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Abstract

Spectral methods are among the numerical methods commonly used for approximating solutions of boundary value problems. In this paper
we propose, a generalization of the spectral Tau method in dimension 2, this method is generalized by the use of a new two-dimensional
polynomial basis constructed by a three terms recurrence relation. We also present an estimation of error committed by the proposed method.

Keywords: Two-dimensional Legendre basis, Three terms recurrence construction, Error Estimation.

1. Introduction

Primarily in computational applications, functions of two variables
often need to be approximated by other functions that are better
understood or more readily evaluated. Polynomials are among the
simplest mathematical functions which have the flexibility to repre-
sent very general nonlinear relationships. Approximation of more
complicated functions by polynomials is a basic building block for
many numerical techniques [7].
Two-dimensional approximation is an extension of one-dimensional
approximation for approximating functions of two variables. Gener-
ally, the key idea is to perform one-dimensional approximation first
in one variable, and then again in the other variable. Although each
step is one-dimensional.
In [1], the authors expressed the solution function with the two-
dimensional Legendre polynomials produced by a tensor-product.
The approximate solution is

UN(x,y) =
N

∑
i=1

N

∑
j=1

Ûi, jLi(x)L j(y) i, j = 0, . . . ,N. (1)

where Li is the Legendre polynomial of degree i.
But with the advantage of multi-dimensional polynomial basis, the
solution can be expanded to a multi-dimensional basis function
to have good approximations for solutions of multi-dimensional
problems.
As a first part, we have developed a new orthogonal polynomial basis
by a three term recurrence relation. We have also demonstrate the
orthogonality of these polynomials using a property defined inner
product on the space of two-dimensional polynomials

〈Pi, j,Pl,k〉=
∫ 1

−1

∫ 1

−1
Pi, j(x,y)Pl,k(x,y)dxdy. (2)

Numerical stability is a global property of the numerical algorithms,
a necessary quality to hope getting results have meaning. In the
second part of this work, we present a theoretical result concerning
the stability of the spectral method discussed.

2. Construction and properties

2.1. Recursive construction

The idea of modeling by orthogonal polynomials is to approximate
real functions by linear combinations of two-dimensional polynomial
functions, for example those of Legendre. We use the bivariate
polynomials defined in R2 as follows :

PK,L(x,y) =
K

∑
k=0

L

∑
l=0

ak,l(x)
k(y)l ,

with K ∈ N+ is the maximum degree of x, L ∈ N+ the maximum
degree of y and ck,l the all real coefficients of the polynomial. The
degree of the polynomial is K +L. We define an inner product by

〈F1(x,y),F2(x,y)〉=
∫ ∫

Ω

F1(x,y)F2(x,y)ω(x,y) dxdy,

with Ω is the domain of definition and ω(x,y) is the weight function
of the inner product. We can build a two-dimensional Legendre basis
by the following three terms recurrence formula

P−1, j(x,y) = 0
Pi,−1(x,y) = 0
P0,0(x,y) = 1

Pi+1, j(x,y) =
2i+1
i+1

xPi, j(x,y)−
i

i+1
Pi−1, j(x,y)

Pi, j+1(x,y) =
2 j+1
j+1

yPi, j(x,y)−
j

j+1
Pi, j−1(x,y)

It is important to note that the weight function of the inner product
ω(x,y) is equal to 1, this makes the computing of the inner product
easier and faster, unlikely for many bases of orthogonal polynomials
that have weight functions which requires considerable time for the
computation. The inner product in the Legendre polynomials basis
can be calculated by evaluating only two functions instead of three.
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2.2. Basic formulas.

We present here a collection of the essential formulas for two-
dimensional Legendre polynomials.

• Two-dimensional Legendre Polynomials may be expressed us-
ing this generalisation of Rodrigues formula

Pi, j(x,y) =
1

2i+ j i! j!
∂ i

∂xi (x
2−1)i ∂ j

∂y j (y
2−1) j (3)

• Pi, j(1,1) = 1, ∀ i, j ≥ 0.
• Pi, j(−1,−1) = (−1)i+ j, ∀ i, j > 0.
• ‖Pi, j(x,y)‖≤ 1, (−1,−1)≤ (x,y)≤ (1,1).
• A two-dimensional basis of degree d can be composed by the

Legendre polynomials {Pi, j} with i+ j ≤ d.
• The number of polynomials that make up the basis of degree d

is nd =
(d +1)(d +2)

2
• The domain orthogonality of the two-dimensional Legendre

polynomials is Ω ∈ [−1,1]2.

