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Abstract 

 

In this paper we introduce the notion of a smarandache completely prime ideal with respect to an element belated to a 

near field of a near ring N (b-s-c.p.i) of N. We study some properties of this new concept and link it with some there 

types of ideals of a near ring. 
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1. Introduction 

In 1905, L.E. Drckson began the study of a near ring and later in 1930; Wieland has investigated it [1]. In 1977, G.Pilz, 

introduced the notion of a prime ideal of near ring [1]. In 1988, N.G. Groenewald introduced of a completely prime 

ideal of a near ring [5]. In 2002, W.B. Vasanth Kandasamy study samaradache near ring, (samaradache ideal, of a near 

ring [7]. In 2012 H.H. Abbass and M.A.Mohommed introduced the notion of a completely prime ideal with respect to 

an element of a near ring [3]. 

In this work, we introduce a Samaradache completely prime ideal with respect to an element related to a near field of 

near ring as we mentioned in the abstract. 

2. Preliminaries 

In this section, we review some basic concepts about a near ring, and some types of fields of a near rind that We need in 

our work. 

 

Definition 2.1 [1]: A left near ring is a set N together with two binary operations “+” and”.” such that 

1.       Is a group (not necessarily abelian), 

2.       Is a semi group? 

3.                                                . 
 

Definition 2.2 [2]: The left near ring is called a zero symmetric if       , for all    . 

 

Definition 2.3[7]: Left         be a near-ring. A normal subgroup   of       is called a left ideal of   if 

1.       
2.                                  
                
 

Remark 2.4: If N is a left near ring, then      ,for all     (from the left distributire law). Also, we will refer that 

all near rings and ideals in this work are left. 
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Definition 2.5 [6]: Let   be an ideal of a near ring  ,then   is called a completely prime ideal of   if for all     , 

      implies           ,denoted by           . 

The a           near ring   in example       is not  

 

Definition 2.6 [3]: Let   be a near ring,   be an ideal of   and let   , then   is called a completely ideal with 

respect to the element   denoted by           of , if for all     ,           implies            
 

Definition 2.7 [7]: A near ring   is called an integral domain if   has non_zero divisors. 

 

Definition 2.8 [7]: Let         and            be two near rings, the mapping         is called a near ring 

homomorphism if for all        

                                          
 

Definition 2.9 [7]: Anon-empty set   is said to be a near field if   is defined by two binary operations “+” and”.” 

such that 

1.       Is a group  

2.           Is a group  

3.                                      . 
 

Definition 2.10 [7]: The near ring         is said to be a smarandache near ring denoted by (s-near ring) if it has 

aproper subset   such that         is a near field. 

 

Definition 2.11 [7]: Let   be s-near ring. A normal subgroup   of   is called a smarandache ideal (s-ideal) of   

related M if, 

i. For all       and for all    ,           , 
Where M is the near field contained in . 

ii.      
 

Remark 2.12 [7]: Let         be a chain of s-ideals related to a near field M of a near ring N, then 

        Is a s-ideals related to near field M  

 

Remark 2.13 [6]: Let         and            be two s-near rings and let  

        Be an epimomorphism and    has    as near filed. Then          is a near field of  .  

 

Proposition 2.14 [4]: Let           and            be two s-near rings and  

        Be an epimomorphism and let   be a  

S-ideals related to a near field M of a near ring N, and then      is s-ideals related to a near field    . 

 

Proposition 2.15 [4]: Let          be a s-near ring has a near filed   ,    be a s-near ring,          be an 

epimomorphism and let   be s-ideals related to a near field    of   ,where          of   , then        is a s-ideals 

related to a near field    of   . 

 

Definition 2.16 [7]: Let N is an s-near ring. The s-ideals   related to a near field M is called completely prime related 

to a near field M of N if, for all             implies           .denoted by           of  . 

3. The main results 

In this section, we define the notion of smarandache completely ideal with respect to an element b 

            And study some properties of this notion, we will discuss the image and pre image of           under 

near rings epimomorphism and explain the relationships between it and           of a near ring. 

