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Abstract

In dynamics, the Van der Pol oscillator is a non-conservative oscillator with non-linear damping. The problems of single-well, double-well
and double-hump Van der Pol-Dufing equations are studied in this paper. The Chebyshev Neural Network (ChNN) model will be applied to
obtain the numerical solutions of these types of equations for the first time. The hidden layer is eliminated by expanding the input pattern
by Chebyshev polynomials which employs a single layer neural network. In order to modify the network parameters and to minimize the
computed error function, a feed forward neural network model with error back propagation principle is used. The obtained numerical results
form the ChNN model will be compared with the analytical solutions, namely Homotopy Perturbation Method (HPM), Homotopy Analysis
Method (HAM), Differential Transform Method (DTM) and exact. Comparisons of the solutions obtained with existing numerical results
show that this method is a capable tool for solving this kind of nonlinear problems.
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1. Introduction

The Van der Pol oscillator is a basic model of the oscillation theory and nonlinear dynamics, which describes self-oscillations and the
simplest version of the Andronov-Hopf bifurcation. The Van der Pol oscillator is named after a Dutch scientist, Balthasar Van der Pol who
established experimental results on the dynamics of an oscillator in electrical circuits governed by a second order differential equation [1].
This equation has been used for modelling oscillatory phenomenon in engineering, physics, biology, neurology, chemical reactions even in
economics. Therefore, it is of utmost importance to develop a faster and more accurate solutions to solve the Van der Pol oscillator are very
importance.
An analytical solution for Van der Pol-Duffing oscillators has been provided by Kimiaeifar et al. by homotopy analysis method [2]. The
author also provided an analytical solution of modify Van der Pol’s oscillator using He’s parameter-expanding methods [3]. Khan et al.
proposed a scheme that depends on two component of the homotopy series which is the Laplace transformation and the Pade approximate to
obtain the solution for the force-free Duffing Van der Pol oscillator equations [4]. Besides that, Liao’s homotopy analysis method has been
used by Chen and Liu to study the Duffing Van der Pol equation [5].
There are several numerical methods studied by researchers to approximate the solution of the Van der Pol Duffing oscillator. Molaei and
Kheybari provided an approximate solution of the the Van der Pol Duffing oscillator using the parameter expansion method and compared it
with the perturbation method [6]. Motsa and Sibanda presented a novel application of the successive linearisation method to the Van der
Pol duffing oscillator equations [7]. A differential transformation method has been implemented to study the Van der Pol duffing oscillator
equation [8, 9, 10, 11]. Soomro et al. investigated and compared among improved Heun’s method, Runge-Kutta order fourth and mid-point
method to show that the Runge-Kutta method can obtain better accuracy compare to the Heun and mid-point method [12]. Dynamical
analysis of two coupled parametrically excited Van der Pol oscillators presented by Qinsheng in 2004 [13]; a novel harmonic balance analysis
for the Van der Pol oscillator has been studied by Liu et al. in 2007 [14]; fast parametrically excited Van der Pol oscillator with time delay
state feedback has been provided by Belhaq and Sah in 2008 [15]; discontinuous synchrony in an array of Van der Pol oscillators have been
provided by Perlikowski et al. in 2010 [16]; Ramana and Prasad in 2014 proposed modified Adomian Decomposition method for analyzing
Van der Pol equations [17].

Copyright © 2018 Author. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.
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The general case of Van der Pol driven equations [17] is as follows,

m(t,u,u′)
∂ 2u
∂ t2 + c(t,u,u′)

∂u
∂ t

+ k1(t,u)u+ k2(t,u)u3 = F cos(ωt), (1)

with assumptions that mass m = 1, damping coefficient c′ = µ(c−bu2), stiffness k1 = k2 = 1 and drive forcing F = Fcos(ωt), therefore the
equations(1) yields to dampen the second order inhomogeneous equation as follows,

d2u
dt

+µ(c−bu2)
du
dt

+u+u3 = F cos(ωt); t ≥ 0, (2)

with initial conditions u(0) = a1 and u′(0) = a2.
In this paper, we attempt to solve the Van der Pol duffing equation using the Chebyshev neural network method with a single layer and
eliminate hidden layers by expanding the input pattern using Chebyshev polynomials. To minimize the computed error function a feed
forward neural network model with an error back propagation principle is used.

2. Methods

The structure of a single layered Chebyshev neural network (ChNN) model and learning algorithm will be introduced in this section.

