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Abstract 

Several important properties of chaos synchronization of 
bidirectionally coupled systems remain still unexplored. This paper 
designes a new synchronization scheme for generalized bidirectionally 
coupled chaotic systems via linear transformations. The proposed 
synchronization scheme of bidirectionally coupled chaotic systems are 
discussed taking coupled unified chaotic systems. In this method, we 
can predict the driven systems behavior in advance, knowing the 
driving systems behavior. Simulation results are presented to show the 
effectiveness of the proposed scheme. 
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1 Introduction 

Since the pioneer work by Pecora and Carroll (1990) [1], chaos synchronization 

has received much attention because of its fundamental importance in non-linear 

dynamics and potential applications to laser dynamics, electronic circuits, 

chemical and biological systems and secure communication. One can use 

synchronized chaotic behavior for designing secure communication devices in the 

following way. One can have two remote systems behaving chaotically, but 

synchronized with each other through only one driving signal. A sender can add a 

given message to the drive, thus musking the information from any third party 

who wants to intercept it. The receiver can extract the message by using the 

synchronization scheme. Many chaos synchronization and control methods have 
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been developed, such as backstepping design method [2], impulsive control 

method [3], invariant manifold method [4],  control strategy method [5], active 

control method [6], synchronization in unidirectionally coupled system [7] and 

bidirectionally coupled system [8]. 

 

A pair of  dynamical systems 

                  
( )

( )

x f x

y g y




                                                       (1) 

are said to be unidirectionally coupled if 

                              

( )

( ) ( , )

x f x

y g y h x y



 
                                                   (2) 

where h(x,y) is a nontrivial function of x and y. Physically, this means that in part 

of the phase space, the behavior of one system has no influence on the behavior of 

the other. If coupling is not unidirectional then it must be bidirectional. Systems 

are called bidirectionally coupled if 

                             
( ) ( , )

( ) ( , )

x f x k x y

y g y h x y

 

 
                                                    (3) 

Where h(x,y) and k(x,y)  are nontrivial functions of x and y. 

Two dynamical systems are called synchronized if the distance between the 

corresponding states of the systems converges to zero as time goes to infinity. 

This type of synchronization is known as identical synchronization [1]. However 

in the coupled chaotic systems identical synchronization is a fairly restrictive 

concept and often difficult to achieve except under ideal conditions. Applications 

of GS may be more practical than those of identical synchronization because 

parameter mismatches and distortions always exist in the physical world. Recently, 

a more elaborate form of synchronization called generalized synchronization (GS) 

was proposed by Kocarev and Parlitz (1996) [9]. They formulated a condition for 

the occurence of GS for the unidirectionally coupled systems of following type 

                               ( )x f x                   driving system 

                 ( , ) ( , ( ))y g y u g y h x  driven system                       (4) 

where n mx R , y R   and 1 2 ku(t) (u (t),u (t),...................u (t))  with 

j j 0u h (x(t, x )) . Here the variable ju  are introduced to include explicitly the case 

that a function ( )u h x  of x  is used for driving the response system. According 

to Kocarev and Parlitz (1996) [9] the system  (4) possess the property of GS 

between x  and y  if there exists a transformation n mH : R R , a manifold 

{( , ) : ( )} M x y y H x , and a subset 
n m

x yB B B R R     with M B  

such that all trajectories of (4) with initial conditions in the basin B  approach 

M as time t  goes to infinity. If H equals to the identity transformation, this 
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definition of generalized synchronization coincides with the usual definition of 

synchronization e.g., identical synchronization. generalized synchronization (GS), 

which is defined by a time-independent nonlinear functional relation  

y (x) between the states x and y of two systems. Experimental detection and 

characterization of GS from observed data is a challenging problem, especially in 

biology; e.g., for study on nonlinear interdependence observed in binding of 

different features in cognitive process and epilepsies in the brain. In 

unidirectionally coupled system, a way to detect GS is to make an identical copy 

Y’ of the response system Y driven by the common signal from the driver system 

X, then investigate whether orbits of both Y and Y’ coincide after transient. In 

1995 Rulkov et. al. [10] discussed generalized synchronization of chaos in 

unidirectionally coupled chaotic systems.  Hramov et.al. [11] proposed GS by a 

modified system approach in 2005. They investigated the physical reasons leading 

to GS appearance in unidirectionally coupled chaotic systems. Hramov 

et.al.(2005) [12] explained the peculiarity of the GS onset in the unidirectionally 

coupled Rossler oscillators. Yang and Chua (1999) [13] proposed a method for 

obtaining GS of two coupled chaotic systems via linear transformations. They also 

considered unidirectional coupled chaotic systems.  In 2007 Poria [14] discussed 

generalized chaos synchronization of two Lorenz dynamical systems via linear 

transformation considering unidirectional coupling. There are very few results 

about synchronization of bidirectionally coupled chaotic systems. But most of the 

natural systems are bidirectionally coupled. Therefore the study of bidirectionally 

coupled systems are necessary. Nobody have discussed the GS of two 

bidirectionally coupled chaotic systems via linear transformation. In this paper we 

introduce the theory of GS of two bidirectionally coupled chaotic systems via 

linear transformations. We discuss the theory considering two bidirectionally 

coupled unified chaotic systems. Finally simulation results are presented and 

discussed. 