•
∫ 1

−1

∫ 1

−1
P2

i, j dx dy =
(

i+
1
2

)−1(
j+

1
2

)−1
;

The key to proving this last formula is
iPi, j(x,y) = x

∂Pi, j

∂x
(x,y)−

∂Pi−1, j

∂x
(x,y)

jPi, j(x,y) = y
∂Pi, j

∂x
(x,y)−

∂Pi, j−1

∂x
(x,y).

• We present an establishment of the two-dimensional Legendre
polynomials (Matlab source code)

1 f u n c t i o n P = R e c u r s i v e C o n s t r u c t i o n ( i , j )
2 syms x y
3 l e f t = 0 ; t o p = 0 ;
4 i f ( i == 0 && j == 0)
5 P = sym ( 1 ) ;
6 e l s e
7 i f ( i == −1 | | j == −1) t h e n
8 P = 0 ;
9 e l s e

10 P = 1 ;
11 f o r L = 0 : i−1
12 r i g h t =(2*L + 1 ) / ( L+1)* x*P−(L ) / ( L+1)* l e f t ;
13 l e f t = P ;
14 P = r i g h t ;
15 end
16 f o r k = 0 : j−1
17 low =(2* k + 1 ) / ( k +1)* y*P−(k ) / ( k +1)* t o p ;
18 t o p = P ;
19 P = low ;
20 end
21 end
22 end
23 end

The first polynomial P0,0 is located in the upper left corner. An
evolution along the lines of the same column does not vary
the degree of the polynomials according to x. An evolution
depending on the column of the same line varies depending on
the degree y

• Differentiation is to calculate the Legendre development of
the derivative of a function expressed as a combination of the
two-dimensional Legendre polynomials [4]. If

UN(X , t) =
N

∑
i=0

N−i

∑
j=0

Ûi, j(t)Pi, j(x,y), X ∈ Rn×Rn,

by the recurrence relation
(2i+1)Pi, j(x,y) =

∂

∂x
Pi+1, j(x,y)−

∂

∂x
Pi−1, j(x,y)

(2 j+1)Pi, j(x,y) =
∂

∂y
Pi, j+1(x,y)−

∂

∂y
Pi, j−1(x,y),

we can prove that the coefficients of the first derivative are given
by

Û (1)
i, j =



(2i+1)

 ∑
p=i+1

p+iodd

Ûi, j

 , i, j ≥ 0,

(2 j+1)

 ∑
p= j+1

p+ j odd

Ûi, j

 , i, j ≥ 0,

The previous identity generalizes, with obvious notation to

Û (q−1)
i, j =


Û (q)

i−1, j

2i−1
−

Û (q)
i+1, j

2i+3
i≥ 1,

Û (q)
i, j−1

2 j−1
−

Û (q)
i, j+1

2 j+3
j ≥ 1,

from which it is possible to get explicit expressions for the
Legendre coefficient of higher derivatives.
For the second derivative we have

Û (2)
i, j =



(i+
1
2
)

 ∑
p=i+2

p+ieven

[p(p+1)− i(i+1)]Ûi, j

 , i, j ≥ 0,

( j+
1
2
)

 ∑
p= j+2

p+ j even

[p(p+1)− j( j+1)]Ûi, j

 , i, j ≥ 0,

The previous expansions are not merely formal provided U is
smooth enough.

2.3. Orthogonality

Two-dimensional Legendre polynomials satisfy the following differ-
ential equation

∂

∂x

[
(1− x2)

∂Pi, j

∂x
(x,y)

]
+

∂

∂y

[
(1− y2)

∂Pi, j

∂y
(x,y)

]
+ [i(i+1)+ j( j+1)]Pi, j(x,y) = 0 (4)

In this section, we prove the orthogonality of two-dimensional Leg-
endre polynomials, i e, we prove that

〈Pi, j,Pl,k〉= 0 for (i, j) 6= (l,k).

