. Thus, the equilibrium point is astable saddle point;
• when D < 0 and Y > 0,then Eq.(11) has a pair of complex conjugate roots with negative real parts, which indicates that the equilibrium

point is a stable node-focus;
• when D < 0 and Y < 0, Eq.(11) has a pair of complex conjugate roots with positive real parts, which means that the equilibrium point

is an unstable node-focus;
• when Y = 0 and Z > 0, Eq.(11) has a pair of pure imaginary roots which implies the presence of two Hopf bifurcation points with

xe =±
√

νwithν > 0.

• when Y > 0 and Z = 0, it appears in the chemical system governed by Eq.(4), two fold bifurcation points xe =±
√
−α

3β
for α < 0 and

β > 0.

To verify numerically these above results, we consider the case where the autonomous chemical system given by Eq.(4) admits three
equilibrium points. In this consideration, we use the following parameter values: α =−1, β = 0.85, γ = 0.3 , ν = 0.1 and µ = 0.01. Thus,
the equilibrium points and theirs stabilities are given in Table.1
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Table 1: Stability of the equilibrium points S1, S2 and S3obtained in the case where Eq.(4)
admits three different equilibrium points.

Equilbrium points Eigenvalues Stability
S1 (−0.8808,0) r1,2 =−0.0034±0.0067 j Stable
S2 (1.2115,0) r1,2 =−0.0068±0.0227 j Stable
S1 (−0.3308,0) r1 = 3.2820e−0005, Unstable

r2 =−1.2682e−0004

3. Horseshoe chaos

3.1. Melnikov criterion for homoclinic chaos

According to several authors, when a nonlinear oscillator is subjected to an external excitation, there appears the transition from regular to
irregular motion [33]. It is noteworthy that the important criterion to observe this passage can be obtained from Melnikov’s theory [34]
which is a powerful analytical tool used in several studies to detect chaotic dynamics and analyze near-homoclinic motion with deterministic
or random perturbation. The unperturbed system of equation (4) can be written as follows:{

ẋ = y,
ẏ =−αx−βx3 + γ

(13)

The asymmetric potential function associated to our system is given by:

V (x) =
1
2

αx2 +
1
4

βx4− γx. (14)

The unperturbed system is Hamiltonian, and associated Hamiltonian is:

H(x,y) =
1
2

y2 +V (x) (15)

The homoclinic orbits which connect the fixed points of unperturbed system correspond to zero Hamiltonian. Thus, by solving the equation
H(x,y) = 0 , these orbits are given by the following components [35]:

xh = p+

√
2σ2

β [p±qcosh(στ)]
,

yh =∓
√

2qσ3 sinh(στ)

β [p±qcosh(στ)]2

(16)

where p =
γ

2α

√
−3β

α
, q =

√
−1
2β

(
2α +β p2

)
, σ =

√
−1
2
(
2α +3β p2

)
, τ = t− t0 and t0 is the cross-section time of the Poincaré map

and can be considered as the initial time of the forcing time. We have plotted in Fig.1, the potential (Fig. 1(a)) as well as the homoclinic
orbits (Fig. 1(b)) of the system of Eq.(13). From Fig. 1(a), we notice that the depth of right well increases when γ increases.

Figure 1: (a)-Potential function V (x) and (b)-homoclinic orbits for three different values of γ with α =−1 and β = 0.85 .

Second, we have assumed that the unperturbed system discussed above is perturbed by nonlinear damping and external excitation forces. We
therefore apply the Melnikov criterion to predict analytically the horseshoes chaos in our chemical system. We put equation (5) in the form:ẋ = y,

ẏ =−αx−βx3 + γ +µ

(
ν− x2 +ηxy− 1

3
η2y2

)
y+F cos(ωt)

(17)

According to several authors, the Melnikov function is defined by:

M(t0) =
∫

∞

−∞

f (xh,yh)∧g(xh,yh)dt, (18)

where the vectors g and f are given respectively by:
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g

 0

µ

(
ν− x2 +ηxy− 1

3
η2y2

)
y+F cos(ωt)

 and f
(

y
αx+βx3− γ

)
The Melnikov integral can therefore be written as follows:

