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Abstract 
 

Obtaining analytical or numerical solution of fractional differential equations is one of the troublesome and challenging issues among 

mathematicians and engineers, specifically in recent years. The purpose of this paper is to solve linear and nonlinear fractional differential 

equations such as first order linear fractional equation, Bernoulli, and Riccati fractional equations by using Lie Symmetry method, based 

on conformable fractional derivative. For each equation, some numerical examples are presented to illustrate the proposed approach.   

Keywords: Linear and Nonlinear Fractional Equations; Lie Symmetry Method; Conformable Fractional Derivative; Bernoulli Fractional Equation; Riccati 

Fractional Equation. 

 

1. Introduction 

Fractional calculus is as old as the usual calculus. In the past several 

years, many of researchers have been trying to generalize the con-

cept of the usual derivatives. Nowadays there are many definitions 

for the fractional derivative. Two the earliest of definitions are as 

follows (see [1]): 

 

i) Riemann-Liouville definition: If n is a positive integer and 

α ∈ [n − 1, n) the α-th derivative of f is given by 

 

Da
α(f)(x) =

1

Γ(n−α)

dn

dxn ∫
f(t)

(x−t)α−n+1

x

a
dt.  

 

ii) Caputo definition: For α ∈ [n − 1, n) the α-th derivative of f 
is 

 

Da
α(f)(x) =

1

Γ(n−α)
∫

fn(t)

(x−t)α−n+1

x

a
dt.  

 

The presented definitions are attempted to satisfy the usual proper-

ties of the standard derivative (see [1]). The only property inherited 

by all definitions of fractional derivative is the linearity property. 

But there are some disadvantages that caused their application con-

front with difficulty (see [1]).  

One of the definition that have been presented recently is conform-

able fractional derivative that removed some of drawbacks the pre-

sented definitions. 

Consider a function 𝑓: [0, ∞) → ℝ. Then conformable fractional 

derivative of 𝑓 of order 𝛼 is defined by 

 

𝛵𝛼(𝑓)(𝑥) = lim
𝜀→0

𝑓(𝑥+𝜀𝑥1−𝛼)−𝑓(𝑥)

𝜀
  

for all 𝑥 > 0, 𝛼 ∈ (0,1]. If f is α- differentiable in some (0, 𝑎), 𝑎 >
0, and lim

𝑥→0+
𝛵𝛼(𝑓)(𝑥)  exists, then one can define 𝛵𝛼(𝑓)(0) =

lim
𝑥→0+

𝛵𝛼(𝑓)(𝑥). 

If the conformable derivative of f of order 𝛼 exists, then we simply 

say that 𝑓 is 𝛼- differentiable (see [1], [2]). 

One can easily show that 𝛵𝛼 satisfies all the following properties: 

Let 𝛼 ∈  (0, 1] and be 𝛼-differentiable at a point 𝑥 >  0, Then (see 

[1]) 

 

1) For 𝑎, 𝑏𝜖ℝ 𝛵𝛼(𝑎𝑓 + 𝑏𝑔) = 𝑎 𝛵𝛼(𝑓) + 𝑏 𝛵𝛼(𝑔), 

 

2) For all 𝑝𝜖ℝ 𝛵𝛼(𝑥𝑝) = 𝑝𝑥𝑝−𝛼 , 
 

3) For all constant functions 𝑓(𝑥) = 𝜆, 𝛵𝛼(𝜆) = 0, 
 

4) 𝛵𝛼(𝑓. 𝑔) = 𝑔. 𝛵𝛼(𝑓) + 𝑓 . 𝛵𝛼(𝑔), 
 

5) 𝛵𝛼(
𝑓

𝑔
) =

𝑔.𝛵𝛼(𝑓)−𝑓 .𝛵𝛼(𝑔)

𝑔2 , 

 

6) 𝛵𝛼(𝑓) = 𝑥1−𝛼 𝑑𝑓

𝑑𝑥
 . 

 

Whereas solving fractional differential equations is very important, 

there are many fractional differential equations which can’t be 

solved analytically. Due to this fact, finding an approximate solu-

tion of fractional differential equations is clearly an important task. 