2 Generalized Synchronization of Bidirectional 
Coupled Systems  

A dynamical system can be decomposed into two parts 

                           ( )x Ax x                                                                           (5) 

where A is an n n   constant matrix and n n: R R  . We assume that the 

driving system transmit the signal ( )x  to the driven system and consider the 

following bidirectionally coupled systems: 

                                       ( ) ( )x Ax x y             driving system 

                                      ( ) ( )y Ay x y     driven system                    (6) 

where A,   are n n  matrices and 
n n, : R R   . 
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     Theorem 2.1  

 

If the matrix   commutes with A , then the two coupled chaotic dynamical 

systems in (6) are in a state of generalized synchronization via the following 

linear transformation  

 y( ) = H(x) = Λx  

 if and only if all eigenvalues of the matrix A have negetive real parts. 

 

Proof:  

 

Let z = y Λx , then the stability of the GS between the two dynamical systems 

in (6) via the GS transformation y = H(x) = Λx  is equivalent to that of the origin 

of the following system:  

 = [ ( ) ( )] [ ( ) ( )]z Ay x y Ax x y       

      = Ay ΛAx  

      = A(y x) since   commutes with  A 

      .= Az                                                                                      (7) 

 

Therefore z=0 is asymptotically stable if and only if all eigen values of the matrix 

A have negative real parts.  

The matrices   which commute with an n n  matrix A must be an n n  

matrix which satisfies the following equation: 

               A A                                                                                     (8) 

  

Clearly the above equaton has infinite number of solutions for  . Therefore we 

can construct several methods of linear GS between two chaotic systems. Three 

simple solutions of equations (8) are (i) scalar multiplication of any identity 

matrix of same order commutes with A, (ii) any square matrix commutes with 

itself and (iii) if A is invertible then 
1A  commutes with A. 

 

 

3 Generalized Synchronization of Bidirectionally 
Coupled Unified Chaotic Systems 

In this section we discuss the theory considering two bidirectionally coupled 

unified chaotic systems via linear transformations. A  unified chaotic system  is 

presented by Lu and Wu in 2004 [15]. The unified chaotic system can be 

described by the following system of differential equations.  

  

    25 10x = ( a+ )(y x)  



 

 

 

274 Mohammad Ali Khan 

 

 

 28 35 29 1y = ( a)x xz +( a )y                                              (9) 

 
8

3

+a
z = xy z  

where [0,1].a  For a =0, 0.8, 1 the system (9) represents the Lorenz chaotic 

system, Lu chaotic system and Chen chaotic system respectively. Practically, 

unified chaotic system is chaotic for any [0,1].a  According to equation (6) the 

master and slave systems with bidirectional coupling are constructed as 

 

    Master system :              

 

1 2 2 1x = (25a +10)(x + y x )  

2 1 2 1 3 1 3 2 2x = (28 35a)x x x x y y + 29a(x + y )                                         (10) 

3 1 2 1 2 3

8

3

+a
x = x x + y y x  

 

    Slave system: 

 

                        

1 1 11 2 2 12 2 2 1 3 1 3(25 10) (25 10)( ) {29 ( ) }y a y a x y a x y x x y y            

13 1 2 1 2(x x y y )   

2 1 2 21 2 2 22 2 2 1 3 1 3(28 35 ) (25 10)( ) {29 ( ) }y a y y a x y a x y x x y y                 

23 1 2 1 2(x x y y )   

3 3 31 2 2 32 2 2 1 3 1 3

8
(25 10)( ) {29 ( ) }

3

a
y y a x y a x y x x y y 


          

33 1 2 1 2(x x y y )                                                                                            (11) 

 

where      

11 12 13

21 22 23

31 32 33

   
 

    
 
    

 , 

(25a 10) 0 0

A = (28 35a) 1 0

8 a
0 0

3

 
 
 
 
  
 
 

 
 

        (12) 

4 Results and Discussions 

Numerical simulations have been performed to show the usefulness of the newly 

proposed synchronization method. Fourth-order Runge-Kutta method is used for 

solving bidirectionally coupled unified chaotic system with step size .001. The 

initial conditions for the master and slave systems are taken as  

1 2 3(x (0),x (0),x (0)) = (1, 1, 1) and 1 2 3(y (0), y (0), y (0))= (-2,-2, -2). 
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Case 1. The parameter of unified chaotic system is chosen as 0a  . Figures 1(a)-

1(c), 2(a)-2(c) and 3(a)-3(c) shown the simulation results for bidirectionally 

coupled unified chaotic systems for 0a  , i.e., in the  Lorenz systems.     