M(t0) = µ

[
ν

∫
∞

−∞

y2
hdτ−

∫
∞

−∞

x2
h y2

hdτ−η

∫
∞

−∞

xh y3
hdτ− 1

3
η

2
∫

∞

−∞

y4
hdt
]

dτ +F
∫

∞

−∞

yh cos(ωt)dτ. (19)

By setting: I1 =
∫

∞

−∞
y2

hdτ , I2 =
∫

∞

−∞
x2

h y2
hdτ , I3 =

∫
∞

−∞
xh y3

hdτ , I4 =
∫

∞

−∞
y4

hd, I5 =
∫

∞

−∞
yh cos(ωt)dτ , the Melnikov function becomes:

M(t0) = µ

[
νI1− I2−ηI3−

1
3

η
2I4

]
+FI5. (20)

For the determination of the integrals I1,I2,I3 and I4 we set x = στ , ± q
p
=

√
λ 2−1

λ
and we used the following formulas which are obtained

from the standard integral tables [36]:∫
∞

0

sinh2µ x(
l +
√

l2−1coshx
)ν+1 dx =

2µ e−iµπΓ (ν−2µ +1)Γ (µ + 1
2 )√

π
(
l2−1

)µ/2
Γ (ν +1)

Qµ

ν−µ (l), ν−2µ +1 > 0, Re(µ +1)> 0, (21)

where Qµ

ν−µ (l)=
e jµπ
√

πΓ (ν +1)
2ν+1Γ (ν + 3

2 )

(
l2−1

)−(ν−µ+1)/2 F
(

ν +1
2

;
ν−2µ +1

2
;ν−µ +

3
2

;
1

1− l2

)
. In this expression, Γ (Z) is the Gamma

function, Qµ

ν−µ (l) is the associated Legendre function of the second king and F(a;b;c; l) is the hyper-geometric function. So, we obtain for
these first four integrals the following expressions:

I1 =
4σ5

15β 2q2 F
(

2;1;
7
2

;
q2− p2

q2

)

I2 =
4σ5 p2

15β 2q2 F
(

2;1;
7
2

;
q2− p2

q2

)
+

16σ9

315β 4q4 F
(

3;2;
11
2

;
q2− p2

q2

)
+

16
√

2pσ7

105β 3q3 F
(

5
2

;
3
2

;
9
2

;
q2− p2

q2

)

I3 = 0

I4 =
16σ11

1155β 4q4 F
(

4;2;
13
2

;
q2− p2

q2

)
Then, we determine the last integral I5 of the Melnikov function using another formula given by:

∫
∞

0

cos(ωτ)

p±qcosh(στ)
dτ =

π sin
(

ω

σ
cosh−1

(
P
q

))
σ
√

p2−q2 sinh(ωπ

σ
)

. (22)

After a few mathematical operations we obtain:

I5 =
2
√

2σωπ sin(ωt0)

β
√

p2−q2 sinh(ωπ

σ
)

sin
(

ω

σ
cosh−1

(
P
q

))
.

Inserting the expression of integrals I1, I2, I3, I4 and I5 into Eq.(20) the Melnikov function can be written as follows:

M(t0) = A±BF sin(ωt0), (23)

where

A=
4µσ5

15β 2q2 (1− p2)F
(

2;1;
7
2

;
q2− p2

q2

)
− 16µσ9

315β 4q4 F
(

3;2;
11
2

;
q2− p2

q2

)
− 16
√

2µ pσ7

105β 3q3 F
(

5
2

;
3
2

;
9
2

;
q2− p2

q2

)
− 16σ11

1155β 4q4 F
(

4;2;
13
2

;
q2− p2

q2

)

B =
2
√

2σωπ

β
√

p2−q2 sinh(ωπ

σ
)

sin
(

ω

σ
cosh−1

(
P
q

))
.