 

Definition 3.1: A s-ideals related to a near field M of a s-near ring   is called a samarandache completely ideal with 

respect to an element b of              , if           implies            for all      . 

 

Example 3.2: The left s-near ring with addition and multiplication defined by the following tables. 

+ 0 a b c 

0 0 a b c 

a a 0 c b 

b b c 0 a 

c c b a 0 
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. 0 a b c 

0 0 0 0 0 

a 0 a a 0 

b 0 a b c 

c 0 0 c c 

 

The s-ideal         related to the near field         is           of   since                    . 

 

Proposition 3.3: Let   be a s-ideal related to a near field M of a s-near ring  ,then   is a         of   if and only if   is 
         , where 1 is the multiplicative identity element of M. 

 

Proof: Suppose   is a         ideal of    

And let        such that         .  
Then we have               
            [Since   is a         of ]. 

                Of  . 

Conversely, 

Let        such that       
                          [Since   is         of  ]. 

 

Remark 3.4: In general an S.C.P.I related to a near field M of an s-near ring N may not be b-S.C.P.I related to M of N 

as in the following example  

 

Example 3.5: Consider the s-near ring of integers mod 6 (z6, t6, .6); the s-ideal I= [0,2,4] is S.C.P.I related to the near 

field M = [0,3] , but it is not 2-S.C.P.I of N , since 3 M and 2.(3.3)=0   I but 3T . 

 

Proposition 3.6: Let I be a b-C.P.I related to a near field M of a s-near ring N. then I is a b-S.C.P.I of N.  

 

Proof: Let x, y M, such that b. (x.y)   I  

x,y   N [ since M is a proper subset of N] 

xI or y I [since I is b-S.C.P.I of N] 

 I is a b-S.C.P.I of N. 

 

Remark (3.7): The conzerse of proposition (3.6) may not be true as in the following example.  

 

Example 3.8: Consider the s-near ring of integers mod 12 (Z12, t12, i12); s-ideal I = [0,2,4,6,8,10] if z-S.C.P.I related 

to the near field M= [ 0,4,8] , but it is not 2-C.P.I , since 3,5  Z12 and 2.(3.5) = 6 I, but 3 and 5  I .  

 

Proposition 3.9: Let N be a s-near ring and let I be a s-ideal related to a near field M of N. then I is a b-S.C.P.I of N if 

and only if M is a subset of I, for all bI > 

 

Proof: Suppose I is a b-S.C.P.I, bI and XM.  

Now, 

X
2 
= x.x

 I , 0I and 0. x
2
 = 0. (x.x) =0I  

xI [since I is o-S.C.P.I ],  

M is a subset of I  

Conversely,  

Let bI and x ,y M such that b.(x.y) I  

x or y   I [since M I ] 

 I is b-S.C.P.I of N.  

 

Proposition 3.10: Let N be a s-near integral domain . then I =[0] is b-S.C.P.I related to a near field M of N, for all n
Nl [0] . 

 

Proof: Let bNl [0] and x ,y M , such that b.(x.y) I  

b. (x.y) =0 

x.y =0 [since b  0 and N is a near integral domain]  

x=0 or y=0 xI or yI  

xI or yI . 

 I is a b-S.C.P.I of N.  
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Proposition 3.11: Let N be a zero symmetric s-near ring and let I=[0]. Then I is not o-S.C.P.I of N related to all near 

fields of N . 

 

Proof: Suppose I is o-S.C.P.I related to a near field M of N . 

Since M is a near field M  [0]  

   X M , such that x 0 . 

Now,  

0x
2
 = 0.(x.x) = 0   I  

xI x=0 and this contradiction [ since x  0]  

 I is not 0- S.C.P.I related to M of N.  

 

Proposition 2.12: Let N be a s-near ring and let [Ii] i I be a chain of b-S.C.P.I related to a near field M of N , for all i

I . then V i I Ii is a b-S.C.P.I related to M of N. 

