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Abstract

In this paper, a new approach for solving system of nonlinear equations is present , that is based on approximating the Jacobian into a
diagonal matrix by means of acceleration parameter. This method reduced the two step length parameters into a single step length and
employs a backtracking process to obtain a suitable step length. Furthermore, this method is a matrix-free and so it gives an advantage to
solve large-scale nonlinear system of equations. Under appropriate conditions, we show that the proposed method is globally convergent.
The preliminary numerical results show that the method is practically effective.
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1. Introduction

Consider the the system of nonlinear equations:

F(x) = 0, (1)

where F : Rn → Rn is nonlinear map, F is assume to satisfy the
following assumptions:
Assumption 1.
(1) There exists x∗ ∈ Rn such that F(x∗) = 0.
(2) F is continuously differentiable mapping in a neighborhood of
x∗.
The renowned method for finding the solution to (1) is the Newton’s
method. The method is simple to implement, and generates an itera-
tive sequences{xk} from a given initial guess x0 in a neighborhood
of x∗ via

xk+1 = xk −
(
F ′(xk)

)−1 F(xk), (2)

where k = 0,1,2, ... and F ′(xk) is the Jacobian matrix.

The attractive features of this method are easy implementa-
tion and rapid convergence [15]. However, the Newton’s method
requires the computation of Jacobian matrix, which demands the
first-order derivative of the system. The computation of some
functions derivative are costly in practice, sometimes they are
not even available or could not be obtained exactly. In this case
Newton’s method cannot be applied directly [17, 22, 23]. To over
come such difficulty, the simple modification on the Newton method
is fixed Newton method [18] for the determination of solution of x∗

is given by

xk+1 = xk −
(
F ′(x0)

)−1 F(xk), (3)

where k = 0,1,2, ... The method avoids the computation and storing
of the Jacobian in each iteration(except at k=0), but still it requires
solving the system of n linear equations which consumes more CPU
time as the system’s dimension increases [18].
A quasi-Newton’s method is another variant of Newton-type methods
and replace the Jacobian or its inverse with an approximation which
can be updated at each iteration [13], and its updating scheme is
given by

xk+1 = xk −B−1
k F(xk), (4)

where Bk is the approximation of Jacobian at xk. The main idea
behind quasi-Newton method is to eliminate the evaluation cost of
the Jacobian matrix [13, 19, 25].

It is vital to mention that due to the well known shortcom-
ings of Newton method a double step length has been proposed by
[14] and the iterative procedure is given as:

xk+1 = xk +αkbk +βkck, (5)

where xk+1 represents a new iterative point, xk is the previous
iterative point, αk and βk denote the step lengths, while bk and ck
are search directions respectively.

It is very important to state that the transformation of dou-
ble step length methods was used in unconstrained optimization
problem. They are particularly efficient due to their convergence
properties, simple implementation, and low storage requirement
[20]. Nevertheless, the study of transformation of double step length
methods for solving system of nonlinear equations is very scanty, so
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for this reason we are motivated to write this paper.

We are interested in approximating the Jacobian with diago-
nal matrix via

F ′(xk)≈ γkI, (6)

where I is an identity matrix.
Furthermore (1) can come from an unconstrained optimization prob-
lem, a saddle point, and equality constrained problem [11]. Let f be
a norm function defined by

f (x) =
1
2
||F(x)||2. (7)

The nonlinear equations problem (1) is equivalent to the following
global optimization problem

min f (x), x ∈ Rn. (8)

The double direction method has been proposed in [1], using
multi-step iterative information and curve search to generate new
iterative points. However, a multi-step algorithm for minimization
of a non differentiable function is presented in [1]. Moreover, a
double direction method for solving unconstrained optimization
problem is proposed in [12]. Recently, a double step size method for
solving unconstrained optimization problem is proposed in [14].
There are several procedure for the choice of the search direction
[2, 4, 5, 6, 7, 8, 9, 11, 24].
The step length αk can also be computed either exact or in exact. It
is very expensive to find exact step length in practical computation.
Therefore the most frequently used line search in practice is inexact
line search [3, 5, 7, 10, 12, 13]. The requirement of the line search is
to sufficiently decrease the function values along the ray xk +αkdk,
αk > 0.

We organized the paper as follows; In the next section, we
present the proposed method, convergence results are presented in
section 3. Some numerical results are reported in section 4. Finally
we made conclusions in section 5.