If M(t0) = 0 for some tO , then horseshoes exist, and chaos occurs. Using this Melnikov criterion it is found that chaos appears when the
following condition is satisfied:

F ≥ Fcr =|
A
B
| (24)

Fig.2 shows the variation of the amplitude of the external excitation versus the frequency. It is noteworthy that the area located below the
curve (Fcr,ω) indicates the domain where the forced generalized Rayleigh oscillator has a regular behaviour, and above this curve, the
oscillator has a chaotic behavior. In short, for the fixe value of the frequency, the critical value Fcr for the appearance of Smale’s horseshoe
chaos increases with µ and ν (see Figs.2(b) and 2(c)). In other words, the area where the horseshoes chaos appears decreases when the
parameters µ and ν increases. However, as γ increases, this area increases (see Fig. 2(a)).
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Figure 2: Critical amplitude versus the frequency for appearance of the Melnikov chaos showing the effects of : (a)-γ ; (b)-η and (c)-µ . The basic values are:
α =−1, β = 0.85, γ = 0.8, ν = 0.1, and µ = 0.01.

3.2. Fractal Basin Boundaries

To test the validity of analytical predictions, several authors suggest numerically studying the regular and irregular shape of the basins of
attraction. Thus, we solve numerically Eq.(5) by using the fourth order Runge-Kutta algorithm and the results obtained are presented in
Figs3-6. Fig.3 shows the influence of the amplitude of the external excitation on the basin of attraction of the generalized Rayleigh oscillator
with asymmetric double well potential. We note that the basin of attraction exhibits a regular form when the amplitude of the external
excitation is chosen in regular domain predicted by Fig.2. However, the basin of attraction is destroyed and the fractal behavior becomes
more and more visible when the value of the amplitude of the external periodic excitation is chosen in chaotic region.

Figure 3: Basins of attraction of a forced generalized Rayleigh oscillator under asymmetric double well potential with the parameters of Fig.4 for (a)
F = 0.00003, (b) F = 0.07 , (c) F = 0.09 and (d) F = 0.85

We can therefore conclude that the analytical and numerical predictions are in good agreement. We wish to investigate how the basins of
attraction of the chemical system under consideration are affected as the parameters γ , η and µ vary. From Fig.4 we clearly see that the
chaotic behavior accentuates when γ increases. However when the nonlinear damping coefficients η and µ increase the erosion of the basin
of attraction decreases implying the decreasing of the chaotic behavior (see Figs.5 and 6).

Figure 4: Effect of γ on the basin of attraction: (a) γ = 0, (b) γ = 0.4 and (c) γ = 0.6.
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Figure 5: Effect of η on the basin of attraction: (a) η = 0.3 , (b) η = 2 and (c) η = 2.25.

Figure 6: Effect of µ on the basin of attraction: (a) µ = 0.01, (b) µ = 0.015 and (c) µ = 0.02

4. Bifurcation structures and routes to chaos

In this section, we investigate numerically via the fourth order Runge-Kutta integration algorithm, the eventual routes to chaos as well as the
phenomenon of coexistence of attractors as certain parameters evolve. So, the bifurcation diagram and its corresponding lyapunov exponent
versus the amplitude of the external excitation are plotted in Fig.7. The blue and red colors represent the bifurcation diagrams by scanning
the parameter F upwards and downwards respectively. By comparing these two sets of data, we notice that system (5) displays monostability
and bistability phenomena as well as the phenomenon of coexistence of attractors. Therefore the hysteresis phenomenon takes place in the
system. These dynamical behaviors displayed by the bifurcation diagrams of Fig.7 are illustrated in Fig.8.
The effect of µ on the bifurcation diagram is examined in Fig.9. We notice that the domain where appears chaos increases where µ decreases.
Moreover, the system vibrates from period-1 motion to chaos. This transition displays by the system represents a remarkable route to chaos.
By comparing the two sets of data, we also notice that system (5) presents the phenomena of monostability, bistability and coexistence of
attractors.
The influence of initial conditions as γ evolves is shown in Fig.10. We notice that system (5) can vibrate from period-3 motion to chaos.
On the other hand, when we compare the three sets of data, we can conclude that system under consideration displays multiple coexisting
attractors’ behaviors. These complex dynamical behaviors are illustrated in Fig.11.