2.1. Structure of Chebyshev neural network model

Fig. (1) shows the structure of the Chebyshev Neural Network (ChNN) [18] which consists of single input unit, one output unit and a
functional expansion block based on Chebyshev polynomials [19, 20]. The ChNN model is a single layer neural model where each input
data is expanded to several terms using Chebyshev polynomials. In this paper, we used a one input node only. The first two Chebyshev
polynomials are,

T0(x) = 1,

T1(x) = x.

The higher order Chebyshev polynomials may be evaluated by the following formula,

Tn+1(x) = 2xTn(x)−Tn−1(x), (3)

where Tn(x) denotes the n-th order Chebyshev polynomial. Here the n dimensional input pattern is expanded to m dimensions enhanced by
Chebyshev polynomials. The advantage of the ChNN is get results using a single layer network by increasing the dimension of the input
through Chebyshev polynomial [19, 20]. The architecture of the network with the first m Chebyshev polynomials and single input and output
layer is shown in Fig. (1).
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Figure 1: Structure of single layer Chebyshev Neural Network.

2.2. Learning algorithm of Chebyshev neural network

For updating the network parameters and minimizing the error function, the learning algorithm can be employed. To update the weights of
the ChNN, the error back propagation algorithm is used. In order to achieve that, the gradient of an error function with respect to the network
parameters p is determined [19, 20]. Functions F(z)=z; sinh(z); tanh(z) are considered as the activation functions. The network
output with input data x and parameters (weights) p may be computed as,

N(x, p) = F(z), (4)
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where z is the weighted sum of the expanded input data, written as follows,

z =
M

∑
j=1

w jTj−1(x), (5)

where x is the input data, Tj−1(x) and w j with j = 1,2, ...,M denote the expanded input data and the weight vector respectively of the
Chebyshev Neural Network.
Now, the weights of the ChNN may be modified using the principle of back propagation [19, 20],

wk+1
j = wk

j +∆wk
j = wk

j +

(
−η

[
∂E(x, p)

∂w j

]k
)
, (6)

where η is the learning parameter, k is the iteration step which is used to update the weights as usual in ANN and E(x, p) is the error function.

3. Formulation of the method

In this section, general formulation of differential equations using the Neural Network have are described. In particular the formulations of
ordinary differential equations (ODEs) are incorporated in detail with computation of the gradient of the network parameters with respect to
its inputs [19, 20].

3.1. Chebyshev neural network formulation for differential equations

A general differential equation which represents ordinary or partial differential equations is as follows,

Ψ

[
x,y(x),∇y(x),∇2y(x), ...,∇ny(x)

]
= 0, x ∈ D̄⊆ Rn, (7)

where Ψ is the function which defines the structure of differential equation, y(x) and ∇ denotes the solution and differential operator,
respectively. Let yt(x, p) denote the trial solution with adjustable parameters p, which will then cause the general differential equation above
to changes to the form,

Ψ

[
x,yt(x, p),∇yt(x, p),∇2yt(x, p), ...,∇nyt(x, p)

]
= 0, (8)

The problem is transformed into the following minimization problem [19, 20, 21],

min
p

1
2

[
∑

x∈D̄

[
Ψ

(
x,yt(x, p),∇yt(x, p),∇2yt(x, p), ...,∇nyt(x, p)

)]]
. (9)

Now, we consider the second order ordinary differential equation (ODE) as follows,

d2y(x)
dx2 = f (x,y,y′); x ∈ [a,b] (10)

with the initial conditions, y(a) = A and y′(a) = A′, with the trial solution yt(x, p) of the feed forward neural network with input x and
parameters p written as,

yt(x, p) = A+A′(x−a)+(x−a)2N(x, p). (11)

Where, N(x, p)=z; sinh(z); tanh(z) and the general form of corresponding error function for the ODE’s formula as stated in [19, 20],

E(x, p) =
n

∑
i=1

1
2

[
d2yt(xi, p)

dx2 − f (xi,yt(x, p),y
′
t(x, p))

]
. (12)

To minimize the error function E(x, p) corresponding to every entry x, we differentiate E(x, p) with respect to the parameters. Thereafter, the
gradient of network output with respect to their inputs is computed as below.

3.2. Computation of gradient for optimizing values of weight

The error computation involves both output and derivatives of the network output with respect to the corresponding inputs [19, 20].
Subsequently, the gradient of network output with respect to their inputs for N(x, p)=z; sinh(z); tanh(z) is computed as stated below.