Proof. Using the inner product (2)
Let Pi, j and Pl,k be a two-dimensional Legendre polynomials of
degree i+ j and l+k respectively, then, they satisfy the equation (4)

∂

∂x

[
(1− x2)

∂Pi, j

∂x
(x,y)

]
+

∂

∂y

[
(1− y2)

∂Pi, j

∂x
(x,y)

]
= − [i(i+1)+ j( j+1)]Pi, j(x,y) (5)

∂

∂x

[
(1− x2)

∂Pl,k

∂x
(x,y)

]
+

∂

∂y

[
(1− y2)

∂Pl,k

∂x
(x,y)

]
= − [l(l +1)+ k(k+1)]Pl,k(x,y) (6)
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Multiplying (5) by Pl,k and (6) by Pi, j and subtracting

[(l(l +1)+ k(k+1))− (i(i+1)+ j( j+1))]Pi, j(x,y)Pl,k(x,y) =[
∂

∂x
[(1− x2)

∂Pi, j

∂x
(x,y)]+

∂

∂y
[(1− y2)

∂Pi, j

∂y
(x,y)]

]
Pl,k(x,y) −[

∂

∂x
[(1− x2)

∂Pl,k

∂x
(x,y)]+

∂

∂y
[(1− y2)

∂Pl,k

∂y
(x,y)]

]
Pi, j(x,y) (7)

We set

c = [l2 + l− i2− i]+ [k2 + k− l2− l] 6= 0, if (l,k) 6= (i, j).

By integrating of both members of (7) in the domain [−1,1]× [−1,1]

c
∫ 1

−1

∫ 1

−1
Pi, jPl,k dxdy

=
∫ 1

−1

∫ 1

−1

[[
∂

∂x
[(1− x2)

∂Pi, j

∂x
]+

∂

∂y
[(1− y2)

∂Pi, j

∂y
]

]
Pl,k

]
−

[[
∂

∂x
[(1− x2)

∂Pl,k

∂x
]+

∂

∂y
[(1− y2)

∂Pl,k

∂y
]

]
Pi, j

]
dxdy

We start by the first part

I1 =
∫ 1

−1

∫ 1

−1

[[
∂

∂x
[(1− x2)

∂Pi, j

∂x
]+

∂

∂y
[(1− y2)

∂Pi, j

∂y
]

]
Pl,k

]
dxdy

=
∫ 1

−1

∫ 1

−1

[
∂

∂x
[(1− x2)

∂Pi, j

∂x
]

]
Pl,k dxdy

+
∫ 1

−1

∫ 1

−1

[
∂

∂y
[(1− y2)

∂Pi, j

∂y
]

]
Pl,k dxdy.

We have

I1,1 =
∫ 1

−1

[∫ 1

−1

[
∂

∂x
(x,y)[(1− x2)

∂Pi, j

∂x
(x,y)]

]
Pl,k(x,y)dx

]
dy

=
∫ 1

−1

[ [
Pl,k(x,y)(1− x2)

∂Pi, j

∂x
(x,y)

]1

−1

−
∫ 1

−1

∂Pl,k

∂x
(x,y)(1− x2)

∂Pi, j

∂x
(x,y)dx

]
dy

hence

I1,1 =−
∫ 1

−1

[∫ 1

−1

[
∂Pl,k

∂x
(x,y)(1− x2)

∂Pi, j

∂x
(x,y)dx

]]
dy

Similarly

I1,2 =
∫ 1

−1

[∫ 1

−1

[
∂

∂y
[(1− y2)

∂Pi, j

∂y
(x,y)]

]
Pl,k(x,y)dy

]
dx

= −
∫ 1

−1

[∫ 1

−1

∂Pl,k

∂x
(x,y)(1− y2)

∂Pi, j

∂x
(x,y)dx

]
dy

For the second part

I2 =
∫ 1

−1

∫ 1

−1

[
∂

∂x
[(1− x2)