 

Simulation  1.     

 

In this simulation, we take  

 
























00

00

00

=                                                                      (13) 

  
 where 0 . Clearly  AA= . Therefore all conditions of the theorem are 

satisfied. Here the driving unified chaotic system is (10) and the driven unified 

chaotic system is given by  

 

 1 2 2 125 10y = ( a+ )(λ(x + y ) y )  

 2 1 2 1 3 1 3 2 2= (28 35 ) ( 29 ( ))y a y y x x y y a x y        

             3 1 2 1 2 3

8
= ( )

3

a
y x x y y y


                                                   (14) 

 

The simulation results of synchronization are shown in Figure 1(a)-1(c). We 

choose 2= . Then the state variables of the driving system and driven systems 

are connected by the linear transformation  

 

                11 2= xy  

    22 2= xy                                                                                   (15) 

    33 2= xy     

 
Figure 1(a). Phase diagram of (x1, x2) and (y1, y2) for bidirectionally 

coupled unified chaotic systems for a=0 i.e., in the Lorenz systems for simulation 

1. 
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Figure 1(b). Phase diagram of (x1, x3) with (y1, y3) for bidirectionally coupled 

unified chaotic systems for a=0 i.e., in the Lorenz systems for simulation 1. 

 

 
Figure 1(c). Phase diagram of (x2, x3) with (y2, y3) for bidirectionally coupled 

unified chaotic systems for a=0 i.e., in the Lorenz systems for simulation 1. 

 

Simulation  2. 

 

In this simulation we choose  

 Λ = A = (25a +10) 0 0

(28 35a) 1 0

0 0 8 + a

3

 
 

  
 

 
 

 

Clearly, the matrix   commutes with A. In this case, the driven unified chaotic 

system is given by  
2

1 1 2 2y = (25a +10)y (25a +10) (x + y )   

2 1 2 2 2 1 3 1 3 2 2y = (28 35a)y y +(28 35a)(25a +10)(x + y ) + x x + y y 29a(x + y )   

3 3 1 2 1 2

8+ a
y = (y + x x + y y )

3
                                                                          (16) 
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If the GS between the driven and driving systems is achieved, then the following 

relations should be satisfied.  

 1 1y = (25a +10)x  

 2 1 2y = (28 35a)x x   

 3 3

8 + a
y = x

3
                                                                            (17) 

The simulation results of synchronization are shown in Figures 2(a)-2(c).  

 

 
Figure 2(a). t-x1 with t-y1 for bidirectionally coupled unified chaotic  

systems for a=0 i.e., in the Lorenz systems for simulation 2. 

 

 
Figure 2(b). t-x2 with t-y2 for bidirectionally coupled unified chaotic 

systems for a=0 i.e., in the Lorenz systems for simulation 2. 
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Figure 2(c). t-x3 with t-y3 for bidirectionally coupled unified chaotic       

systems for a=0 i.e., in the Lorenz systems for simulation 2. 

 

Simulation  3. 

 

In this case, we take  

 1 1 0 0
Λ = A =

(25a +10)

28 35a 1 0

25a +10

0 0 3

8 + a

  
 
 

  
 
 
  
 

 

Obviously,   commutes with A. Therefore driven unified chaotic system is 

given by  

 

1 1 2 2y = (25a +10)y (x + y )   

2 1 2 2 2 1 3 1 3 2 2y = (28 35a)y y (28 35a)(x y ) x x y y 29a(x y )               

3 3 1 2 1 2

8+ a 3
y = y (x x + y y )

3 8+ a
                                                                   (18) 

 

For the GS between the driven and driving systems the following relations should 

be satisfied, then the following relations should be satisfied.  

 1
1

x
y =

25a +10
  

 

 2 1 2

28 35a
y = x x

25a +10


   

 3 3

3
y = x

8 + a
                                                                            (19) 

The simulation results of synchronization are shown in Figures 3(a)-3(c). 
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Figure 3(a). t-x1 with t-y1 for bidirectionally coupled unified chaotic systems for 

a=0 i.e., in the Lorenz systems for simulation 3. 