• In the case of N(x,p) = z :
Derivatives of N(x, p) = z with respect to input x is as follows,

dN
dx

=
M

∑
j=1

w jT ′j−1(x), (13)

and

d2N
dx2 =

M

∑
j=1

w jT
′′

j−1(x). (14)
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• In the case of N(x,p) = sinh(z) :
Derivatives of N(x, p) = sinh(z) with respect to input x is as follows,

dN
dx

=
1
2

M

∑
j=1

w jT
′

j−1 (x)
(

e∑
M
j=1 w jTj−1(x)+ e−∑

M
j=1 w jTj−1(x)

)
, (15)

and

d2N
dx2 =

1
2




∑
M
j=1 w jT

′′

j−1 (x)e∑
M
j=1 w jTj−1(x)+

(
∑

M
j=1 w jT

′

j−1 (x)
)2

e∑
M
j=1 w jTj−1(x)

+
∑

M
j=1 w jT

′′
j−1(x)

e∑
M
j=1 w jTj−1(x)

−
(

∑
M
j=1 w jT

′
j−1(x)

)2

e∑
M
j=1 w j Tj−1(x)


 . (16)

• In the case of N(x,p) = tanh(z) :
Derivatives of N(x, p) = tanh(z) with respect to input x is as follows,

dN
dx

=
4∑

M
j=1 w jT

′

j−1 (x)(
e∑

M
j=1 w jTj−1(x)+ e−∑

M
j=1 w jTj−1(x)

)2 , (17)

and

d2N
dx2 =

4


 ∑

M
j=1 w jT

′′

j−1 (x)e∑
M
j=1 w jTj−1(x)+∑

M
j=1 w jT

′′

j−1 (x)e−∑
M
j=1 w jTj−1(x),

−2
(

∑
M
j=1 w jT

′

j−1 (x)
)2

e∑
M
j=1 w jTj−1(x)+2

(
∑

M
j=1 w jT

′

j−1 (x)
)2

e−∑
M
j=1 w jTj−1(x)




(
e∑

M
j=1 w jTj−1(x)+ e−∑

M
j=1 w jTj−1(x)

)3 . (18)

where w j denotes the network parameters and T ′j−1(x), T ′′j−1(x) denotes the first and second derivatives of the Chebyshev polynomials.
Therefore, from Eq. (11) we have,

dyt(x, p)
dx

= A′+2(x−a)N(x, p)+(x−a)2 dN
dx

, (19)

and

d2yt(x, p)
dx2 = 2N(x, p)+4(x−a)

dN
dx

+(x−a)2 d2N
dx2 . (20)

Also, from Eq. (12) we have,

∂E(x, p)
∂w j

=
∂

∂w j

[
n

∑
i=1

1
2

(
d2yt(xi, p)

dx2 − f (xi,yt(x, p),y
′
t(x, p))

)]
. (21)

Finally, we can use the convergent ChNN results in Eq. (11) to obtain the approximate solutions.

4. Numerical results

In this section, we consider classical Van der Pol, Duffing-Van der Pol and forced Van der Pol-Duffing equations to show the effectiveness of
the proposed method.

4.1. Classical van der Pol equation

The classical Van der Pol equation is as found in [22],

d2y
dx2 + ε(y2−1)

dy
dx

+ y = 0; y(0) = α, ẏ(0) = 0, (22)

where y shows the displacement of the periodic solution, α is the amplitude of the oscillations and ε is a classical problem in nonlinear
dynamics that models systems with self-sustained oscillations.
The network has been trained for thirty equidistant points an intervals [0,3] for computing the results. Comparison between fourth-fifth
order Runge-Kutta (RK45) and Chebyshev neural network results (ChNN) are shown in Table (1) with F(z)=sinh(z), M=5;7, α = 0.1 and
ε = 0.1. Comparison of absolute errors between ChNN and RK45 methods with F(z)=z; sinh(z); tanh(z), M=5;7, α = 0.1, ε = 0.1 are
cited in Table (2). Values of weights for ChNN method with F(z)=sinh(z), M=5;7, α = 0.1 and ε = 0.1 are listed in Table (3). Numerical
results of RK45 and ChNN methods are compared in Fig. (2). Plot of absolute error between RK45 and ChNN solutions are showed in
Fig. (3). According to Table (1) the maximum error between RK45 and ChNN methods are 0.19547×10−2 and 0.93269×10−4 for M = 5;7,
respectively. From Table (2) the maximum error for active functions is according to the order Errorsinh(z) > Errorz > Errortanh(z).
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4.2. Duffing-van der Pol equation

Consider the Duffing-van der pol equation [22, 23, 24] as follows,

d2y
dx2 +(α +βy2)

dy
dx
− γy+λy3 = 0; y(0) = a, ẏ(0) = b. (23)

By supposing that γ =−1/β , α = 4/β and β = 3, λ = 1, a =−0.28868, b = 0.12 the analytical solution should be as follows,

y(x) = −0.000026166e−4.09188x−0.00212777e−2.16516x

−0.0266831e−1.06495x−0.259843e−0.334316x.