In recent years, many effective methods have been proposed for 

finding approximate solution to fractional differential equations [6-

20]. The purpose of this paper is solving fractional equation by Lie 

Symmetry method, based on conformable fractional derivative. 

http://creativecommons.org/licenses/by/3.0/
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The organization of this paper is as follows: In Section 2, Lie invar-

iance condition will be described. In subsection 3.1, 3.2, and 3.3, 

respectively the method will be used to solve first order linear frac-

tional equation, Bernoulli fractional equation, and Riccati fractional 

equation. For each equation there are some examples, as well. Fi-

nally, discussion will be given, in section 4. 

2. Lie symmetry method 

Let consider the invariance of  

 
𝑑𝑦

𝑑𝑥
= 𝐹(𝑥, 𝑦),                                                                             (2.1) 

 

Under the infinitesimal transformation 

 

�̅� = 𝑥 + 𝑋(𝑥, 𝑦)𝜀 + 𝛰(𝜀2),  
�̅� = 𝑦 + 𝑌(𝑥, 𝑦)𝜀 + 𝛰(𝜀2).                                                       (2.2) 

 

The derivatives transform under the infinitesimal transformations 

(2.2) is as follows (see [3-5])  

 
𝑑�̅�

𝑑�̅�
=

𝑑𝑦

𝑑𝑥
+ (

𝜕𝑌

𝜕𝑥
+ [

𝜕𝑌

𝜕𝑦
−

𝜕𝑋

𝜕𝑥
]

𝑑𝑦

𝑑𝑥
−

𝜕𝑋

𝜕𝑦
(

𝑑𝑦

𝑑𝑥
)

2
) 𝜀 +  𝛰(𝜀2).            (2.3) 

 

Consider the following ODE 

 
𝑑�̅�

𝑑�̅�
= 𝐹(�̅�, �̅�).                                                                             (2.4) 

 

Substituting the infinitesimal transformations (2.2) and first-order 

derivative transformation (2.3) into (2.4) yields 

 
𝑑𝑦

𝑑𝑥
+ (

𝜕𝑌

𝜕𝑥
+ [

𝜕𝑌

𝜕𝑦
−

𝜕𝑋

𝜕𝑥
]

𝑑𝑦

𝑑𝑥
−

𝜕𝑋

𝜕𝑦
 (

𝑑𝑦

𝑑𝑥
)2 ) 𝜀 +  𝛰(𝜀2) = 𝐹(𝑥 +

𝑋(𝑥, 𝑦)𝜀 + 𝛰(𝜀2), 𝑦 + 𝑌(𝑥, 𝑦)𝜀 + 𝛰(𝜀2)).  

 

Expanding to order 𝛰(𝜀2) gives 

 
𝑑𝑦

𝑑𝑥
+ (

𝜕𝑌

𝜕𝑥
+ [

𝜕𝑌

𝜕𝑦
−

𝜕𝑋

𝜕𝑥
]

𝑑𝑦

𝑑𝑥
−

𝜕𝑋

𝜕𝑦
 (

𝑑𝑦

𝑑𝑥
)2 )𝜀 +  𝛰(𝜀2) =  

 

𝐹(𝑥, 𝑦) + (𝑋
𝜕𝐹

𝜕𝑥
+ 𝑌

𝜕𝐹

𝜕𝑦
) 𝜀 + 𝛰(𝜀2),                                         (2.5) 

 

By using (2.1), Eq. (2.5) is satisfied to 𝛰(𝜀2) if 

 
𝜕𝑌

𝜕𝑥
+ [

𝜕𝑌

𝜕𝑦
−

𝜕𝑋

𝜕𝑥
] 𝐹 −

𝜕𝑋

𝜕𝑦
𝐹2 = 𝑋

𝜕𝐹

𝜕𝑥
+ 𝑌

𝜕𝐹

𝜕𝑦
 .                                 (2.6) 

 

This is known as Lie’s Invariance Condition. For a given 𝐹(𝑥, 𝑦), 
any functions 𝑋(𝑥, 𝑦) and 𝑌(𝑥, 𝑦) that solve equation (2.6) are the 

infinitesimals (see [3-5]). 