∂Pl,k

∂x
]Pi, j

]
dxdy

+
∫ 1

−1

∫ 1

−1

[
∂

∂y
[(1− y2)

∂Pl,k

∂y
]]Pi, j

]
dxdy

I2,1 =
∫ 1

−1

[∫ 1

−1

[
∂

∂x
[(1− x2)

∂Pl,k

∂x
(x,y)]

]
Pi, j(x,y)dx

]
dy

= −
∫ 1

−1

[∫ 1

−1

∂Pi, j

∂x
(x,y)(1− x2)

∂Pl,k

∂x
(x,y)dx

]
dy

and also

I2,2 =
∫ 1

−1

[∫ 1

−1

[
∂

∂y
[(1− y2)

∂Pl,k

∂y
(x,y)]

]
Pi, j(x,y)dy

]
dx

= −
∫ 1

−1

[∫ 1

−1

∂Pi, j

∂y
(x,y)(1− y2)

∂Pl,k

∂y
(x,y)dy

]
dx

therefore

c
∫ 1

−1

∫ 1

−1
Pi, j(x,y)Pl,k(x,y)dxdy = I1− I2

= [I1,1 + I1,2]− [I2,1 + I2,2]

= 0.

and since c 6= 0 for every pair (i, j) 6= (l,k), then

∫ 1

−1

∫ 1

−1
Pi, j(x,y)Pl,k(x,y)dxdy = 0

〈Pi, j,Pl,k〉 = 0, for (i, j) 6= (l,k).

hence the result.

2.4. Numerical tests.

In order to give a first illustration of the performance of our imple-
mentation of bivariate Legendre approximation, we apply the method
to some bivarite functions.
Table (1) reports the results corresponding to the application of the
approximation algorithm at various order (application of the method
in [−1;1]2 ). The absolute and relative errors have been computed
with a suitable norm.

Table 1: Absolute and relative approximation error.

f(x,y) N Absolute error Relative error

cos(x+ y)

20 0.6387 0.4111
21 0.3343 0.2152
22 0.0359 0.0231
23 0 0

exp(x+ y)

20 1.8115 0.4995
22 0.6158 0.1698
22 0.1022 0.0282
23 0.0014 3.8565 ×10−4

For the sake of comparison with another widely used bivariate
method (least squares method), we show in Table (2) the results
of an approximation in another basis (basis constructed by a tensor
product of the Chebychev polynomials) [4]-[10]

Table 2: Square approximation error for some functions.

f(x,y) N Legendre Error Chebychev Error

x2y+ y2x

20 0.4869 0.5196
21 0.3443 0.4732
22 0 0.4218

ycos(x)

20 0.9848 0.9958
21 0.1602 0.3613
22 35×10−4 0.5389
23 3.0037×10−5 1.4443

sinπxsinπy

20 1 1
21 0.7940 0.8628
22 0.6304 0.6439
23 0.1322 0.6853
24 3×10−4 0.8144

Practical implementation of the bivariate Legendre approximation
method follows strictly the construction in (3).



128 International Journal of Applied Mathematical Research

3. Tau-Legendre approximation

3.1. Theoretical background

Let the universe of our discussion be the Hilbert space H :=
L 2([−1,1]× [−1,1],C). We wish to obtain an easily implantable
computer model and to process large volumes of data. We consider
a general formulation of a PDE problem

∂U
∂ t

(X , t) = M (U(X , t))+ f (X , t) X ∈Ω t ≥ 0,

C (U(X , t)) = g(t) X ∈ ∂Ω t > 0,
U(X ,0) = U0(X) X ∈Ω.

− Ω is a bounded domain of Rn×Rn with the border ∂Ω.
− X is a pair (x,y), where x ∈ Rn and y ∈ Rn.
− U(X , t) the the unknown function in Hilbert space H , f an

element of H .
− M , C are operators from H on H , where C define the bound-

ary conditions.

