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Abstract

In the literature, many metaheuristics are available to find a good approximation of efficient solutions of opti-
mization problems. But most of these methods don’t have a theoretical foundation. In this work, we propose
the theoretical foundation of MOMA(Multi-Objectif Alienor Metaheuristic) method and moreover its efficiency
to solve linear optimization problems. This method is the combination of multiobjectif concepts and the Alienor
transformation, which allows to transform a multiobjectif optimization problem in optimization of a single variable
function. We solve two didactic examples in order to allow the best presentation of the MOMA method and besides
the quality of obtained solutions is proved.
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1 Introduction

In the past two decades, a lot of efforts have been devoted to study and develop general heuristics [1, 2, 3, 4, 5, 10,
14, 15, 8, 9]. These methods, called ”metaheuristics”, offer many advantages, but the choice of a suitable method
for a particular problem can be difficult. unfortunately, in addition these methods have not axiomatic foundations.
In general, they are based on observation of a natural phenomenon, and the well known and used are the heuristic
of simulated annealing, the tabu, the genetic algorithms or specifically the evolutionary algorithms, the method of
the anthill, . . . .

New methods regularly appears and their evolution offers many interests like MOMA method [1, 7, 6]. Our
MOMA method is a new method that consist to combine the multiobjectif concepts with the Alienor transformation.
MOMA is a metaheuristic method efficiently which can be applied to all kind of multiobjectif optimization problems.
In a preceding work, we have obtained good results by solving with MOMA method non linear optimization problems
with many variables and any kind of Pareto front [1]. This work comes to confirm the possibilities to widen the
application of this method at all kind of optimization problems. Otherwise, the difficulty of choice of metaheuristic
is excluded and computer time is acceptable and obtained solutions are good.

In this work, we are only interested by linear problems. Firstly, we present the background of MOMA method,
then we apply the method on two didactic examples, and finally we study the quality of obtained solutions. Here,
it will be about studying the quality of obtained solutions by MOMA method of didactic examples.

2 MOMA method

We recall that the mathematical modeling of a multiobjectif optimization problem, gives the following mathematical
program :

(P1)
{

”min ”Zk(x), k = 1,K
x ∈ D
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where D =
{
x ∈ Rn

+/ gi(x) ≤ 0, i = 1, n
}

is a set defined by the problem constraints and Zk(x), k = 1,K , K ≥ 2,
define the objectif functions of the problem. The steps for solve this problem by MOMA method can be summarized
in fives steps described below.

2.1 Problem Scalarizing

The scalarizing is a multiobjectif concept, which consists of the transformation of multiobjectif problem in mono-
objectif. That implies the using of a scalarizing function [1, 7, 6, 14, 15, 10].
In this work, we only consider the weighted distance of Tchebychev, defined by:

S(Z(x), λ, Z(x)) = max
k=1,K; x∈D

(
λk

∣∣Zk(x)− Zk(x)
∣∣) , (1)

with (Zk(x)) the reference point of the problem or also a target point. To determinate the maximum of the functions
in equation (1), we use the following relations [6, 1, 7]:

max(α, β) =
1
2
[
α + β+ | α− β | ],

max(α, β, γ) = max
[
max(α, β), γ

]
.

(2)

Thus, the problem (P1) becomes:

(P2)
{

min S(Z(x), λ, Z(x))
x ∈ D.

There existe a theorem, called Bowman theorem [], that show that the unique optimal solution of P2 is efficient or
Pareto optimal solution of P1. With precision the following theorem has been demonstrated :

Theorem 2.1 If x is a unique optimal solution of (P2), then x is an efficient solution of (P1).

2.2 Penalization

This step aim is to transform the problem (P2) to an optimization of a function without constraint. For that, a
penalization function is needed [1,2]. This penalization function is defined by :

L(x) = S(Z(x), λ, Z(x)) + ω

m∑

i=1

(gi(x) + |gi(x)|) (3)

where ω is a positive real such that :

ω ≥ M − S(Z(x), λ, Z(x))
m∑

i=1

gi(x)
et M = max

xεD
S(Z(x), λ, Z(x)).

The problem (P2) is transformed in :

(P3)
{

Glob. min L(x)
x ∈ D.