The network has been trained with thirty equidistant points at interval [0,3] for computing the results. Comparison between fourth-fifth order
Runge-Kutta (RK45), Homotopy Perturbation Method (HPM), Differential Transform Method (DTM), Exact solution and Chebyshev neural
network results (ChNN) are shown in Table (4) when F(z)=sinh(z) and M=5;7. Values of weights for ChNN method when F(z)=sinh(z)

and M=5;7 have been listed in Table (5). According Table (4) ChNN results fully agree with all numerical methods especially with the exact
solution method.

4.3. Duffing-van der Pol oscillators

Duffing oscillators are formulas whose mathematical expression is assumed in the form of the second-order non-autonomous differential
equation [25],

d2y
dx2 +µ(1− y2)

dy
dx

+αy+βy3 = g( f ,ω, t); y(0) = 1, ẏ(0) = 0, (24)

where x stands for the displacement from the equilibrium position, f is the forcing strength and µ > 0 is the damping parameter of the
system. g( f ,x, t) = f cos(ωt), represents the periodic driving function of time with period T = 2π/ω , where x is the angular frequency of
the driving force. The Van der PolDuffing oscillator equation can be expressed in three main physical situations, single well α > 0, β > 0,
double well α < 0, β > 0 and double-hump α > 0, β < 0.
Was trained with thirty equidistant points at interval [0,3] for computing the results. Comparison between fourth-fifth order Runge-Kutta
(RK45), Homotopy Analysis Method (HAM) and Chebyshev neural results (ChNN) are shown in Table (6) when F(z)=sinh(z), M=5;7,
α = 0.5, β = 0.5, µ = 0.1, ω = 0.79 and f = 0.5. Values of weights for ChNN method when F(z)=sinh(z), M=5; 7, α = 0.5, β = 0.5,
µ = 0.1, ω = 0.79 and f = 0.5 have been listed in Table (7). Numerical results of RK45 and ChNN solutions are compared in Fig. (4). Plot
for the absolute errors between RK45 and ChNN solutions are showed in Fig. (5). From Table (6) we conclude that ChNN results are in
agreement with both RK45 and HAM numerical methods.
Table (8) presents the comparison between ChNN, RK45 and HAM methods when F(z)=sinh(z), M=5; 7, α =−0.5, β = 0.5, µ = 0.1,
ω = 0.79 and f = 0.5. Weight values for ChNN method have been listed in Table (9). Comparison of numerical results from RK45 and
ChNN methods are shown in Fig. (6). Absolute errors between RK45 and ChNN solutions are shown in Fig. (7). According to Table (9) we
see that the ChNN results is in good agreement with both RK45 and HAM numerical methods, specially with the RK45 method.
The network was trained with thirty equidistant points at interval [0,2] for computing the results. Comparison between fourth-fifth
order Runge-Kutta (RK45), Homotopy Analysis Method (HAM) and Chebyshev neural results (ChNN) are showed in Table (10) when
F(z)=sinh(z), M=5;7, α = 0.5, β =−0.5, µ = 0.1, ω = 0.79 and f = 0.5. Values of weights for ChNN method when F(z)=sinh(z),
M=5; 7, α = 0.5, β =−0.5, µ = 0.1, ω = 0.79 and f = 0.5 have been shown in Table (11). The numerical results of RK45 and ChNN
solutions are compared in Fig. (8). Plot of the absolute errors between RK45 and ChNN solutions are shown in Fig. (9). Table (10) shows
the agreement between the numerical results of ChNN, RK45 and HAM.

Table 1: Comparison between ChNN and RK45 methods with F(z)=sinh(z), M=5;7, α = 0.1 and ε = 0.1 (Example 1).

