Excellent – Domination Subdivision Stable Graphs

M. Yamuna and K. Karthika

SAS, VIT University, Vellore, Tamilnadu, India E-mail: myamuna@vit.ac.in, karthika.k@vit.ac.in

Abstract

A set of vertices D in a graph G=(V,E) is a dominating set if every vertex of V-D is adjacent to some vertex of D. If D has the smallest possible cardinality of any dominating set of G, then D is called a minimum dominating set — abbreviated MDS. A graph G is said to be excellent if given any vertex v then there is a γ - set of G containing v. An excellent graph G is said to be very excellent (VE), if there is a γ - set D of G such that to each vertex $u \in V-D$ there is a vertex $v \in D$ such that $D-\{v\} \cup \{u\}$ is a γ - set of G. In this paper we have proved that very excellent trees are subdivision stable. We also have provided a method of generating an excellent subdivision stable graph from a non - excellent subdivision stable graph.

Keywords: Domination, Excellent, Very excellent, Subdivision stable.

1 Introduction

We consider only simple connected undirected graphs G = (V, E). For graph theoretic terminologies we refer to [5]. A set of vertices D in a graph G = (V, E) is a dominating set if every vertex of V - D is adjacent to some vertex of D. If D has the smallest possible cardinality of any dominating set of G, then D is called a minimum dominating set — abbreviated MDS. The cardinality of any MDS for G is called the domination number of G and it is denoted by G (G). A G- set denotes a dominating set for G with minimum cardinality. The subgraph of G induced by the vertices in G is denoted by G (G) while its closed neighborhood is the set G (G) while its closed neighborhood is the set G (G), is defined by G (G) and G (G) are G (G) while its closed neighborhood is the set G (G), is defined by G (G) and G (G) are G (G) and G (G) are G (G) are G (G) and G (G) are G (G) and G (G) are G (G) are G (G) and G (G) are G (G) are G (G) are G (G).

N (v) – N (D – { v }). A vertex v is said to be a, down vertex if γ (G – u) < γ (G), level vertex if γ (G – u) = γ (G), up vertex if γ (G – u) > γ (G). A vertex v is said to be selfish in the γ - set D, if v is needed only to dominate itself. We indicate that u is adjacent to v by writing u \perp v.

A vertex v is said to be good if there is a γ – set of G containing v. If there is no γ – set of G containing v, then v is said to be a bad vertex. A vertex in V - D is k – dominated if it is dominated by at least k – vertices in D that is $|N(v) \cap D| \ge k$. If every vertex in V - D is k – dominated then D is called a k – dominating set. A subdivision of a graph G is a graph resulting from the subdivision of edges in G. The subdivision of some edge e with endpoints $\{u, v\}$ yields a graph containing one new vertex w, and with an edge set replacing e by two new edges, $\{u, w\}$ and $\{w, v\}$.

2 Preliminary Notes

A graph G is said to be excellent if given any vertex v then there is a γ - set of G containing v. In [3], M. Yamuna and N. Sridharan introduced the concept of very excellent and rigid very excellent graphs. An excellent graph G is said to be very excellent (VE), if there is a γ - set D of G such that to each vertex $u \in V - D$ there is a vertex $v \in D$ such that $D - \{v\} \cup \{u\}$ is a γ - set of G. A γ - set D of G satisfying this property is called a very excellent γ - set of G. In this case we say that u and v are vertex exchangeable.

In all the figures encircled vertices denote a γ - set for G.

2.1 Example for very excellent graph

Fig. 1

In Fig. 1 D – { v } \cup { 1 }, D – { v } \cup { 2 }, D – { u } \cup { 3 }, D – { u } \cup { 4 }, are γ - sets for G.

Let G be a very excellent graph and D be a very excellent γ - set of G. To each $u \notin D$, let E (u, D) = { $v \in D / (D-v) \cup \{u\}$ is a γ - set of G }. If |E(u,D)|=1, for each vertex $u \notin D$, D is said to be a rigid very excellent γ - set of G. If G has at least one rigid very excellent γ - set then G is said to be rigid very excellent (RVE).

2.2 Example for rigid very excellent graph

In Fig. 2, to each vertex $u \notin D$ there is a only one possible way to select a vertex $v \in D$ such that $D - \{v\} \cup \{u\}$ is a γ - set for G.

If G is a graph, then S (G) denotes the subdivision graph of G obtained from G by subdividing each edge of G once. A graph H is said to be a subdivision of G, if it is obtained from G by subdividing each edge of G at most once. In other words, to obtain H, it is not necessary to subdivide each edge of G.