If M contains partial derivatives of order k, the boundary conditions
are the number of k (g with k components). Let (Pi, j)i, j=1...∞ a two-
dimensional orthogonal Legendre basis which does not satisfy the
boundary conditions.
We search an approximation

UN(X , t) =
N

∑
i=1

N−i

∑
j=1

Ûi, jPi, j with Ûi, j = 〈UN ,Pi, j〉 (8)

in SN (where SN represents the space generated by the N first two-
dimensional Legendre polynomials) such as

P⊥N−kRN = 0 N− k equations

CUN = 0 k equations

− RN is the residual function of the spectral decomposition in the
basis of Legendre, it is given by

RN =
∂UN

∂ t
−M (UN)− f . (9)

− P⊥N−kRN denotes the orthogonal projection of H on SN−k.
− SN−k space generated by the N− k first two-dimensional Leg-

endre polynomials.
− UN is then determined by N ordinary differential equations.

3.2. Error Estimation.

Let H be a C-Hilbert space, S a sub-space of H generated by
(N− k) first two-dimensional Legendre polynomials. dim(S ) =
n = (N− k), where k represents the number of boundary conditions.
Our problem is to find a function U ∈H such that

∂U
∂ t

(X , t)+M (U(X , t)) = f

C (U(X , t)) = g
U(0) = U0,

(10)

where f ,g and U0 are given elements of H .
Let fn ∈S be an approximation of f , and U0

n an approximation of
U0, then the problem (10) can be rewritten as

∂

∂ t
(PUn)+M (Un) = fn, (11)

where P represent the Tau projection operator on S .
Assume that S is a normed space and his norm satisfy

∀s ∈S , Re〈P s,M s〉 ≥ κ ‖s‖2 (12)

and

Re〈 f ,g〉 ≤‖ f ‖ · ‖g‖ (13)

We define f̃n by

f̃n =
∂

∂ t
(PŨn)+M

(
Ũn
)
,

where Un the solution of the problem (10) and Ũn any.
Under the assumptions (12) and (13), we can prove the following
result

‖M (Un−Ũn)‖2≤‖M (Un(0)−Ũn(0))‖2 +
1
κ

+
∫ t

0
‖M ∗( fn− f̃n(r))‖2 dr (14)

where M ∗ denote the adjoint of the operator M .
This increase interprets as a result of stability, but it requires some
regularity conditions.

Proof. We put

∂

∂ t
(PUn)+M (Un) = fn and

∂

∂ t
(PŨn)+M

(
Ũn
)
= f̃n (15)

then

P(
∂

∂ t
(Un−Ũn)+M

(
Un−Ũn

)
) = fn− f̃n.

Which is multiplied by M (Un− Ũn) for the inner product on the
space S

〈P
(

∂

∂ t
(Un−Ũn)

)
,M

(
∂

∂ t
(Un−Ũn)

)
〉

+ 〈M
(
Un−Ũn

)
,M

(
∂

∂ t
(Un−Ũn)

)
〉

= 〈 fn− f̃n,M
(

∂

∂ t
(Un−Ũn)

)
〉,

whose real part is taken, and since
∂

∂ t
(Un−Ũn) ∈S , it will be

κ ‖Un−Ũn ‖2≤ Re〈P
(

∂

∂ t
(Un−Ũn)

)
,M

(
∂

∂ t
(Un−Ũn)

)
〉.

on the other hand

Re〈 fn− f̃n,M
(

∂

∂ t
(Un−Ũn)

)
〉

= Re〈M ∗( fn− f̃n),
∂

∂ t
(Un−Ũn)〉

≤ (‖M ∗( fn− f̃n)‖) · (‖
∂

∂ t
(Un−Ũn)‖)

≤ (
1√
κ
‖M ∗( fn− f̃n)‖) · (

√
κ ‖ ∂

∂ t
(Un−Ũn)‖)

Since (
1√
κ
‖M ∗( fn− f̃n)‖ −

√
κ ‖ ∂

∂ t
(Un−Ũn)‖

)2
≥ 0

then

1
2κ
‖M ∗( fn− f̃n)‖2 +

κ

2
‖ ∂

∂ t
(Un−Ũn)‖2

≥ (
1√
κ
‖M ∗( fn− f̃n)‖) · (

√
κ ‖ ∂

∂ t
(Un−Ũn)‖)

≥ (‖M ∗( fn− f̃n)‖) · (‖
∂

∂ t
(Un−Ũn)‖)
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then we have

Re〈M ∗( fn− f̃n),
∂

∂ t
(Un−Ũn)〉

≤ 1
2κ
‖M ∗( fn− f̃n)‖2 +

κ

2
‖ ∂

∂ t
(Un−Ũn)‖2 .