M=5 M=7
Time RK45 ChNN Error ChNN Error
0.2 0.097993 0.098160 0.16769e-3 0.097977 0.15885e-4
0.4 0.092001 0.092431 0.43356e-3 0.091966 0.34219e-4
0.6 0.082184 0.082766 0.58671e-3 0.082144 0.39393e-4
0.8 0.068861 0.069416 0.55984e-3 0.068825 0.35519e-4
1.0 0.052497 0.052870 0.37610e-3 0.052466 0.31737e-4
2.0 -0.050742 -0.051060 0.31447e-3 -0.050836 0.93269e-4
3.0 -0.115748 -0.114206 0.15672e-2 -0.115751 0.28131e-4
4.0 -0.075655 -0.074453 0.12192e-2 -0.075567 0.89004e-4
5.0 0.041773 0.040377 0.13804e-2 0.041832 0.59140e-4
6.0 0.131125 0.129160 0.19547e-2 0.131140 0.15862e-4
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Table 2: Comparison of absolute errors between ChNN and RK45 with F(z)=z;sinh(z);tanh(z), M=5;7, α = ε = 0.1 (Example 1).

Error
M F(z)=z F(z)=sinh(z) F(z)=tanh(z)
5 0.195612e-2 0.197132e-2 0.192589e-2

7 0.946373e-4 0.957182e-4 0.924828e-4

Table 3: Weight values with F(z)=sinh(z), M=5;7, α = 0.1 and ε = 0.1 (Example 1).

M w1 w2 w3 w4 w5 w6 w7

5 -0.038074 -0.014324 0.005759 -0.000482 0.0000123 ——– ——–

7 -0.049832 0.0012465 0.000781 0.000348 -0.000062 0.000003 -0.000001

Table 4: Comparison between ChNN, RK45, HPM, DTM methods and Exact solution with F(z)=sinh(z) and M=5;7 (Example 2).

Time ChNN RK45 HPM DTM Exact
M=5 M=7

0.0 -0.288680 -0.288680 -0.288680 -0.288680 -0.288680 -0.288680
0.01 -0.288349 -0.2867983 -0.287474 -0.287483 -0.287485 -0.287483
0.02 -0.286742 -0.2858550 -0.286256 -0.286294 -0.286307 -0.2862939
0.03 -0.285051 -0.2848782 -0.285026 -0.285111 -0.285144 -0.285111
0.04 -0.283094 -0.2839268 -0.283784 -0.283935 -0.283998 -0.283935
0.05 -0.281199 -0.2829547 -0.282531 -0.280447 -0.282869 -0.2827658
0.06 -0.279701 -0.2819825 -0.281266 -0.279298 -0.281756 -0.2816032
0.07 -0.278572 -0.2810342 -0.279989 -0.278146 -0.280661 -0.280447
0.08 -0.277540 -0.2800903 -0.278701 -0.277018 -0.279519 -0.279298
0.09 -0.276297 -0.2791306 -0.277401 -0.278155 -0.278520 -0.278155
1.0 -0.274776 -0.2781893 -0.276090 -0.277018 -0.277476 -0.277018
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Table 5: Weight values with F(z)=sinh(z) and M=5;7 (Example 2).

M w1 w2 w3 w4 w5 w6 w7

5 -80872.0472 50193.8336 -0.00001 16605.9393 -25665.4792 ——– ——–

7 -0.049832 0.0012465 0.000781 0.000348 -0.000062 0.000003 -0.000001

Table 6: Comparison between ChNN, RK45 and HAM methods with F(z)=sinh(z), M=5; 7, α = 0.5, β = 0.5, µ = 0.1, ω = 0.79 and f = 0.5 (Example
3).

Time ChNN RK45 HAM
M=5 M=7

0.2 0.989364 0.990077 0.990045 0.990045
0.4 0.959024 0.960757 0.960702 0.960702
0.6 0.911465 0.913482 0.913415 0.913415
0.8 0.849144 0.850341 0.850249 0.859249
1.0 0.774289 0.773644 0.773522 0.773522
2.0 0.260669 0.247835 0.247739 0.247739
3.0 -0.456965 -0.480696 -0.480716 -0.480716

Table 7: Weight values with F(z)=sinh(z), M=5; 7, α = 0.5, β = 0.5, µ = 0.1, ω = 0.79 and f = 0.5 (Example 3).

M w1 w2 w3 w4 w5 w6 w7

5 -0.21932215 -0.02586752 0.02494517 -0.00444285 0.00025808 ——– ——–

7 -0.22395577 -0.01880817 0.02176276 -0.03609309 0.00013547 0.00000927 -0.00000027
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Table 8: Comparison between ChNN, RK45 and HAM methods with F(z)=sinh(z), M=5; 7, α =−0.5, β = 0.5, µ = 0.1, ω = 0.79 and f = 0.5 (Example
3).