2. Main Results

In this section we present the reduction of the two step lengths αk and
βk in (5) into a single step length. This reduction is made possible
by an additional assumption:

αk +βk = 1. (9)

In order to incorporate more information of the iterates at each
iteration and to improve good direction towards the solution, we
suggest a new directions bk and ck in (5) to be defined as:

bk =−γ
−1
k F(xk), (10)

where γk > 0 is an acceleration parameter.

ck =−F(xk). (11)

So by putting (9), (10) and (11) into (5) we have the iterate

xk+1 = xk −αk

(
γ
−1
k +

1
αk

−1
)

F(xk). (12)

We proceed to obtained the acceleration parameter by using Taylor’s
expansion of the first order and gives the following approximation:

F(xk+1)≈ F(xk)+F
′
(ξ )(xk+1 − xk) (13)

where the parameter ξ fulfills the conditions ξ ∈ [xk,xk+1],

ξ = xk +δ (xk+1 − xk), 0 6 δ 6 1. (14)

putting in mind that the distance between xk and xk+1 is small
enough, we can take δ = 1 in (14) and get ξ = xk+1. Thus we
assume

F ′(ξ )≈ γk+1I. (15)

Now from (13) and (15) its not difficult to verify that:

F(xk+1)−F(xk) = γk+1(xk+1 − xk). (16)

Taking yk = F(xk+1)−F(xk) and sk = xk+1 − xk, we have

yk = γk+1sk, (17)

by multiplying yT
k to the both side of (17) the acceleration parameter

yields:

γk+1 =
yT

k yk

yT
k sk

. (18)

now, from (12) we can easily show that, our direction is

dk =−
(

γ
−1
k +

1
αk

−1
)

F(xk), (19)

then using (12) and (19) we have the general scheme as:

xk+1 = xk +αkdk. (20)

We use the back tracking type line search proposed in [11] in order
to compute our step length αk.
Let ω1 > 0, ω2 > 0 and r ∈ (0,1) be constants and let ηk be a given
positive sequence such that

∞

∑
k=0

ηk < η < ∞, (21)

f (xk +αkdk)− f (xk)≤−ω1‖αkF(xk)‖2 −ω2‖αkdk‖2 +ηk f (xk)

(22)

Let ik is the smallest non negative integer i such that (22) holds for
α = ri. Let αk = rik .
Now we describe the algorithm of the proposed method as follows:
Algorithm 1(EMFD)
STEP 1: Given x0, γ0 = 1, , α0 > 0, ε = 10−4, set k = 0.
STEP 2: Compute F(xk).
STEP 3: If ‖F(xk)‖ ≤ ε then stop, else goto STEP 4.
STEP 4: Compute search direction dk (using (19)).
STEP 5: Compute step length αk (using (22)).
STEP 6: Set xk+1 = xk +αkdk.
STEP 7: Compute F(xk+1).

STEP 8: Determine γk+1 =
yT

k yk

yT
k sk

.

STEP 9: Set k=k+1, and go to STEP 2.
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3. Convergence Analysis

In this section we present the global convergence of our method
(EMFD). To begin with, let us defined the level set

Ω = {x|‖F(x)‖ ≤
√

eη‖F(x0)‖}. (23)

In order to analyze the convergence of algorithm 1 we need the
following assumption:
Assumption 2.
(i) In some neighborhood N of Ω the Jacobian of F is bounded and
positive definite on N. i.e there exists a positive constants M > m > 0
such that

‖F ′(x)‖ ≤ M ∀x ∈ N, (24)

and

m‖d‖2 ≤ dT F ′(x)d ∀x ∈ N,d ∈ Rn. (25)

.
From the level set we have:

‖F(x)‖ ≤ m1 ∀x ∈ Ω. (26)

Remarks:
Assumption 2 imply that there exist a constants M > m > 0 such that

m‖d‖ ≤ ‖F ′(x)d‖ ≤ M‖d‖ ∀x ∈ N,d ∈ Rn. (27)

1
m
‖d‖ ≤ ‖F ′(x)−1d‖ ≤ 1

M
‖d‖ ∀x ∈ N,d ∈ Rn. (28)

m‖x− y‖ ≤ ‖F(x)−F(y)‖ ≤ M‖x− y‖ ∀x,y ∈ N. (29)

In particular ∀x ∈ N we have

m‖x− x∗‖ ≤ ‖F(x)‖ ≤ ‖‖F(x)−F(x∗)‖ ≤ M‖x− x∗‖,

where x∗ stands for the unique solution of (1) in N.

Lemma 1. Let the sequence {xk} is generated by algorithm
1. Then {xk} ⊂ Ω.
proof. From (22) we have for all k

f (xk+1)≤ (1+ηk) f (xk)

...

≤ f (x0)
k

∏
i=0

(1+ηi)

≤ f (x0)

(
1

k+1

k

∑
i=0

(1+ηi)

)k+1

≤ f (x0)

(
1+

1
k+1

k

∑
i=0

ηi

)k+1

≤ f (x0)

(
1+

η

k+1

)k+1

≤ eη f (x0)

Thus we have,
‖F(xk+1)‖ ≤

√
eη‖F(x0)‖.