In [6], they have proved the following results

- 1. **Type 1 operation:** If G is very excellent and u is a level vertex of G, then the graph H obtained from G by attaching a path P_2 at u is very excellent.
- 2. **Type 2 operation:** Let u be a vertex of a graph G. A graph H is obtained from G by attaching a tree path P_3 at u. Then H is very excellent if and only if G is very excellent and there is a very excellent γ set D of G such that $u \in D$ and D u dominates G u.
- 3. **Type 3 operation:** Let G be a very excellent graph and u be a vertex of G. Assume that there exist a very excellent γ set D of G such that for some v ∈ D, (D v) is a γ set for G u. Then the graph H obtained from G and a disjoint path w₁ w₂ w₃ w₄ w₅ of length four by joining w₃ and u by an edge is very excellent.
- 4. A tree T is very excellent if and only if T is obtained by applying type 1, 2 and 3 operation any number of times.
- 5. Every very excellent tree is rigid very excellent.

6. If a graph G is not excellent, then there is a subdivision graph H of G which is excellent.

In [7], M. Yamuna and K. Karthika have introduced the concept of domination subdivision stable graphs. A graph G is said to be domination subdivision stable (DSS) if the γ -value of G does not change by subdividing any edge of G. We shall denote the graph obtained by subdividing any edge $e = (u \ v)$ of a graph G, by G $_{sd}$ uv. Let w be a vertex introduced by subdividing uv. We shall denote this by G $_{sd}$ uv = w.

2.3 Example for DSS graph

In Fig. 3, γ (G) = γ (G _{sd} uv) = 3. This is true for all e = (a b) \in E (G) which implies that G is a DSS graph.

In [7], they have proved the following results

- 1. A graph G is DSS if and only if for every u, $v \in V$ (G), either there is a γ set containing u and v or, there is a γ set D such that either
 - \triangleright pn[u, D] = { v } or
 - \triangleright v is 2 dominated.
- 2. For any graph G, γ (G _{sd} uv) $\geq \gamma$ (G) for all e = (u v) \in E (G).
- 3. Every graph is an induced subgraph of a DSS graph.

They also have discussed properties satisfied by the vertices of a DSS graph and obtained methods of generating new DSS graphs from existing ones.

3 Main Results

In the following theorem we provide a method of generating an excellent DSS graph from a non – excellent DSS graph.

Theorem 3.1 Let G be a DSS and non – excellent graph. Then there is a subdivision graph H of G which is excellent and DSS.

Proof: Let G be a non – excellent and DSS graph. Let B be the set of all bad vertex of G. Let $x \in B$. Among the γ - sets of G select one γ - set S_1 such that $\mid N \ (x) \cap S_1 \mid$ is maximum. For each $y \in N \ (x) \cap S_1$, subdivided the edge xy. Let w_y be the vertex introduced while subdividing edge xy. Let H_1 be the graph thus obtained.

In [4] it has been proved that,

- 1. H_1 is a subdivision of G.
- 2. The set of all bad vertices of H₁ is a proper subset of the set of all bad vertices of G.
- 3. In H_1 , { $w_y / y \in N$ (x) $\cap S_1$ in G } are good vertices. x is also a good vertex in H_1 .
- 4. $D \cup \{x\}$ is a γ set for H_1 .

We observe that { $w_y / y \in N$ (x) \cap S_1 in G } is 2 – dominated. Hence γ ($H_{1 \ sd} \ xw_y$) = γ (H_1) = γ (G) + 1. Let { $S_y \subseteq S_1 / y \in N$ (x) $\cap S_1$ } be the set of vertices in $S_1 \perp x$ in G. γ ($H_{1 \ sd} \ w_y s_y$) = γ (H_1) = γ (H_1) = γ (H_2) + 1. Since H_2 0 is also a DSS graph.

If x_0 is a bad vertex of H_1 and S_2 is γ - set of H_1 such that $|N(x_0) \cap S_2|$ is maximum, then obtain a subdivision H_2 of H_1 by subdividing the edge x_0y , $y \in N(x_0) \cap S_2$, $N(x_0) \subset V(G)$.

The number of bad vertices in H_2 < the number of bad vertices in H_1 < the number of bad vertices in G.

By the above discussion we know that H_2 is a DSS graph.

Proceeding like this, we obtain finite sequences H_1 , H_2 , ..., H_k of subdivision of G with the following property,

- 1. Each H_{i+1} is a subdivision of H_i .
- 2. The number of bad vertices of H_{i+1} < the number of bad vertices of H_i .
- 3. Each H_{i+1} is DSS.

For some k, ($\leq |B|$), we obtain an excellent subdivision stable graph H_k . Denote this H_k by H.

