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Abstract 

This study examines the problem of unsteady MHD mixed 
convective flow past a vertical porous plate in presence of radiation. 
The coupled non linear partial differential equations are solved 
numerically by a finite element method. The effects of the material 
parameters on the velocity, temperature and concentration fields are 
shown graphically. 
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1 Introduction 

In recent years, the flows of fluid through porous media are of principal interest 

because these are quite prevalent in nature. Such flows have attracted the attention 

of a number of scholars due to their application in many branches of science and 

technology, viz., in the field of agriculture engineering to study the underground 

water resources, seepage of water in riverbeds, in petroleum technology to study 

the movement of natural gas, oil and water through oil reservoirs, in chemical 

engineering for filtration and purification processes. The convection problem in 

porous medium has also important applications in geothermal reservoirs and 

geothermal energy extractions. A comprehensive review of the studies of 

convective heat transfer mechanism through porous media has been made by 

Nield and Bejan [1]. Hiremath and Patil [2] studied the effect on free convection 

currents on the oscillatory flow through a porous medium, which is bounded by 

vertical plane surface of constant temperature. Fluctuating heat and mass transfer 

on three-dimensional flow through a porous medium with variable permeability 
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has been discussed by Sharma et al. [3]. Hydromagnetic convection with heat and 

mass transfer in porous medium has been studied due to its importance in the 

design of Magnetohydrodynamics (MHD) generators and accelerators in 

geophysics, design of ground water system, energy storage system, soilsciences, 

astrophysics, nuclear power reactors and so on. Magnetohydrodynamics is 

currently undergoing a period of great enlargement and differentiation of subject 

matter. The interest in these new problems generates from their importance in 

liquid metals, electrolytes and ionized gases. Unsteady hydromagnetic free 

convection flow of Newtonian fluid has been investigated by Helmy 

[4].Chaudhary and Sharma [5] considered combined heat and mass transfer by 

laminar mixed convection flow from a vertical surface with induced magnetic 

field. Hydromagnetic unsteady mixed convection and mass transfer flow past a 

vertical porous plate immersed in a porous medium was investigated by Sharma 

and Chaudhary [6]. El-Amin [7] considered the MHD free-convection and mass 

transfer flow in a micro polar fluid over a stationary vertical plate with constant 

suction. Combined heat and mass transfer problems with chemical reaction are of 

importance in many processes and have, therefore, received a considerable 

amount of attention in recent years. In processes such as drying, evaporation at the 

surface of water body, energy transfer in wet cooling tower and the flow in a 

desert cooler, heat and mass transfer occur simultaneously. Chemical reaction can 

be codified as either homogeneous or heterogeneous processes. A homogeneous 

reaction is one that occurs uniformly through a given phase. In contrast, a 

heterogeneous reaction takes place in a restricted region or within the boundary of 

a phase. A reaction is said to be first order, if the rate of reaction is directly 

proportional to the concentration itself which has many applications in different 

chemical engineering processes and other industrial applications such as polymer 

production, manufacturing of ceramics or glassware and food processing Cussler 

[8].Das et al. [9] considered the effects of first order chemical reaction on the flow 

past an impulsively started infinite vertical plate with constant heat flux and mass 

transfer.Muthucumarswamy and Ganesan [10] and Muthucumarswamy[11] 

studied first order homogeneous chemical reaction on flow past infinite vertical 

plate. 

In the above mentioned studies the effects of heat sources/sinks and radiation have 

not been considered. Due to its great applicability to ceramic tiles production 

problems, the study of heat transfer in the presence of a source/sink has acquired 

newer dimensions. Actually, many processes in new engineering areas occur at 

high temperature and knowledge of radiation heat transfer becomes imperative for 

the design of the pertinent equipment. Nuclear power plants, gas turbines and the 

various propulsion devices for aircraft, missiles, satellites, and space vehicles are 

examples of such engineering areas. Kandasamy et al. [12] discussed heat and 

mass transfer effect along a wedge with heat source and concentration in the 

presence of suction/injection taking into account the chemical reaction of first 

order. Sharma et al.[13,14] have reported on the radiation effect with 

simultaneous thermal and mass diffusion in MHD mixed convection flow from a 
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vertical surface.Sharma et al. [15,16] discussed radiation effect on free convective 

flow along a uniform moving porous vertical plate in the presence of heat 

source/sink and transverse magnetic field. 