2.3 Dimensional reduction

The aim of this section is the transformation of the function of the problem (P3) to a single variable function. It
is possible by using the Alienor transformation or one of its variants [6, 7, 11, 12, 16]. Here, we use the Konfé-
Cherruault transformation define by :

xi = hi(θ) =
1
2

[(bi − ai) cos(ωiθ + ϕi) + (bi + ai)] , (4)
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where (ωi)i=1,n and (ϕi)i=1,n are two sequences chosen, slowly growing, ai and bi are the bounded value of xi, i =
1, n, otherwise xi ∈ [ai, bi]. Where (P3) becomes :

(P4)
{

Glob. min L∗(θ)
θ ∈ [0, θmax]

where L∗(θ) = L(h1(θ), h2(θ), ...hn(θ)),

θmax =
(b− a)θ1

max + (b− a)
2

,

and θ1
max =

2π − ϕ1

ω1
.

It is demonstrated that there is a equivalence between the two laster above problem. Consequently the following
theorem [11, 16] :

Theorem 2.2 (P3) ⇐⇒ (P4)

2.4 Resolution

According the above presentation, the use of Alienor transformation allows to get a function L∗(θ). To search
a global optimum, we use an operator preserving optimum (OPO). This OPO is proposed first by Mora [11, 16]
allowing to get a global optimum. We use here OPO defined by

TL∗(θ) =
1
2
[L∗(θ)− L∗(θ0) + |L∗(θ)− L∗(θ0)|], (5)

where θ0 is an arbitrary real of [0, θmax] , and θmax is defined in above section, and L∗ is the new function to
optimize.
Cherruault and Mora [11, 12] have shown that if the unique solution of the problem min

θ∈[0,2π]
L∗(θ) exits, it is the

solution of TL∗(θ) = 0. Precisely the following theorem has been demonstrated:

Theorem 2.3 :

• TL∗ and f at least have the same global minimum.

• Let be S the set of solutions of TL∗ = 0. Then if S = {x∗}, then x∗ is the global minimum.

2.5 Solution configuration

The obtained solution in θ is 1-dimensional. To obtain the solution in x, we simply use formulas of variable change
xi = hi(θ).

2.6 Method summary

• Step 1: Problem scalarizing
To use one of the scalarizing function to aggregate all objectifs of the problem. We have the choice among
sum weight, weighted Tchebychev metric, weighted augmented Tchebychev metric... But in this work we use
weighted Tchebychev metric because it is efficient for linear or non linear problem than contrary to weighted
sum which is efficient for linear case [10, 14, 15].

• Step 2: Penalization
To use the penalization function to transform constraints optimization problem at the unconstraint optimiza-
tion problem.
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• Step 3: Dimensional reduction
To use the basic Alienor method or one of its variants to transform the problem in a single variable problem.

• Step 4: Resolution
To use an OPO which allows to obtain uniquely a global optimum.

• Step 5: Solution configuration
To use the transformation of the third step to transform the obtained solution at the fourth step to the
solution of the initial problem, which is a compromise.

Now, we are going to apply the MOMA method on two examples.

3 Didactic examples

Let us recall that one of the aim of this work is the presentation retailed of the MOMA method. Thus, we consider
the following bi-objectif optimization problems. The problem linear denoted PL1 is extract of Steuer and Choo
book [17] and PL2 is extract to Teghem book [18] :

Didactic examples

(PL1)





maximize z1(x) = x1

maximize z2(x) = −x1 + 2x2

−8x1 + 6x2 ≤ 0, (a);
7x1 − 18x2 ≤ 0, (b);

11x1 + 30x2 ≤ 102, (c);
x1, x2 ≥ 0, .

(PL2)





minimize z1(x) = 3x1 − x2

minimize z2(x) = −x1 + 3x2

4x1 + 3x2 ≥ 12, (a);
x1 + 3x2 ≥ 6, (b);
x1 − x2 ≤ 2, (c);

−x1 + x2 ≤ 3, (d);
x1 + x2 ≤ 8, (e).

x1, x2 ≥ 0, .

3.1 Problem PL1

For the reference point we have consider the ideal point which is Z = (5, 4), obtained by individual optimization of
the two objective functions. The representation in the decision space is given by :

Figure 1: Decision space of PL1
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In this figure, it appears that the area of admissible solutions is D ⊂ [0,
9
2
]× [0,

8
3
]. We denoted by I the point that

this coordinates realize the reference point. For this example it is easy to see that E(P ), the set of Pareto optimal
solutions consists of the segment [AB] because the non-negative orthant placed anywhere in this segment, contains
no element of D.