Lemma 2.(see[13]) Suppose that assumption 2 holds {xk} is gener-
ated by algorithm 1. Then there exists a constant m2 > 0 such that
for all k

yT
k sk ≥ m2‖sk‖2. (30)

Lemma 3. Suppose that assumption 2 holds and {xk} is generated
by algorithm 1. Then we have

lim
k→∞

‖αkdk‖= lim
k→∞

‖sk‖= 0, (31)

and

lim
k→∞

‖αkF(xk)‖= 0. (32)

proof. By (18) we have for all k > 0

ω2‖αkdk‖2 ≤ ω1‖αkF(xk)‖2 +ω2‖αkdk‖2

≤ ‖F(xk)‖2 −‖F(xk+1)‖2 +ηk‖F(xk)‖2
(33)

by summing the above inequality, we have

ω2

k

∑
i=0

‖αidi‖2 ≤
k

∑
i=0

(
‖F(xi)‖2 −‖F(xi+1)‖2

)
+

k

∑
i=0

ηi‖F(xi)‖2

= ‖F(x0)‖2 −‖F(xk+1)‖2 +
k

∑
i=0

ηi‖F(xi)‖2

≤ ‖F(x0)‖2 +m2
1

k

∑
i=0

ηi

≤ ‖F(x0)‖2 +m2
1

∞

∑
i=0

ηi,

(34)

so from (26) and fact that {ηk} satisfies (21) then the series
∞

∑
i=0

‖αidi‖2 is convergent. This implies (31). By similar way we can

prove that (32) holds.

Lemma 4. Suppose that assumption 2 holds and {xk} is
generated by algorithm 1. Then there exist a constant m3 > 0 such
that for all k > 0,

‖dk‖ ≤ m3. (35)

proof. from (26) and (29) we have

‖dk‖=
∥∥∥∥−( 1

γk
+

1
αk

−1
)

F(xk)

∥∥∥∥
≤
∥∥∥∥( 1

γk

)
F(xk)

∥∥∥∥+∥∥∥∥( 1
αk

−1
)

F(xk)

∥∥∥∥
=

∥∥∥∥∥
(

yT
k sk

‖yk‖2

)
F(xk)

∥∥∥∥∥+
(

1
αk

−1
)
‖F(xk)‖

≤ ‖yk‖‖sk‖
‖yk‖2 ‖F(xk)‖+

(
1

αk
−1
)
‖F(xk)‖

≤ ‖sk‖
m‖sk‖

‖F(xk)‖+
(

1
αk

−1
)
‖F(xk)‖

≤ m1

m
+

(
1

αk
−1
)

m1.

(36)
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Taking m3 =
m1

m
+

(
1

αk
−1
)

m1, we have (35). We can deduce

that for all k (35) hold.

Now we are going to establish the following global conver-
gence theorem to show that under some suitable conditions, there
exist an accumulation point of {xk} which is a solution of problem
(1).

Theorem 6. Suppose that assumption 2 holds,{xk} is gener-
ated by algorithm 1. Assume further for all k > 0,

αk ≥ c
|F(xk)dk|
‖dk‖2 , (37)

where c is some positive constant. Then

lim
k→∞

‖F(xk)‖= 0. (38)

Proof. From lemma 5 we have (35). Therefore by (31) and the
boundedness of {‖dk‖}, we have

lim
k→∞

αk‖dk‖2 = 0, (39)

combining (32) and (34) we have

lim
k→∞

|F(xk)
T dk|= 0. (40)

On the other hand from (19) we have,

F(xk)
T dk =−

(
1
γk

+
1

αk
−1
)
‖F(xk)‖2, (41)

‖F(xk)‖2 =− F(xk)
T dk(

1
γk
+ 1

αk
−1
)

≤ |F(xk)
T dk|∣∣∣ 1

γk
+ 1

αk
−1
∣∣∣ ,

(42)

but

γk =
‖yk−1‖2

yT
k−1sk−1

≥ m‖sk−1‖2

yT
k−1sk−1

,

then

|γk| ≥
‖yk−1‖2

‖yk−1‖‖sk−1‖
≥ m‖sk−1‖2

‖yk−1‖‖sk−1‖
≥ m‖sk−1‖

M‖sk−1‖
≥ M

m

so from (42) we have,

‖F(xk)‖2 ≤ |F(xk)
T dk|∣∣∣ m

M + 1
αk

−1
∣∣∣ . (43)

Thus

0 ≤ ‖F(xk)‖2 ≤ |F(xk)
T dk|∣∣∣ m

M + 1
αk

−1
∣∣∣ −→ 0. (44)

Therefore

lim
k→∞

‖F(xk)‖= 0. (45)

The proof is completed.