A transformation can be constructed that would lead to a separable 

equation involving 𝑟, and 𝑠. Consider  

 

𝑟 = 𝑟(𝑥, 𝑦), 𝑠 = 𝑠(𝑥, 𝑦)                                                             (2.7) 

 

and require that (2.7) be invariant, that is,  

 

�̅� = 𝑟(�̅�, �̅�), �̅� = 𝑠(�̅�, �̅�).                                                            (2.8) 

 

The separable equation  

 
𝑑𝑠

𝑑𝑟
= 𝐺(𝑟),  

 

Is invariant under 

 

�̅� = 𝑟, �̅� = 𝑠 + 𝜀.                                                                        (2.9) 

 

Differentiating (2.8) with respect to  𝜀 and setting 𝜀 = 0, and using 

Eqs. (2.9), gives 

𝑋(𝑥, 𝑦)
𝜕𝑟

𝜕𝑥
+ 𝑌(𝑥, 𝑦)

𝜕𝑟

𝜕𝑦
= 0,  

𝑋(𝑥, 𝑦)
𝜕𝑠

𝜕𝑥
+ 𝑌(𝑥, 𝑦)

𝜕𝑠

𝜕𝑦
= 1.                                                    (2.10) 

 

Thus, if the infinitesimals 𝑋 and 𝑌 are had, solving (2.10) would 

give rise to the transformation that will separate the given ordinary 

differential equation (2.1) (see [3-5]). 

3. Applications of lie symmetry method 

In this section by using lie symmetry method, presented a general 

solution for linear and nonlinear first order fractional differential 

equations.  

3.1. Solving first order linear fractional differential equa-

tions 

General form of a first order linear fractional equations is as follow, 

 

𝛵𝛼(𝑦)(𝑥) + 𝑝(𝑥)𝑦(𝑥) = 𝑞(𝑥),                                                 (3.1) 

 

Where 𝑝(𝑥), 𝑞(𝑥) are 𝛼 −differentiable functions, and 𝑦(𝑥) is an 

unknown function. By using the property (6), Eq. (3.1) can be writ-

ten as the following form 

 

𝑥1−𝛼𝑦′(𝑥) + 𝑝(𝑥)𝑦(𝑥) = 𝑞(𝑥)  

 

So 

 

𝑦′(𝑥) + 𝑃(𝑥)𝑦(𝑥) = 𝑄(𝑥),                                                       (3.2) 

 

Where 𝑃(𝑥) = 𝑥𝛼−1𝑝(𝑥)  and 𝑄(𝑥) = 𝑥𝛼−1𝑞(𝑥).  Eq. (3.2) is a 

first order linear ordinary differential equation. This is invariant un-

der the Lie group 

 

�̅� = 𝑥 , �̅� = 𝑦 + 𝜀𝑒− ∫ 𝑃(𝑥)𝑑𝑥,                                                     (3.3) 

 

Gives 

 
𝑑𝑦

𝑑𝑥
− 𝜀𝑃(𝑥)𝑒− ∫ 𝑃(𝑥)𝑑𝑥 + 𝑃(𝑥)(𝑦 + 𝜀𝑒− ∫ 𝑃(𝑥)𝑑𝑥) = 𝑄(𝑥).       (3.4) 

 

Expanding (3.4) gives 

 
𝑑𝑦

𝑑𝑥
+ 𝑃(𝑥)𝑦(𝑥) = 𝑄(𝑥).  

 

From the lie group (3.3), we obtain the infinitesimals 𝑋 = 0 and 

𝑌 = 𝑒− ∫ 𝑃(𝑥)𝑑𝑥. The change of variables are obtained by solving 

(2.10), as follows 

 

𝑒− ∫ 𝑃(𝑥)𝑑𝑥 𝜕𝑟

𝜕𝑦
= 0 , 𝑒− ∫ 𝑃(𝑥)𝑑𝑥 𝜕𝑠

𝜕𝑦
= 1.  

