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Abstract 

 

In this paper, we generalize and prove common fixed point theorems of generalized contractive maps in complete cone 

metric spaces. Our theorems improve and generalize of the results [7]. 
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1 Introduction 

Recently, Huang and Zhang [1], replaced the real numbers by an ordering Banach space, and defined a cone metric 

spaces(X, d) of contractive mappings and also discussed some properties of convergence of sequences; many authors 

have established and extend different types of contractive mappings in cone metric spaces see for instance [3-10]., and 

also generalized the results [1] by [2].The author [7] proved fixed point results in cone metric spaces. 

The purpose of this paper is to obtain the generalization of results in [1] and 2.1, 2.2 of [7], by using non-normality of 

cone. 

  

2 Preliminary notes 

First, we recall some standard notations and definitions in cone metric spaces with some of their properties [1]. 

 
Definition 2.1 [1]: Let E be a real Banach space and P be a subset of E. P is called a cone if and only if: 

(i) P is closed, non – empty and P ≠ {0}, 

(ii) a  + b   ∊ P  for all  ,   ∊ P and non – negative real number a, b; 

(iii)    ∊ P and -   ∊ P =>   = 0 <=> P ∩ (-P) = {0}. 

Given a cone P ⊂ E, we define a partial ordering ≤ on E with respect to P by x ≤ y if and only if   –   ∊ P. We shall 

write   ≪ y if     – x ∊ intP, where int P denotes the interior of P.  

The cone P is called normal if there is a number K > 0 such that    ,   ∊ E, 0 ≤ x ≤ y implies || x || ≤ K || y ||. 

The least positive number satisfying the above is called the normal constant P. The cone p is called regular if every 

increasing sequence which is bounded from above is convergent .that is , if { xn } is sequence such that x1 ≤   2 ≤  ...  n 

≤   …≤   for some     , then there is      such that         ⟶ 0 (  ⟶∞). Equivalently the cone p is regular if and 

only if every decreasing sequence which is bounded from below is convergent.  

 

Lemma 2.2[2, 8] 

(i) Every regular cone is normal 

(ii)  For each k > 1, there is a normal cone with normal constant K > k.                                                                                                                                                                                                                                                                                                                                                           

 

Definition 2.3 [1]: Let X be a non – empty set. Suppose the mapping             satisfies 

(i) 0 < d ( ,  ) for all  ,   ∊ X and d ( ,) = 0 if and only if  x   =  ; 

(ii) d ( ,  ) = d ( ,  ) for all  ,   ∊ X; 

(iii) d ( ,  ) ≤  d ( , z) + d (z,  ) for all ,   ∊ X. 

Then d is called a cone metric, on X and pair (X, d) is called a cone metric space. It is obvious that cone metric spaces 

generalize metric space. 
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Example 2.4: Let E = R
2
, P = {( ,  ) ∊ E:  ,   ≥ 0}, X = R and d: X × X → E defined by 

 d( ,  ) = (|   –   |, α |  ,   | ), where  α ≥ 0 is a constant. Then (X, d) is a cone metric space. 

 

Definition 2.5 [1]: Let (X, d) be a cone metric space,   ∊ X and { n}n ≥ 1 a sequence in X. Then, 

(i) { n} n ≥ 1 converges to x whenever for every c ∊ E with o ≪ c, there is a natural number N such that d ( n,  ) 

≪c for all n ≥ N. We denote this by limn→∞  n =   or  n    , (n   ∞). 

(ii) { n}n ≥ 1 is said to be a Cauchy sequence if for every  c ∊ E with o ≪ c, there is a natural number N such that d 

( n,  m) ≪ c for all n, m ≥ N.  

(iii) (X, d) is called a complete cone metric space if every Cauchy sequence in X is convergent 

 

Definition 2.6 [8]: Cone P is called minihedral cone if sup {x, y} exists for all x, y ∊ E and strongly minihedral if 
every subset of E which is bounded from above has a supremum. 
 
Lemma 2.7 [9]: Every strongly minihedral normal cone is regular. 

 

3  Main results 

Theorem3.1: Let (X, d) be a complete cone metric space and suppose the mapping         ⟶  satisfy the contractive 

condition, 

 ( 1  ,  2 ) ≤  [          +         +             for all          where      ≤ 
 

 
 .  

Then    and   have a unique fixed point in  . And for any     , iterative sequences    
2n+1

 x} and    
2n+2

  } converse 

to the common fixed point. 

 

Proof:  For each        and n ≥ 1, set    =      and       =       = T1 
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Similarly, it can be established that    
     . Hence    

           
 . Thus    is the common fixed point of T1 

and T2 . 

 

Theorem3.2: Let (X, d) be a complete cone metric space and suppose the mapping        ⟶  satisfy the 

contractive condition, 

 ( 1 ,  2 ) ≤  [          +         +               for          where      ≤ 
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