Figure 7: Bifurcation diagrams and its corresponding Lyapunov exponents versus F with the parameters α =−1, β = 0.85, γ = 0.3, ν = 0.1, ω = 1, η = 0.2
and µ = 0.01 . Blue and red colors represent the bifurcation diagram by scanning F forward and downward respectively. The specific initial conditions are
(0.1,0.1) (blue) and (−0.1,−0.1) (red).
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Figure 8: Phase portraits illustrating monstability, bistability and coexistence of attractors phenomena for several different values of F with the parameters of
Fig.7.

Figure 9: Bifurcation diagrams and its corresponding Lyapunov exponents versus F with the parameters of Fig.7 for µ = 0.001.

5. Active control

5.1. Effects of the control on the horseshoe chaos

As it was shown above, the nonlinear chemical oscillations under consideration in this work present the chaotic states when it is subjected to
an external periodic excitation. Among the proposed control strategies in the literature to suppress or enhance chaos in dynamic systems, we
use here an active control to suppress or reduce this undesirable phenomenon that appears in our system. For this, we analyze the effects of
this control on the Melnikov criterion for the appearance of chaos. The dynamics of the model is now described by the following set of
differential equations:

ẍ−µ

(
ν− x2 +ηxẋ− 1

3
η

2ẋ2
)

ẋ+αx+βx3− γ = F cos(ωt)+d1ż (25)

ż = d2ẋ(1− z) (26)

where z is the control force,d1 and d2 represent the control gain parameters. The Melnikov function is now given by:

M(t0) = A±BF sin(ωt0)+d1I6, (27)

where I6 = −d2
∫

∞

−∞
y2

h(zh− 1)dτ with zh = 1− exp(d2xh). Now, taking into account Eqs.(16) and the expression of zh , the integral I6

becomes: I6 =−
4d2q2σ5

β 2 e−pd2
∫ 1

0
ς2[

p
√

1− ς2±q
]4 exp(− σ2d2

√
2(1− ς2)

β (p
√

1− ς2±q)
)dς .
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Figure 10: Effect of γ on the bifurcation diagram of the system (5) with the parameters of Fig.9 for F = 5.

Figure 11: Phase portraits showing chaotic and periodic oscillations for several different values of γ with the parameters of Fig.10

Since it is difficult to evaluate the integral I6 analytically, we obtained it numerically. If we set M(t0) = 0 and recalling the previous
calculations, the necessary condition for the appearance of the Melnikov chaos is given by:

F ≥ Fcr =|
A+d1I6

B
| (28)

We have plotted in Fig.12 the regions in the space parameters where chaos is suppressed. These regions are II and IV. We have also
investigated in Fig.13, the effects of the control parameters chosen in II and IV regions on the Melnikov threshold curve of the uncontrolled
chemical system under consideration. From this figure, we clearly observe that the chaotic area decreases when the control is applied. In
order to validate the analytical predictions, we have simulated numerically the set of Eqs. (25) and (26) to see the effects of the control
parameters on the fractality of the basin of attraction. To this end, the obtained results are presented in Fig.14. We notice that when
the control is applied with the value of the control gain parameters chosen in I and IV regions (for example (d1,d2) = (0.85,0.85) and
(d1,d2) = (−0.85,−0.85) ), the fractality disappears. However, in other regions, we clearly see that fractal structure exists. Therefore, we
can confirm that the control is efficient in I and IV regions.
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Figure 12: Domain in the space for the control of chaos with the parameters of Fig.3(c). Melnikov chaos disappears in II and IV.

Figure 13: Effects of the control parameter d1 on the Melnikov threshold curve of the uncontrolled chemical system with the parameters of Fig.2 for: (a)
d2 = 0.85 and (b) d2 =−0.85

5.2. Suppression of chaotic oscillations

Our goal in this subsection is to investigate the control gain parameter values leading to a good suppression of chaos in nonautonomous
chemical system given by Eq.(5). To this end, the effects of control gain parameters on bifurcation diagram of the system (5) are shown in
Fig. 15. From this figure, we notice that as the control gain parameter d1 increases and takes the value 3.0 with d2 =−0.85, the chaotic
oscillations disappear and the system displays periodic oscillations.