Israel Cookey et al.[17] investigated the influence of viscous dissipation and 

radiation on unsteady MHD free convection flow past an infinite heated vertical 

plate in porous medium with time dependent suction.Gebhar [18] shown the 

importance of  viscous dissipative heat in free convection flow in the case of 

isothermal and constant heat flux in the plate. Soundalgekar [19]  analyzed the 

effect of viscous dissipative heat on the two dimensional unsteady, free 

convective flow past an vertical porous plate when the temperature oscillates in 

time and there is constant suction at the plate.  

In spite of all these studies, the unsteady MHD mixed convictive flow past a 

vertical porous plate in presence of radiation has received little attention. The 

dimensionless equations are solved by using the finite element method. The 

effects of various governing parameters on the velocity, temperature and 

concentration are shown in figures and discussed in detail. 

 

 

Fig.1. Flow Configuration and Coordinate system 

 

2 Mathematical Analysis 

An unsteady two-dimensional flow of an incompressible and electrically 

conducting viscous fluid, along an infinite vertical porous flat plate embedded in a 

porous medium is considered. The x -axis is taken on the infinite plate, and 

parallel to the free-stream velocity which isvertical and the y -axis is taken 

normal to the plate. A magnetic field 0B  of uniform strength isapplied 

transversely to the direction of the flow. Initially the plate and the fluid are at 

sametemperature T  in a stationary condition with concentration level C  at all 

points. For 0t ,the plate starts moving impulsively in its own plane with a 

velocity 0U , its temperature israised to wT   and the concentration level at the plate 
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is raised to wC . The flow configuration and coordinate system are shown in Fig. 

1.The fluid is assumed to have constant properties except that the influence of the 

density variations with temperature and concentration, which are considered only 

in the body force term. Under the above assumptions, the physical variables are 

functions of y and t only. Assuming that the Boussinesq and boundary layer 

approximation hold and using the Darcy-Forchheimer model, the basic equations, 

which govern the problem, are given by: 
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By using the Rosseland approximation, the radiative heat flux rq  is given by
44
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Where vu, are the Darcian velocity components in the x - and y - directions 

respectively, t is the time,  is the kinematic viscosity, g  is the acceleration due 

to gravity,   is the density,   is the coefficient of volume expansion,   is the 

volumetric coefficient of expansion with concentration, K  is the Darcy 

permeability, b  is the empirical constant, 0B  is the magneticinduction, T  and T  

are the temperature of the fluid inside the thermal boundary layer andthe fluid 

temperature in the free stream, respectively, while C  and C  are the 

corresponding concentrations. Also,   is the electric conductivity,   is the 

thermal diffusivity, s is the Stefan-Boltzmann constant and ek - the mean 

absorption coefficient. mD  is the coefficient of mass diffusivity, pc is the specific 

heat at constant pressure, rq  is the Radiative heat flux in the y -direction, rk is 

chemical reaction parameter.Initially )0( t   the fluid and the plate are at rest.  

 

Thus the no slip boundary conditions at the surface of the plate for the above 

problem for 0t  are: 
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Now in order to obtain non-dimensional partial differential equations we are 

introducing 

following dimensionless variables and constants. 
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By introducing above dimensionless variables and constants the equations (2) (3) 

(4) converted as follows 
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Where ScEcRFsDaMGmGr ,,Pr,,,,,, and Kr are the thermal Grashof number, 

SolutalGrashof number, Magnetic parameter, Local Darcy number, Local 

Forchheimer number,Prandtl number, thermal radiation, Eckert number, Schmidt 

number and chemical reaction parameter respectively.  