Time ChNN RK45 HAM
M=5 M=7

0.2 1.008519 1.0102725 1.009945 1.009945
0.4 1.035947 1.0396684 1.039114 1.039114
0.6 1.081721 1.0860922 1.085449 1.085447
0.8 1.141831 1.1462449 1.145385 1.145382
1.0 1.210037 1.2149567 1.213778 1.213783
2.0 1.419977 1.4298385 1.429818 1.429493
3.0 1.036249 1.0284452 1.029417 1.031066

Table 9: Weight values with F(z)=sinh(z), M=5; 7, α =−0.5, β = 0.5, µ = 0.1, ω = 0.79 and f = 0.5 (Example 3).

M w1 w2 w3 w4 w5 w6 w7

5 0.10862971 0.17126788 -0.08088946 0.00990175 0.00990175 ——– ———

7 0.32424439 -0.15155358 0.06325686 -0.02701543 0.00473990 -0.00034542 0.00000813

Table 10: Comparison between ChNN, RK45 and HAM methods with F(z)=sinh(z), M=5; 7, α = 0.5, β = −0.5, µ = 0.1, ω = 0.79 and f = 0.5
(Example 3).

Time ChNN RK45 HAM
M=5 M=7

0.1 1.002789 1.002595 1.002501 1.002500
0.2 1.010651 1.010240 1.010012 1.010012
0.5 1.062186 1.063531 1.063007 1.063007
1.0 1.254493 1.261717 1.260394 1.260394
1.5 1.627465 1.643387 1.640771 ——–
2.0 2.381650 2.424097 2.417826 ——–

Table 11: Weight values with F(z)=sinh(z), M=5; 7, α = 0.5, β =−0.5, µ = 0.1, ω = 0.79 and f = 0.5 (Example 3).

M w1 w2 w3 w4 w5 w6 w7

5 0.44260284 -0.31126987 0.15490507 -0.03905212 0.00463758 ——– ——–

7 0.43220189 -0.30483037 0.19299251 -0.08183546 0.02396069 -0.00398242 0.00031131
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Figure 2: Plot of numerical solutions using RK45 and ChNN (Example 1).

Figure 3: Plot of absolute error between RK45 and ChNN solutions (Example 1).
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Figure 4: Plot of numerical solutions using RK45 and ChNN solutions when F(z)=sinh(z), M=5; 7, α = 0.5, β = 0.5, µ = 0.1, ω = 0.79 and f = 0.5
(Example 2).

Figure 5: Plot of absolute error between RK45 and ChNN solutions when F(z)=sinh(z), M=5; 7, α = 0.5, β = 0.5, µ = 0.1, ω = 0.79 and f = 0.5
(Example 2).
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Figure 6: Plot of numerical solutions using RK45 and ChNN solutions when F(z)=sinh(z), M=5; 7, α =−0.5, β = 0.5, µ = 0.1, ω = 0.79 and f = 0.5
(Example 3).

Figure 7: Plot of absolute error between RK45 and ChNN solutions when F(z)=sinh(z), M=5; 7, α =−0.5, β = 0.5, µ = 0.1, ω = 0.79 and f = 0.5
(Example 3).
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Figure 8: Plot of numerical solutions using RK45 and ChNN solutions when F(z)=sinh(z), M=5; 7, α = 0.5, −β = 0.5, µ = 0.1, ω = 0.79 and f = 0.5
(Example 3).

Figure 9: Plot of absolute error between RK45 and ChNN solutions when F(z)=sinh(z), M=5; 7, α = 0.5, β =−0.5, µ = 0.1, ω = 0.79 and f = 0.5
(Example 3).
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5. Conclusions

The Chebyshev Neural Network (ChNN) model was applied to to solve single-well, double-well and double-hump Van der Pol-Dufing
equations. A single layer Chebyshev Neural Network (ChNN) model is considered as a solution for the difficulties of this type of equations.
For optimizing weight values, the gradient of network outputs with respect to their inputs are considered. The numerical results obtained
from ChNN model have been compared with the analytical, Homotopy Perturbation Method (HPM), Homotopy Analysis Method (HAM)
and Differential Transform Method (DTM) solutions. The errors obtained showed that the ChNN solutions has excellent agreement with all
numerical results from exact solutions or other numerical methods. Comparisons of the obtained solutions with existing numerical results
showed that this method is a capable tool for solving this kind of nonlinear problems and also extremely powerful and easy to implement,
computationally efficient and straight forward.
0.8
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