 

Thus  

 

𝑟 = 𝑅(𝑥) , 𝑠 = 𝑦 𝑒∫ 𝑃(𝑥)𝑑𝑥 + 𝑆(𝑥),  
 

Where 𝑅(𝑥) and 𝑆(𝑥) are arbitrary functions. Choosing 𝑅(𝑥) = 𝑥 

and 𝑆(𝑥) = 0 results in 

 

𝑥 = 𝑟 , 𝑦 = 𝑠𝑒− ∫ 𝑃(𝑟)𝑑𝑟 ,                                                            (3.5) 

 

By calculating  
𝑑𝑦

𝑑𝑥
 , we obtain 

 
𝑑𝑦

𝑑𝑥
=

𝑑𝑠

𝑑𝑟
 𝑒− ∫ 𝑃(𝑟)𝑑𝑟 − 𝑠 𝑃(𝑟)𝑒− ∫ 𝑃(𝑟)𝑑𝑟 .  

 

And substituting into (3.2) and simplifying, the following result will 

be given. 
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𝑑𝑠

𝑑𝑟
=  𝑄(𝑟)𝑒∫ 𝑃(𝑟)𝑑𝑟 .                                                                  (3.6) 

 

Which (3.6) is a separable equation (see [3-5]).  

 

Example 3. 1. Consider the following equation 

 

𝛵2

3

𝑦 + √𝑥
3

 𝑦 = 𝑥 √𝑥
3

 .       

                                                           (3.7)  

By using property (6), Eq. (3.7), can be rewritten as follows  

 

𝑦′ + 𝑦 = 𝑥,                                                                                (3.8) 

 

That 𝑃(𝑥) = 1 , 𝑄(𝑥) = 𝑥 , thereupon by Lie Symmetry method  

 

𝑥 = 𝑟 , 𝑦 = 𝑠 𝑒−𝑟 .                                                                      (3.9) 

 

 
𝑑𝑠

𝑑𝑟
= 𝑟𝑒𝑟 ,  

 

Which is the separable equation having a general solution is as fol-

lows  

 

𝑠 = 𝑟𝑒𝑟 − 𝑒𝑟 + 𝐶.                                                                   (3.10) 

 

𝑦 = 𝐶 𝑒−𝑥 + 𝑥 − 1.  
 

Example 3.2. Consider the following equation  

 

𝛵1

2

𝑦 − 2√𝑥 𝑦 = 𝑥√𝑥 .                                                              (3.11) 

 

By using property (6), we derive  

 

 𝑦′ − 2𝑦 = 𝑥.  
 

From (3.5) and (3.6) the general solution of equation (3.11) is as the 

following 

 

𝑦 = 𝐶 𝑒2𝑥 − 0.5 𝑥 − 0.25 .  

3.2. Solving bernoulli fractional equation 

The Bernoulli fractional differential equations have the following 

general form, 

 

 𝛵𝛼𝑦 + 𝑝(𝑥)𝑦 = 𝑞(𝑥)𝑦𝑛, 𝑛 ≠ 0,1                                           (3.12) 

 

Where 𝛼 −differentiable functions, 𝑦(𝑥) is an unknown function. 

By using property (6) Eq. (3.12) leads to 

 

𝑥1−𝛼𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥)𝑦𝑛,  
 

So, 

 

𝑦′(𝑥) + 𝑃(𝑥)𝑦 = 𝑄(𝑥)𝑦𝑛 ,                                                      (3.13) 

 

Where 𝑃(𝑥) = 𝑥𝛼−1𝑝(𝑥)  and 𝑄(𝑥) = 𝑥𝛼−1𝑞(𝑥),  equation (3.13) 

is the Bernoulli equation. 