We prove the following results to prove that VE trees are DSS

Theorem 3.2 Let T be a VE tree. Then every pendant vertex can be exchanged with its support vertex only.

Proof: Let T be a VE tree and D be a VE γ - set for T. Let v be a pendant vertex and u be its support vertex. In [3], it has been proved that, in a VE tree, every support vertex has exactly one pendant vertex adjacent to it. Suppose there is one $y \in D$, $y \ne u$ such that $D' = D - \{y\} \cup \{v\}$ is a γ - set for G, then $D'' = D' - \{v\}$ is also a dominating set for G such that |D''| < |D'| which is a contradiction. Hence every pendant vertex can be exchanged with its support vertex only.

Theorem 3.3 Let T be a VE tree and D be a VE γ - set for T. Then for each vertex $u \in D$ either pn[u, D] = 1 or pn[u, D] = ϕ .

Proof: Let T be a VE tree and D be a VE γ - set for T and if possible, let pn[u, D] \geq 2 for some u \in D, say pn[u, D] = 2 = x, y.

Claim 1

x and *y* are internal vertices only.

Proof:

In [6] it has been proved that, both x and y cannot be pendant vertices. Let us assume that, x is pendant and y an internal vertex. By theorem 3.2, we know that $D' = D - \{u\} \cup \{x\}$ is a γ - set for T. But y is not dominated by D' which is not possible. Hence if pn[u, D] = 2, then both x and y are internal vertices only.

Claim 2

x and y cannot be interchanged with u.

Proof:

If possible, let us assume that $D' = D - \{u\} \cup \{x\}$ is a γ - set for G. Then $x \perp u$, y that is $u \perp x$, $x \perp y$ and $y \perp u$ which is not possible, since T is a tree that is x and y cannot be interchanged with u.

Since T is VE, there is one $z \neq u$ [by claim (2)] such that $D' = D - \{z\} \cup \{x\}$ is a γ - set for T which is a contradiction, since $D' - \{x\}$ itself is a γ - set for T. Hence pn[u, D] is not greater than 2, that is either pn[u, D] = ϕ or pn[u, D] = 1.

Theorem 3.4 VE trees are DSS.

Proof: Let T be a VE tree and D be a VE γ - set for T. By theorem 3.3, we know that any $v \in V$ (T) is either 2 – dominated or pn[u, D] = v for some $u \in D$. Let $u, v \in V$ (T).

Case 1 $u, v \in D$

Let T_{sd} uv = w. D itself is a γ - set for T_{sd} uv.

Case 2 $u \in D, v \notin D$

Let T _{sd} uv = w. If pn[u, D] = v, then D' = D - {u} \cup {w} is γ - set for T _{sd} uv. If pn[u, D] = ϕ , then D itself is a γ - set for T _{sd} uv.

Case 3 $u, v \notin D$

Let T $_{sd}$ uv = w. Since T is VE there is one z such that D ' = D - { z } \cup { u } is a γ - set for T. Here D ' is γ - set for T $_{sd}$ uv also.

In all cases γ (T _{sd} uv) = γ (T) that is VE trees are DSS.

Theorem 3.5 Let G be DSS and y be a level vertex of G. Then the graph H obtained from G by attaching a path P_2 at y is DSS.

Proof: Let G be DSS and y be level vertex for G. Consider a path P_2 : $w_1w_2w_3$. Attach a path P_2 to a vertex y, to obtain a graph H. Label the vertex yw_1 as u.

 $\gamma(H) = \gamma(G) \cup \{w_2\}$ that is $\gamma(H) = \gamma(G) + 1$.

Consider H _{sd} uw₂. Let H _{sd} uw₂ = w. Hence γ (H) = γ (H _{sd} uw₂).

Consider H _{sd} w₂w₃. Let H _{sd} w₂w₃ = w. Hence γ (H _{sd} w₂w₃) = γ (G) \cup { w } that is γ (H) = γ (H _{sd} w₂w₃).

Also γ (H _{sd} uv) = γ (H), u, v \in V (G). In general γ (H) = γ (H _{sd} ab) = γ (G) + 1 for all a, b \in V (H). Hence H is DSS.

Example

Fig. 4

In Fig. 4, G is DSS and y is a level vertex of G, γ (G) = 3, γ (H) = 4 = γ (H $_{sd}$ uv). This is true for all e = (a b) \in E (H).

Theorem 3.6 Let u be a vertex of a graph G. Let H be the graph obtained from G by attaching a path P_3 at u. Then H is DSS if G is DSS and there is a γ – set D of G such that $u \in D$ and D - u dominates G - u.