3.1.1 Step 1

Let us transforme our maximization problem to a minimization problem. As for all fonction f we have maximum(f) =
−minimum(f). Then the last optimization problem is equivalent to :





minimize z′1(x) = −x1

minimize z′2(x) = x1 − 2x2

8x1 − 6x2 ≥ 0;
−7x1 + 18x2 ≥ 0;
−11x1 − 30x2 ≥ −102;

x = (x1, x2) ∈ [0,
9
2
]× [0,

8
3
].

(6)

The reference point becomes z′ = (−5,−4). The using of weighted Tchebychev metric to aggregate the objectif
lead us to obtain :

S(z′, λ, z) = max
k=1,2

[
λk|z′k − zk|

]

= max
[
λ1|z′1 − z1|, λ2|z′2 − z2|

]

Moreover as the reference point is a minimum, we have z′k ≥ zk from where :

S(z′, λ, z) = max
[
λ1(z′1 − z1), λ2(z′2 − z2)

]

and by using the relation (2), we have :

S(z′, λ, z) = max
[
λ1(z′1 + 5), λ2(z′2 + 4)

]

=
1
2

[
λ1(z′1 + 5) + λ2(z′2 + 4) + |λ1(z′1 + 5)− λ2(z′2 + 4)|

]

=
1
2

[
λ1(−x1 + 5) + λ2(x1 − 2x2 + 4) + |λ1(−x1 + 5)−

λ2(x1 − 2x2 + 4)|
]
.

As, λ1 + λ2 = 1, setting λ1 = λ i.e λ2 = 1− λ with 0 ≤ λ ≤ 1 and in the follow we obtain :

S(z′, λ, z) =
1
2

[
(1− 2λ)x1 − 2(1− λ)x2 + λ + 4 + | − x1 + 2(1− λ)x2 + 9λ− 4|

]

Thus, the single objective optimization problem is :




minimize S2(z′, λ, z) =
1
2

[
(1− 2λ)x1 − 2(1− λ)x2 + λ + 4+

∣∣− x1 + 2(1− λ)x2 + 9λ− 4
∣∣
]

8x1 − 6x2 ≥ 0;
−7x1 + 18x2 ≥ 0;
−11x1 − 30x2 ≥ −102;

x = (x1, x2) ∈ [0,
9
2
]× [0,

8
3
].

3.1.2 Step 2

As announced, we are going to use the Konfé-Cherruault transformation defined by (4) and as D ⊂ [0, 9
2 ] × [0, 8

3 ],

we can put a1 = 0, b1 =
9
2
, a2 = 0 et b2 =

8
3
, from where :
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x1 = h1(θ) =
1
2
[
9
2
cos(ωiθ + ϕi) +

9
2
]

x2 = h2(θ) =
1
2
[
8
3
cos(ωiθ + ϕi) +

8
3
]

and the :





x1 = h1(θ) =
9
4
[cos(ω1θ + ϕ1) + 1]

x2 = h2(θ) =
4
3
[cos(ω2θ + ϕ2) + 1]

The choice of ωi et αi such that they are slowly growing, thus by convenience we take

{
ω1 = 1500 ω2 = 1500 + 0.05
ϕ1 = 0.005 ϕ2 = 0.005.

We obtain




x1 = h1(θ) =
9
4
[cos(1500θ) + 1]

x2 = h2(θ) =
4
3
[cos

(
(1500 + 0.05)θ + 0.005

)
+ 1]

and S2(z′, λ, z) becomes :

S2(z′, λ, z) =
1
24

[
27(1− 2λ) cos(1500θ)− 32(1− λ) cos((1500 + 0.05)θ + 0.005)θ

− 10λ + 43 + | − 27 cos(1500θ) + 32(1− λ) cos
(
(1500 + 0.05)θ + 0.005

)

+ 76λ− 43|
]
.

In the follow we obtain :




minimize S2(z′, λ, z)
g1(θ) = −9cos(1500θ) + 4 cos((1500 + 0.05)θ + 0.005) + 5 ≤ 0
g2(θ) = 21cos(1500θ)− 32 cos((1500 + 0.05)θ + 0.005)− 11 ≤ 0
g3(θ) = 99cos(1500θ) + 160 cos((1500 + 0.05)θ + 0.005)− 149 ≤ 0
θε [0, 2π] .