6. Conclusions

The analysis performed in this study aims to explore the dynamics and active control in nonlinear chemical oscillations modeled by a forced
generalized Rayleigh oscillator with asymmetric potential. The originality of this work in the chaotic dynamics of nonlinear chemical
system is brought by the presence of the impure and pure cubic damping terms of the type xẋ2 and x3 .The Melnikov criterion is applied
to analytically determine Smale’s horseshoes chaos. The basins of attraction are used to numerically verify the analytically results. The
numerical simulations obtained are in good agreement with the analytical prediction given by the Melnikov technique. The regions in the
control gain parameters space where the Melnikov chaos is suppressed are obtained. The bifurcation structures obtained via the fourth-order
Runge Kutta integration algorithm show that the new nonautonomous chemical oscillator presents a rich variety of dynamical behaviors
and remarkable transitions to chaos. The effects of control gain parameters on the behavior of a forced generalized Rayleigh oscillator
governing the dynamic of nonlinear chemical oscillations are analyzed. It appears that for appropriate values of control gain parameters, the
suppression of chaotic oscillations takes place.
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[26] A.V. Monwanou, A.A. Koukpémèdji, C. Ainamon, P.R. Nwagoum Tuwa, C.H. Miwadinou, J.B. Chabi Orou, Nonlinear Dynamics in a Chemical
Reaction under an Amplitude-Modulated Excitation: Hysteresis, Vibrational Resonance, Multistability, and Chaos Complexity, Article ID,(2020),
pp.1–16.

[27] R. Fangnon, C. Ainamon, A.V. Monwanou, C.H. Miwadinou ,J.B. ChabiOrou, Nonlinear Dynamics of the Quadratic-Damping Helmholtz Oscillator
Complexity, Article ID,(2020), pp.1–17.

[28] J. Boissonade, P. De Keppe, Transitions from Bistability to Limit Cycle Oscillations Theoretical Analysis and Experimental Evidence in an Open
Chemical System Phys. Chem, Vol.84, No., (1980), pp.501–506.

[29] I.R. Epstein, K. Showalter, Nonlinear Chemical Dynamics: Oscillations, Patterns, and Chaos, J. Phys. Chem., Vol.100, No., (1996), pp.13132–13147.
[30] B.P. Belousov, In Oscillations and Travelling Waves in Chemical Systems, Wiley, (1985).



International Journal of Basic and Applied Sciences 31

[31] C. H. Miwadinou, A.V. Monwanou, J. Yovogan, L. A. Hinvi, P. R. Nwagoum Tuwa, and J. B. Chabi Orou, Modeling nonlinear dissipative chemical
dynamics by a forced modified Van der Pol-Duffing oscillator with asymmetric potential: chaotic behaviors predictions, Chinese Journal of Physics,
Vol.56, No.3, (2018), pp.1089–1104.
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[33] Y.J.F. Kpomahou, Adéchinan, Nonlinear dynamics and active control in a Liénard-type oscillator under parametric and external periodic excitations,
American Journal of Computational and Applied Mathematics, Vol.10, No. 2, (2021), pp.48–61.

[34] V.K.Melnikov, On the stability of the center for time periodic perturbations, Transactions of the Moscow Mathematical Society, Vol.12, No. 1, (1963),
pp.1–57.

[35] G. Cicogna, F.Papoff, Asymmetric doffing equation and the appearance of chaos, Euro phys. Let, Vol.3, No.9, (1987), pp.963–967.
[36] I.S Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, (2007).


	Introduction
	Model, equilibrium points and their stabilities
	Model
	Equilibrium points and their stabilities

	Horseshoe chaos
	Melnikov criterion for homoclinic chaos
	Fractal Basin Boundaries

	Bifurcation structures and routes to chaos
	Active control
	Effects of the control on the horseshoe chaos
	Suppression of chaotic oscillations

	Conclusions