The corresponding boundary conditions for 0t  
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3 Solution of the Problem 

By applying Galerkin finite element method for equation (8), (9) and (10) over the 

element )(e ,  kj yyy  are becomes: 
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Let the linear piecewise approximation solution  
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The set of differential Equations (8) to (10) subject to the boundary conditions (11) 

are highly nonlinear, coupled and therefore it cannot be solved analytically.  

Hence, following Reddy [20] and Bathe [21] the finite element method is used to 

obtain an accurate and efficient solution to the boundary value problem under 

consideration. The fundamental steps comprising the method are as follows: 

 

   Step 3.1: Discretization of the domain into elements: 

The whole domain is divided into finite number of sub-domains, a process known 

as discretization of the domain. Each sub-domain is termed a finite element. The 

collection of elements is designated the finite element mesh. 

 

   Step 3.2: Derivation of the element equations: 

The derivation of finite element equations i.e. algebraic equations among the 

unknown parameters of the finite element approximation, involves the following 

three steps: 
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a. Construct the variational formulation of the differential equation. 

b. Assume the form of the approximate solution over a typical finite element. 

c. Derive the finite element equations by substituting the approximate solution  

into  variational formulation. 

 

   Step 3.3: Assembly of element equations:  

The algebraic equations so obtained are assembled by imposing the inter-element 

continuity conditions. This yields a large number of algebraic equations, 

constituting the global finite element model, which governs the whole flow 

domain. 

 

   Step 3.4: Impositions of boundary conditions: 

The physical boundary conditions defined in equation (11) are imposed on the 

assembled equations.  

 

   Step 3.5: Solution of the assembled equations: 

The final matrix equation can be solved by a direct or indirect (iterative) method. 

For computational purposes, the coordinate y  is varied from 0 to 4max y , where 

maxy  represents infinity i.e. external to the momentum, energy and concentration 

boundary layers.  The whole domain is divided into a set of 200   line elements of 

equal width 0.05 , each element being three noded. Thus after assembly of all the 

elements equations we obtain a matrix of order 402402 . This system of 

equations as obtained after assembly of the elements equations is non-linear 

therefore an iterative scheme has been used to solve it. The system is linearized by 

incorporating known functions. After applying the given boundary conditions 

only a system of 195  equations remains for the solution which has been solved 

using Gauss elimination method. This process is repeated until the desired 

accuracy of 0.0005 is obtained. 

 

4 Results and Discussion 

In the preceding sections, the problem of unsteady MHD mixed convictive flow 

past a vertical porous plate in presence of radiation was formulated and the 

dimensionless governing equations were solved by means of a finite element 

method. In the present study we adopted the following default parameter values of 

finite element computations: ,0.2,0.2  GmGr ,5.0,3.0  DaM

0.09, Pr 0.71, 0.5, 0.5,Fs R Ec    0.22, 0.5Sc Kr 
   All graphs therefore correspond to 

these values unless specifically indicated on the appropriate graph. 

The influence of the Grashof number on the velocity is presented in Fig .2. 

Increase in the Grashof number  contributes to the increase in velocity when all 

other parameter that appears in the velocity field are held constant The influence 

of the modified Grashof number on the velocity is presented in Fig.3. It is 
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observed that, while all other parameters are held constant and velocity increases 

with an increase in modified Grashof number. 

For different values of the Prandtl number Pr , the velocity and temperature 

profiles are plotted in Figs. 4 and 5. The Prandtl number defines the ratio of 

momentum diffusivity to thermal diffusivity. From Fig. 4, it is clear that an 

increase in the Prandtl number leads to a fall in the velocity. From Fig.5, it is 

observed that an increase in the Prandtl number results a decrease of the thermal 

boundary layer thickness and in general lower average temperature within the 

boundary layer. The reason is that smaller values of Pr  are equivalent to 

increasing the thermal conductivities, and therefore heat is able to diffuse away 

from the heated surface more rapidly than for higher values of Pr . Hence in the 

case of smaller Prandtl numbers as the boundary layer is thicker and the rate of 

heat transfer is reduced. 