3.1.3 Step 3

We use the penalization function define by equation (3) and we obtain :

L(θ) =
1
24

[
27(1− 2λ)cos(1500θ)− 32(1− λ)cos((1500 + 0.05)θ + 0.005)− 10λ + 43

+ | − 27cos(1500θ) + 32(1− λ)cos((1500 + 0.05)θ + 0.005) + 76λ− 43|
]

+ W
[
111cos(1500θ) + 132cos((1500 + 0.05)θ + 0.005)− 155

+ | − 9cos(1500θ) + 4cos((1500 + 0.05)θ + 0.005) + 5|
+ |21cos(1500θ)− 32cos((1500 + 0.05)θ + 0.005)− 11|
+ |99cos(θ) + 160cos((1500 + 0.05)θ + 0.005)− 149|

]

Now, we use the operator preserving optimality in order to optimize L(θ).
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3.1.4 Step 4

As L(θ) is the function to optimize, from the equation (5), Moreover again, by convenience we choose W = 10000,
θ0 = π

2 and λ = 1 (i.e the value corresponding the optimal value of Z1) we have :

L(θ) =
1
24

[−27cos(1500θ) + 33 + | − 27cos(1500θ) + 33|] + 10000
[
111cos(1500θ)

+ 132cos((1500 + 0.05)θ + 0.005)− 155 + | − 9cos(1500θ)
+ 4cos((1500 + 0.05)θ + 0.005) + 5|+ |21cos(1500θ)
− 32cos((1500 + 0.05)θ + 0.005)− 11|+ |99cos(1500θ)

+ 160cos((1500 + 0.05)θ + 0.005)− 149|
]

L(θ0) = −1999999
2

+ 3200000 cos((1500 + 0.05)
π

2
+ 0.005)

= 2.188840753 ∗ 106

from where :

TL(θ) =
1
2

[ 1
24

[−27cos(θ) + 33 + | − 27cos(θ) + 33|] + 10000
[
111cos(θ)

+132cos(
√

2θ)− 155 + | − 9cos(θ) + 4cos(
√

2θ) + 5|+ |21cos(θ)

−32cos(
√

2θ)− 11|+ |99cos(θ) + 160cos(
√

2θ)− 149|
]
− 2.188840753 ∗ 106

+| 1
24

[−27cos(θ) + 33 + | − 27cos(θ) + 33|] + 10000
[
111cos(θ)

+132cos(
√

2θ)− 155 + | − 9cos(θ) + 4cos(
√

2θ) + 5|+ |21cos(θ)

−32cos(
√

2θ)− 11|+ |99cos(θ) + 160cos(
√

2θ)− 149|
]
− 2.188840753 ∗ 106 |

]

We have now a single variable function. To calculate the value for wich TL(θ) = 0 we have used the Maple software.

3.1.5 Step 5

In the follow the using of Alienor transformation defined in (4) which allows to obtain the following solution :

x1 = 4.402832722 and x2 = 1.783562399.

Remark 3.1 :

• It is very important to precise that with MOMA method, the solutions are obtained at more three seconds.

• The algorithm of the MOMA method has already been programmed with the Maple software.

Thus, in the same manner, from various values of the weight, we have obtained the following results (see the table
below ) :
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Table 1: The obtained solution by MOMA method for problem PL1
λ values Obtained solutions with MOMA

S1 1.0 (4.402832722, 1.783562399)
S2 0.9 (4.402832722, 1.783562399)
S3 0.8 (3.994843068, 1.911648460)
S4 0.7 (3.487884303, 2.119724502)
S5 0.6 (3.096876918, 2.178054281)
S6 0.5 (2.781380087, 2.312742112)
S7 0.4 (2.454345494, 2.428452458)
S8 0.3 (2.211292490, 2.478074215)
S9 0.2 (2.034622016, 2.549530163)
S10 0.1 (2.034622016, 2.549530163)
S11 0.0 (2.034622016, 2.549530163)

The graphic representation in the decision space, gives the following figure :

Figure 2: The graphic representation of obtained solutions of PL1
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3.2 Problem PL2