Assuming 𝑋 = 0, Lie’s invariance condition becomes, 

 
𝜕𝑌

𝜕𝑥
+

𝜕𝑌

𝜕𝑦
 (𝑄(𝑥)𝑦𝑛 − 𝑃(𝑥)𝑦) = 𝑌(𝑛𝑄(𝑥)𝑦𝑛−1 − 𝑃(𝑥)).        (3.14) 

 

That 

 

𝑌 = 𝑒(𝑛−1) ∫ 𝑃(𝑥)𝑑𝑥 𝑦𝑛 ,  
 

Satisfies (3.14). To obtain a change of variables, it is necessary to 

solve 

 

𝑒(𝑛−1) ∫ 𝑃(𝑥)𝑑𝑥 𝑦𝑛 𝜕𝑟

𝜕𝑦
= 0 , 𝑒(𝑛−1) ∫ 𝑃(𝑥)𝑑𝑥 𝑦𝑛  

𝜕𝑠

𝜕𝑦
= 1 .  

 

Example 3.3. Consider Bernoulli fractional equation  

 

𝛵1

2

𝑦 +
1

√𝑥
 𝑦 = √𝑥 𝑥 𝑦3.                                                           (3.15) 

 

By using property (6), in equation (3.15), leads to 

 

 𝑦′ +
1

𝑥
 𝑦 = 𝑥𝑦3,                                                                     (3.16) 

 

Here 𝑃(𝑥) =
1

𝑥
 , 𝑛 = 3,  choosing 𝑅(𝑥) = 𝑥 and 𝑆(𝑥) = 0  which 

gives 

 

𝑟 = 𝑥 , 𝑠 =
−1

2𝑥2𝑦2
 .                                                                    (3.17) 

 

Under this change of variables, the Bernoulli equation (3.17) turns 

to 

 
𝑑𝑠

𝑑𝑟
=

1

𝑟
 ,  

 

Which is the separable equation and a general solution to this equa-

tion is as the following form 

 

𝑠 = 𝑙𝑛 𝑟 + 𝐶.  
 

So the general solution of fractional equation (3.16) can be pre-

sented as follows 

 

2𝑥2𝑦2(𝑙𝑛 𝑥 + 𝐶) − 1 = 0 .  
 

Example 3.4. Consider the following equation  

 

𝛵2

3

𝑦 = 2√𝑥
3

 𝑦 + 𝑥 √𝑥 
3

𝑦2.                                                         (3.18) 

 

Similar to previous example, we have 

 

𝑦′ − 2𝑦 = 𝑥𝑦2.                                                                       (3.19)  

 

Choosing 𝑅(𝑥) = 𝑥, and 𝑆(𝑥) = 0, leads to 

 

𝑟 = 𝑥 , 𝑠 =
−1

𝑦𝑒−2𝑥 .                                                                     (3.20) 

 

Under this change of variables, the Bernoulli equation (3.19) be-

comes 

 
𝑑𝑠

𝑑𝑟
= 𝑟𝑒2𝑟 .  

 

The general solution of fractional equation (3.18) is as the following 

form 

 

𝑦 =
−1

𝐶 𝑒−2𝑥 +0.5 𝑥−0.25
 .  

3.3. Solving riccati fractional equation 

The general form of a Riccati fractional equation is as the following  

 

𝛵𝛼𝑦 = 𝑝(𝑥)𝑦2 + 𝑞(𝑥)𝑦 + 𝑟(𝑥),                                             (3.21) 

 

Where 𝛼 −differentiable functions and 𝑦(𝑥) is an unknown func-

tion. By using property (6), we obtain  

 

𝑥1−𝛼𝑦′ = 𝑝(𝑥)𝑦2 + 𝑞(𝑥)𝑦 + 𝑟(𝑥),  
 

So, 
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𝑦′ = 𝑃(𝑥)𝑦2 + 𝑄(𝑥)𝑦 + 𝑅(𝑥),                                              (3.22) 

 

Where  𝑃(𝑥) = 𝑥𝛼−1𝑝(𝑥) , 𝑄(𝑥) = 𝑥𝛼−1𝑞(𝑥)  and 𝑅(𝑥) =
𝑥𝛼−1𝑟(𝑥). Equation (3.22) is the Riccati equation. We will assume 

𝑋 =  0, giving Lie’s invariance condition as 
𝜕𝑌

𝜕𝑥
+ (𝑃(𝑥)𝑦2 + 𝑄(𝑥)𝑦 + 𝑅(𝑥))

𝜕𝑌

𝜕𝑦
= (2𝑃(𝑥)𝑦 + 𝑄(𝑥))𝑌. (3.23) 