For different values of radiation parameter R , the velocity profiles are plotted in 

Fig.6. Here, as the value of R  increases the velocity decreases, with an increasing 

in the flow boundary layer thickness. Thus, thermal radiation enhances convective 

flow. The effects of radiation parameter R  on the temperature profiles are 

presented in Fig.7. From this figure we observe that, as the value of R  increases 

the temperature profiles decreases, with an increasing in the thermal boundary 

layer thickness.  

The effects of the viscous dissipation parameter i.e., the Eckert number Ec  on the 

velocity and temperature are shown in Figs.8 and 9. Greater viscous dissipative 

heat causes a rise in the temperature as well as the velocity profiles. Eckert 

number Ec  designates the ratio of the kinetic energy of the flow to the boundary 

layer enthalpy difference. The effect of viscous dissipation on the flow field is to 

increase the energy, yielding a greater fluid temperature and as a consequence 

greater buoyancy force. The increase in the buoyancy force due to an increase in 

the dissipation parameter enhances the convective velocity and also the 

temperature. 

Figs. 10 and 11 illustrate the velocity and concentration profiles for different 

values of Schmidt number Sc . The Schmidt number embodies the ratio of the 

momentum to the mass diffusivity. The Schmidt number therefore quantifies the 

relative effectiveness of momentum and mass transport by diffusion in the 

hydrodynamic (velocity) and concentration (species) boundary layers. It is 

observed that as the Schmidt number increases the concentration decreases. This 

causes the concentration buoyancy effects to decrease yielding a reduction in the 

fluid velocity. The reductions in the velocity and concentration profiles are 

accompanied by simultaneous reductions in the velocity and concentration 

boundary layers. 

The influences of chemical reaction parameter Kr  on the velocity profiles across 

the boundary layer are presented in Fig.12. We see that the velocity distribution 

across the boundary layer decreases with increasing of Kr . For different values of 

the chemical reaction parameter Kr , the concentration profiles plotted in Fig.13. It 
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is obvious that the influence of increasing values of Kr , the concentration 

distribution across the boundary layer decreases.  

 

5 Conclusions 

In this paper we have studied the unsteady MHD mixed convictive flow past a  

vertical porous plate in presence of radiation. The non- dimensional governing 

equations are solved with the help of finite element method. The conclusions of 

the study are as follows: 

 

5.1 The velocity increases with the increase Grashof number and modified  

Grashof number.  

5.2  An increase in the prandtl  number decreases the velocity and temperature.  

5.3 With increase in Radiation the velocity and temperature profiles are 

decreasing. 

5.4 With increase in Eckert number is shown to reduce the velocity and 

temperatures in the flow. 

5.5 The velocity as well as concentration decreases with an increase in the 

Schmidt number. 

5.6 The velocity as well as concentration decreases with an increase in the 

chemical reaction parameter. 
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Fig 2: Velocity profiles for different values of  Gr  

 

 
Fig 3: Velocity profiles for different values of  Gm  
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Fig 4: Velocity profiles for different values of  Pr  

 

 

 

 
Fig 5: Temperature profiles for different values of  Pr  
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Fig 6: Velocity profiles for different values of  R  

 

 

 

  

Fig 7: Temperature profiles for different values of  R  
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Fig 8: Velocity profiles for different values of  Ec  

 

 

 

 
Fig 9: Temperature profiles for different values of  Ec  
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Fig 10: Velocity profiles for different values of  Sc  

 

 

 

 
Fig 11: Concentration profiles for different values of  Sc  
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Fig 12: Velocity profiles for different values of  Kr  

 

 

 

 
Fig 13: Concentration profiles for different values of  Kr   
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