In this example, the set of efficient solutions E(P ) = AB ∪BC (see figure (4)).
By applying the MOMA method, we obtained the following results :

Table 2: The obtained solution by MOMA method for problem PL2

λ values Obtained solutions with MOMA
S1 1.0 (0.4642819583, 3.429174288)
S2 0.9 (0.4642819583, 3.429174288)
S3 0.8 (0.7958084160, 3.270626816)
S4 0.7 (0.9785732930, 2.746266433)
S5 0.6 (1.189137244, 2.521551950)
S6 0.5 (1.512787663, 2.086677156)
S7 0.4 (1.689624698, 1.871638439)
S8 0.3 (1.968535406, 1.520636181)
S9 0.2 (2.162853486, 1.380302605)
S10 0.1 (2.663090313, 1.165855305)
S11 0.0 (2.966393972, 1.095417146)

The graphic representation in the decision space, gives the following figure :

Figure 3: The graphic representation of obtained solutions of PL2

Remark 3.2 On the two figures, the points Si : i = 1, n are described from left to right.

4 Quality of obtained solutions

The fowolling measures of quality are examined in this work :

• the adherence of the obtained solutions in decision space;

• the distribution [14, 15] of obtained solutions by report Pareto optimal solutions E(P );

• the convergence [14, 15] of obtained solution by report Pareto optimal solutions E(P ).
For this measure we have calculate the distance to the Pareto optimal solutions E(P ) for each solution and
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the average distance. This distances are calculated based on the usual formula. Recall that the distance of a
point A to a straight (∆) : ax + by + c = 0 is define by [7] :

d(A, ∆) =| ax1 + by1 + c√
a2 + b2

|

and the average distance [13] by :

em =


 1∣∣∣Ê(P )

∣∣∣
∑

x∈Ê(P )

d(x, E(P ))


× 100,

where Ê(P ) is the approached solutions obtained by MOMA method. The em value will be given in percent-
ages.

4.1 Problem PL1

1. According the figure 3 we see that the obtained solutions par MOMA method are all in the decision space.

2. The solutions are ”very good” distribution on Pareto front because all of obtained solutions are regularly
spacing and cover all the straight of E(P ).

3. For this example the equation of the straight of E(P ) is [AB] : 11x + 30y − 102 = 0. For the each obtained
solution the distances between it and E(P ) straight are calculated and united in the following table : The

Table 3: Distance between obtained solutions and E(P )
Distances to E(P )

S1 0.001939346048
S2 0.001939346048
S3 0.022134710180
S4 0.001299955629
S5 0.081141617930
S6 0.063297654180
S7 0.067243130110
S8 0.104326564200
S9 0.098057898940
S10 0.098057898940
S11 0.098057898940

average distance is em = 5.79% = 5.79× 10−2. Thus we conclude that the convergence of obtained solutions
to Pareto front is ”very good”.

4.2 Problem PL2

1. According the figure 4 we see that the obtained solutions par MOMA method are all in the decision space as
the last example.

2. As the last example the solutions are ”very good” distribution on Pareto optimal straight E(P ).

3. The using the same formulas that in previous example, we obtain for the each obtained solution the distances
between it and E(P ) straight are calculated and united in the following table : The average difference is
em = 1.02% = 1.02× 10−2. Thus we conclude that, also here, the convergence of obtained solutions to Pareto
front is ”very good”.
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Table 4: Distance between the obtained solutions and E(P )
Distances to E(P )

S1 0.004526970231
S2 0.004526970231
S3 0.03114296899
S4 0.004791163142
S5 0.01005238692
S6 0.009738717414
S7 0.01168632213
S8 0.01364657257
S9 0.009506476373
S10 0.005027877584
S11 0.007906759727

5 Conclusion

During this work we have tried to highlight the different septs of MOMA method. That allow us to describ the
theoretical fundation of MOMA method through the didactic examples. The numerical results obtained shows
that MOMA method is a ”best” alternative to solve the linear problems with mathematics theoretical foundations.
Also, contrary to stochastic methods, it always gives the same solution, whatever the implementation with the same
parameters. This work complete the previous results of MOMA on the non linear optimization problems. For the
future research of MOMA method we will concentrate on :

• The resolution of multiobjectif combinatorial optimization problems,

• The comparaison with other metaheuristics method on large kind of benchmarks.
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