 

Proof : Since [Ii] i I is a chain a b-S.C.P.I related to M of N. 

 Ii is a s-ideal of N for all i  I. 

  V i I Ii is a s-deal of N [ By remark (2.12)] 

Now,  

Let x , y M , such that b.(x.y)   V i I Ii  

There exists b-S.C.P.I related M Ik   [Ii] i I of N, such that b.(x.y)   Ik  

xIk or y   Ik [ since Ik is a b-S.C.P.I of N]  

x   V i I Ii or Y  V i I Ii .   V i I Ii is a b-S.C.P.I of N. 

 

Remark 3.13: In general, if [Ii] i I is a family of b-S.C.P.I related to a near field M of as near ring N, then 
i I iI

 and 

V i I Ii may not be b-S.C.P.I  

Related to M of N, as in the following example  

 

Example 3.13: Consider the s-near ring of integer’s mod12. (Z12,t12, 12) , the s-ideals I=[0,6] and J=[0,4,8] are 3-

S.C.P.I. related to the near field M= [0,4,8] of Z12, but the s-ideal I J [0]  is not 3-S.C.P.I related to M of Z12 , since 

3.(3.8)=0 I, but and 8   I, Also , the subset I  J= [0,4,6,8] is s-ideal of Z12 and this implies I  J is not 3-S.C.P.I 

related to M of Z12 . 

 

Theorem 3.15: Let (N1, *, 0) and (N2, t, 0) be two s-near rings , F: N1N2 be an epimvor phism and let I be a b-

S.C.P.I related to near field M of N, then f(I) is f(b) –S.C.P.I related to the near field f(M) of N2.  

 

Proof :By remark (2.13), we have f (I) is a s-ideal related to a near field f(M)  

Now Let f(m1) , f(m2)  f(m) , such that  

f (b) ! ( f( m1 ) ! f( m2)  f(I)  

 f ( b (m1 . m2 ) )  f ( I )  

 f ( b (m1 . m2 ) )  f ( I )  

 either m1  I or m2  I or m2 [ since I is b- S.C .P. I related to M of N1 ]  

 f (m1)  f ( I ) or (m2)  f(I)  

 f (I) is a f ( b ) - S.C .P. I related to f( M) of N2  

 

Theorem 3.16: Let ( N1 , + , . ) be as – near ring has a near field M1 , ( N2) be S- near ring , f: N1  N2 be an 

epimomorphism , and Let J be a b- S.C .P.I related to the near field f(M) of N2 , then f
-1

 (I) is a - S.C .P.I related to a 

near field M of N1 , where b – f (a). 

 

Prof: By proposition ( 2.15) , we have f
-1

 (J) is a S – ideal related to M of N1 . Now, Let x,y  M , such that a. (x.y )  
f-1

 (J)  

 f(x) , f(y)  f(M) and f( a ! (x y)  J  

 f(x) , f(y)  f(M) and f( a ) ! f(x), f(y) )  J  

 either f(x)  J or f(y)  J [ since J is b- S.C .P. I related to f(M) of N2 ]  

 either x  f
-1

 (J) or y f
-1

 (J) or y f
-1

 (J) 

 f
-1

 (J) is a b- S.C .P. I related to f(M) of N2  

 

Corollary 3.17: Let ( N1 ,+,0) be a S- near ring has a near field M, ( N2 , +' , ." ) be a S- near ring , f : N1 ,  N2 be an 

e pimomorphism , and if [ o
1
 ] be a b- S.C .P. I related to the near field f(M) of N2 The ker(f) is b- S.C .P. I related to a 

near field M of N1, where 
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Ker f = [ x  N1 : f(x) = 0 ] and b=f(a)  

 

Proof: Since f
-1

 ([ 0
1
 )] l = ker (f) , then where Rer (f) is a - S.C .P. I related to M of N1  

[By theorem (3-16)] 
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