 

One solution of (3.23) is 

 

𝑌 = (𝑦 − 𝑦1)2 𝐹(𝑥),  
 

Where 𝑦1 is one solution to (3.22) and F satisfies 

 

𝐹′ + (2𝑃𝑦1 + 𝑄)𝐹 = 0 .                                                         (3.24) 

 

Variables 𝑟 and 𝑠, it is necessary to solve 

 

(𝑦 − 𝑦1)2 𝐹(𝑥)
𝜕𝑟

𝜕𝑦
= 0, (𝑦 − 𝑦1)2 𝐹(𝑥)

𝜕𝑠

𝜕𝑦
= 1,  

 

From which we obtain 

 

𝑟 = 𝐾(𝑥) , 𝑠 = 𝑆(𝑥) −
1

(𝑦−𝑦1)𝐹
 ,  

 

Where 𝐾(𝑥) and 𝑆(𝑥) are arbitrary functions. Setting 𝐾(𝑥)  =  𝑥 

and 𝑆(𝑥)  =  0, yields to 

 

𝑥 = 𝑟 , 𝑦 =  𝑦1 −
1

𝑠 𝐹(𝑟)
 ,                                                          (3.25) 

 

Thereby transforming the original Riccati equation (3.22) to 

 
𝑑𝑠

𝑑𝑟
=

𝑎(𝑟)

𝐹(𝑟)
 .  

 

It is interesting that the usual linearizing transformation is recov-

ered using Lie Symmetry method (see [3-5]). 

Example 3.5. Consider Riccati fractional equation as follows 

 

𝛵1

2

𝑦 = √𝑥 𝑦2 −
1

√𝑥
 𝑦 −

1

𝑥√𝑥
 ,                                                   (3.26) 

 

That has a solution such as 𝑦1 = −𝑥−1.  
Clearly by using property (6), this equation changing to 

 

𝑦′ = 𝑦2 −
1

𝑥
 𝑦 −

1

𝑥2 .                                                                (3.27) 

 

From (3.24) F is as the following form 

 

𝐹(𝑥) = 𝑥3,  
 

Thus, under the change of variables given in (3.25), namely 

 

𝑥 = 𝑟 , 𝑦 = −
1

𝑟
−

1

𝑠𝑟3 ,                                                             (3.28) 

 

The original ODE becomes  

 
𝑑𝑠

𝑑𝑟
=

1

𝑟3 .  

 

Which is a separable equation having a general solution is as fol-

lows  

 

𝑠 = −
1

2𝑟2 + 𝐶,  

 

And the general solution of equation (3.26), can be presented as the 

following form 

 

𝑦 =  −
1

𝑥
−

1

𝐶 𝑥3−0.5 𝑥 
 .  

 

Example 3.6. Consider the following equation 

 

𝛵2

3

𝑦 =
√𝑥
3

𝑒𝑥
 𝑦2 + 2√𝑥

3
 𝑦 − 2√𝑥 

3
 𝑒𝑥.                                         (3.29) 

 

A solution of this Riccati equation is 𝑦1 = 𝑒𝑥. 
From (3.24), F and the change of variables from (3.25) are as the 

following form 

 

𝐹(𝑥) = 𝑒−4𝑥 , 𝑥 = 𝑟 , 𝑦 = 𝑒𝑟 − 
𝑒4𝑟

𝑠
 ,  

 

The original ODE becomes 

 
𝑑𝑠

𝑑𝑟
= 𝑒3𝑟 .  

 

The general solution of the Riccati fractional equation (3.29) is as 

follows  

 

𝑦 = 𝑒𝑥 −
𝑒4𝑥

1

3
 𝑒3𝑥+𝐶

 .  

4. Conclusion 

In this paper, Lie Symmetry Analysis method have been applied for 

solving fractional differential equations, based on conformable 

fractional derivative. First order linear, Bernoulli and Riccati frac-

tional differential equations, have been solved by the presented 

method. For each cases some examples are given for more explana-

tion and clarification. The results showed that the presented method 

is easily applicable for this kind of equations. 
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