The formula (16) becomes

κ ‖ ∂

∂ t
(Un−Ũn)‖2 +

1
2

∂

∂ t
‖M (Un−Ũn)‖2

≤ 1
2κ
‖M ∗( fn− f̃n)‖2 +

κ

2
‖ ∂

∂ t
(Un−Ũn)‖2

≤ 1
2κ
‖M ∗( fn− f̃n)‖2 +κ ‖ ∂

∂ t
(Un−Ũn)‖2 .

hence

∂

∂ t
‖M (Un−Ũn)‖2 ≤ 1

κ
‖M ∗( fn− f̃n)‖2 .

by integration of both sides of this inequality we have

∫ t

0

∂

∂ r
‖M (Un−Ũn)(r)‖2 dr ≤ 1

κ

∫ t

0
‖M ∗( fn− f̃n)(r)‖2 dr

‖M (Un−Ũn)(t)‖2 ≤ ‖M (Un−Ũn)(0)‖2

+
1
κ

∫ t

0
‖M ∗( fn− f̃n)(r)‖2 dr.

We assume that f and U are regular functions.
Let Ũn is an approximation of U such that Ũn(0) =U0

n .
Using the increase (14), we can obtain the following error estimation

‖M (U−Ũn)(t)‖

≤ max
0≤r≤t

‖M (U−Ũn)(r)‖+
(

max
0≤r≤t

‖M ∗( f − fn)(r)‖

+ max
0≤r≤t

‖ ∂

∂ t
(U−Ũn)(r)‖+ max

0≤r≤t
‖M ∗M (U−Ũn)(r)‖

)
.

Proof. We have

‖M (U−Un)(t)‖ ≤ ‖M (U−Ũn)(t)‖+ ‖M (Un−Ũn)(t)‖,

we can estimate ‖M (Un−Ũn)(t)‖ from (14)

‖M ∗( fn− f )(t)‖ ≤ ‖M ∗( f − fn)(t)‖+ ‖M ∗( f − f̃n)(t)‖

≤ ‖M ∗( f − fn)(t)‖+ ‖M ∗ ∂

∂ t
(U− ˜Un)‖

+ ‖MM ∗(U− ˜Un)‖

then

‖M (U−Ũn)(t)‖

≤ max
0≤r≤t

‖M (U−Ũn)(r)‖+
(

max
0≤r≤t

‖M ∗( f − fn)(r)‖

+ max
0≤r≤t

‖ ∂

∂ t
(U−Ũn)(r)‖+ max

0≤r≤t
‖M ∗M (U−Ũn)(r)‖

)
.

References

[1] A. Quarteroni, A. Valli, Numerical Approximations of Partial Differen-
tial Equations, (Springer, Heidelberg) 1994

[2] A. Quarteroni, C. Canuto, M. Y. Hussaini, T. A. Zang, Spectral
Methods Fundamentals in Single Domains, Springer 2006, ISBN :
987−3−540−30725−9 http : //www.dimat.polito.it/chqz/software.

[3] B. Costa, Spectral Methods for Partial Differential Equations, A Math-
ematical Journal Vol. 6,No 4,(1−32), december 2004.

[4] B. Costa, L. Dettori, D. Gottlieb and R. Temam,Time Marching Tech-
niques for the Nonlinear Galerkin Method, SIAM Journal of Sci. Com-
put., Vol. 23(2001),No.1, pp.46−65.

[5] C. Canuto, M. Yousuff Hussaini, Alfio Quarteroni, & Thomas A. Zang,
Spectral Methods in Fluid Dynamics. Springer Series in Computational
Physics. Springer, 1987.

[6] J. Boyd, Chebyshev and Fourier Spectral Methods, Second Edi-
tion, University of Michigan. 2000. Available online : http://www-
personal.umich.edu/ jpboyd/BOOK Spectral2000.html.
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