Proof: Let G be DSS and D be γ – set for G. Let $u \in D$ such that $D - \{u\}$ dominates $G - \{u\}$. Consider $P_3 : w_1w_2w_3w_4$. Attach a path P_3 to u, to obtain a new graph H. Label the vertex uw_1 as y. $\gamma(H) = \gamma(G) \cup \{w_3\}$. $\gamma(H)$ includes y which is a selfish vertex.

Consider H _{sd} yw₂. Let H _{sd} yw₂ = w. γ (H _{sd} yw₂) = γ (H).

Consider H _{sd} w_2w_3 . Let H _{sd} $w_2w_3 = w$. γ (H _{sd} w_2w_3) = γ (H).

Consider H _{sd} w₃w₄. Let H _{sd} w₃w₄ = w. Hence γ (H _{sd} w₂w₃) = γ (H) – { w₃ } \cup { w }. Also γ (H _{sd} uv) = γ (H), for all u, v \in V (G).

In all cases γ (H _{sd} uv) = γ (H) for all u, v \in V (H). Hence H is DSS.

Example

Fig. 5

In Fig. 5, u is a selfish vertex in G, γ (G) = 2, γ (H) = 3 = γ (H _{sd} uv). This is true for all e = (a b) \in E (H) which implies H is DSS.

Theorem 3.7 Let G be a DSS graph and u be a vertex of G. Assume that there exist a γ - set D of G such that for some $v \in D$, (D - v) is a γ - set for G - u. Then the graph H obtained from G and a disjoint path w_1 w_2 w_3 w_4 w_5 of length four by joining w_3 and u by an edge is a DSS graph.

Proof Let G be DSS and $u \in V$ (G) such that there is a γ – set D of G so that for some $v \in D$, $D - \{v\}$ is a γ – set for $G - \{u\}$. Consider a path $P_4: w_1w_2w_3 \ w_4w_5$ of length four with V (G) \cap V (P) = ϕ . Let H be a graph obtained from G by joining the vertex u and w_3 by an edge that is $G \cup P \cup \{e\}$. γ (H) = γ (G) \cup $\{w_2\} \cup \{w_4\}$ that is γ (H) = γ (G) + 2. Let H $_{sd}$ uw $_3$ = w. γ (H $_{sd}$ uw $_3$) = γ (H) – $\{v\} \cup \{u\}$. Let H $_{sd}$ w $_1w_2$ = w. γ (H $_{sd}$ w $_1w_2$) = γ (H) – $\{w_2\} \cup \{w\}$. Let H $_{sd}$ w $_2w_3$ = w. γ (H $_{sd}$ w $_2w_3$) = γ (H). Let H $_{sd}$ w $_3w_4$ = w. γ (H $_{sd}$ w $_3w_4$) = γ (H). Let H $_{sd}$ w $_4w_5$ = w. γ (H $_{sd}$ w $_4w_5$) = γ (H) – $\{w_4\} \cup \{w\}$. Also γ (H $_{sd}$ uv) = γ (H), for all u, $v \in V$ (G). In all cases γ (H $_{sd}$ ab) = γ (H) for all a, b \in V (H). Hence H is DSS.

Example

Fig. 6

In Fig. 6, G is DSS, γ (G) = 2, γ (H) = 4 = γ (H _{sd} uv). This is true for all e = (ab) \in E (H) that is H is also DSS.

4 Conclusion

By theorems 3.2 - 3.7, we observe that

- 1. VE trees are DSS.
- 2. If G is DSS, then the graph obtained by applying type 1, 2 and 3 operations are DSS.

Using VE characterization and the results in page [3], we conclude that "VE trees and RVE trees are DSS".

References

- [1] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, *Marcel Dekker*, New York, (1998).
- [2] K. Karthika, Domination Dot Stable Domatic dot stable Domination Subdivision Stable graphs, *M. Phil thesis*, VIT University, Vellore, India, (2011).
- [3] N. Sridharan, M. Yamuna, Very excellent graphs and Rigid very excellent graphs, *AKCE J. Graph. Combin.*, (2007), Vol 4, pp. 211 221.
- [4] N. Sridharan, M. Yamuna, A note on excellent graphs, *Ars. Combin*, (2006), Vol 78, pp. 267 276.
- [5] D. B. West, Introduction to Graph Theory, second ed., *Prentice-Hall*, Englewood Cliffs, NJ (2001).
- [6] M. Yamuna, Excellent Just Excellent Very Excellent graphs, *Ph. D thesis*, Alagappa University, Karaikudi, India (2003).
- [7] M. Yamuna, K. Karthika, Domination Subdivision Stable Graphs, *International Journal of Mathematical Archive* (2012) 3(4), Page: 1467-1471.