 

 
Figure 3(b). t-x2 with t-y2 for bidirectionally coupled unified chaotic systems for 

a=0 i.e., in the Lorenz systems for simulation 3. 

 

 
Figure 3(c). t-x3 with t-y3 for bidirectionally coupled unified chaotic systems for 

a=0 i.e., in the Lorenz systems for simulation 3. 

 

Case 2. The parameter of unified chaotic system is chosen as 0a  .8.  

Figures 4(a)-4(c), Figure 5 and Figure 6 shown the simulation results for 

bidirectionally coupled unified chaotic systems for 0.8a  , i.e., in the Lu systems. 
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Figure 4(a). Phase diagram of (x1, x2) with (y1-y2) for bidirectionally coupled 

unified chaotic  systems for a=0.8 i.e., in the Lu systems for simulation 1. 

 

 
 

Figure 4(b). Phase diagram of  (x1, x3) with (y1, y3) for bidirectionally coupled 

unified chaotic systems for a=0.8 i.e., in the Lu systems for simulation 1. 

 

 
Figure 4(c). Phase diagram (x2, x3) with (y2, y3) for bidirectionally coupled unified 

chaotic systems for a=0.8 i.e., in the Lu systems for simulation 1. 
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Figure 5. t-x3 with t-y3 for bidirectionally coupled unified chaotic systems for 

a=0.8 i.e., in the Lu systems for simulation 2. 

 

 
Figure 6. t-x2 with t-y2 for bidirectionally coupled unified chaotic systems for 

a=0.8 i.e., in the Lu systems for simulation 3. 

5 Conclusion 

In this paper we have proposed a generalized synchronization scheme for 

bidirectionally coupled chaotic systems via linear transformations. We derive the 

condition for generalized synchronization of bidirectionally coupled chaotic 

systems. We have also predicted the relationship between master system and slave 

system after generalized synchronization. We have done numerical simulation for 

unified chaotic system. The numerical simulation results shows that the proposed 

method is very effective. Our proposed  generalized synchronization  scheme may 

be very useful for secure communication purpose.  

 

References 

[1] L.M. Pecora and T.L. Carroll ,  Synchronization in chaotic systems, Phys. 

Rev. Lett,  64 (1990) 821-824. 

[2] Y. Yongguang and Z. Suochun, Controlling uncertain Lu system using 

backstepping design,  Chaos  Solitons and Fractals, 15 (2003) 897-902. 



 

 

 

282 Mohammad Ali Khan 

 

 

[3] T. Yang, L-B. Yang and C-M. Yang , Impulsive control of Lorenz system, 

Physica D,  110 (1997) 18-24. 

[4] K. Josic, Synchronization of chaotic systems and invariant manifolds, 

Nonlinearity, 13 (2000) 1321. 

[5] M.A.Khan, A.K.Mondal and S.Poria, Three control strategies for unified 

chaotic system, Int. J. of Applied Mechanics and Engineering. 16 (2011) 

597-608. 

[6] MC Ho and YC Hung,  Synchronization of two different systems by using 

generalized active control, Physics Letters A, 301 (2002) 424-428. 

[7] M.A. Khan and A.K.Mandal, Generalized chaos synchronization of coupled 

Rossler systems, Bull. Cal. Math. Soc., 101 (2009), 197-204. 

[8] A Tarai(Poria), S Poria and P. Chatterjee, Synchronization of bidirectionally 

coupled chaotic Chen's system  with delay, Chaos  Solitons and Fractals, 41 

(2009) 643-647. 

[9] L. Kocarev and U. Parlitz, Generalized synchronization, predictability and 

equivalence of unidirectionally coupled dynamical systems, Physical Review 

Letters, 76 (1996), 1816-1819. 

[10] N. F. Rulkov, M. M. Suschik and L. S. Tsimring, Generalized 

synchronization of chaos in directionally coupled chaotic systems, Physical 

Review E, 51 (1995),  980-994. 

[11] A. E. Hramov and A. A. Koronovskii, Generalized synchronization: a 

modified system approach, Physical Review E, 71 (2005), 067201. 

[12] A.E. Hramov, A. A. Koronovskii and O. I. Moskalenko, Generalized 

synchronization onset, Europhysics Letters, 72 (2005), 901-907. 

[13] T. Yang and L. O. Chua, Generalized synchronization of chaos via linear 

transformations, Int. J. Bifurcation and chaos, 9 (1999), 215-219. 

[14] S. Poria , The linear generalized chaos synchronization  and predictability, 

Int. J. of Applied Mechanics and Engineering, 12 (2007), 879-885. 

[15] Lu and Wu,  A unified chaotic system with continuous periodic switch, 

Chaos, Solitons and Fractals, 20 (2004), 245-251. 