4. Numerical Results

In this section, the performance of our method for solving non linear
equation(1) is compared with A derivative-free CG method and
its global convergence for solving symmetric nonlinear equations [2].

(i) An enhanced Matrix-free via double step length approach
(EMFD) stands for our method and we set the following:
ω1 = ω2 = 10−4, α0 = 0.01, r = 0.2 and ηk =

1
(k+1)4 .

(ii) A derivative-free CG (DFCG) is the method proposed in
[2] and we have the following:
ω1 = ω2 = 10−4, α0 = 0.01, r = 0.2 and ηk =

1
(k+1)4 .

The codes, was written in Matlab 7.9.0 (R2009b) and run
on a personal computer 2.00 GHz CPU processor and 3 GB RAM
memory. We stopped the iteration if the total number of iterations
exceeds 1000 or ‖F(xk)‖ ≤ 10−4. We tested the two methods on ten
test problems with different initial points and dimension (n values).
problems 1-7 are from [2] and problem 8 was arbitrarily constructed
by us, while problems 9 and 10 are from [21].

Problem 1:

F(x)=



2 −1
−1 2 −1

. . .
. . .

. . .
. . .

. . . −1
−1 2

x+(ex
1−1, ...,ex

n−1)T . x0 =(0.5,0.5, ...,0.5)T .

(46)

Problem 2:

F(x)=



2 −1
0 2 −1

. . .
. . .

. . .
. . .

. . . −1
−1 2

x+(sinx1−1, ...,sinxn−1)T . x0 =(1,1, ...,1)T .

(47)

Problem 3:

F1(x) = x1(x2
1 + x2

2)−1,

Fi(x) = xi(x2
i−1 +2x2

i + x2
i+1),

Fn(x) = xn(x2
n−1 + x2

n).

i = 2,3, ...,n−1.

x0 = (0.01,0.01, ...,0.01)T .

(48)

Problem 4:

F3i−2(x) = x3i −2x3i−1 − x2
3i −1,

F3i−1(x) = x3i−2x3i−2x3i − x2
3i−2 + x2

3i−1 −2,

F3i(x) = e−x3i−2 − e−x3i−1 .

i = 1, ...,
n
3
.

x0 = (0.1,0.1, ...,0.1)T .

(49)

Problem 5:

Fi(x) = (1− x2
i )+ xi(1+ xixn−2xn−1xn)−2.

i = 1,2, ...,n.

x0 = (0.7,0.7, ...,0.7)T .

(50)
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Problem 6:

F1(x) = x2
1 −3x1 +1+ cos(x1 − x2),

Fi(x) = x2
1 −3xi +1+ cos(xi − xi−1).

i = 1,2, ...,n.

x0 = (0.4,0.4, ...,0.4)T .

(51)

Problem 7:

Fi(x) = xi −0.1x2
i+1,

Fn(x) = xn −0.1x2
1.

i = 1,2, ...,n−1.

x0 = (1,1, ...,1)T .

(52)

Problem 8:

Fi(x) = 0.i(1− xi)
2 − e−x2

i ,

Fn(x) =
n
10

(1− e−x2
n).

i = 1,2, ...,n−1.

x0 = (0.5,0.5, ...,0.5)T .

(53)

Problem 9:

Fi(x) = 2xi − sin|xi|,
i = 1,2, ...,n.

x0 = (−0.1,−0.1, ...,−0.1)T

(54)

problem 10:

F1 = x1 − e
cos
(

x1+x2
n+1

)

Fi = xi − e
cos
(

xi−1+xi+xi+1
n+1

)

Fn = xn − e
cos
(

xn−1+xn
n+1

)
i = 2,3, ...,n−1.

x0 = (−2,−2, ...,−2)T .

(55)
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The numerical results of the two(2) methods are reported in tables
1 and 2, where ”iter” and ”Time” stand for the total number of all
iterations and the CPU time in seconds,respectively, while ‖F(xk)‖
is the norm of the residual at the stopping point. From tables 1
and 2, we can easily perceive that all these methods attempted to
solve the system of nonlinear equations (1), but the efficiency and
effectiveness of our proposed algorithm was clear for it solve where
DFCG fails. For instance see problem 6. In particular, the EMFD
method considerably out performs the DFCG for almost all the
tested problems, as it has the least number of iterations and the
CPU time, which are much less than DFCG method. This is due
to the computation of step length in each iteration as well as the
approximation of the Jacobian through acceleration parameter.

Figures (1-2) show the performance of our method relative
to the number of iterations and CPU time, which were evaluated
using the profiles of Dolan and Moré [16]. That is, for each method,
we plot the fraction P(τ) of the problems for which the method is
within a factor τ of the best time. The top curve is the method that
solved the most problems in a time that was within a factor τ of the
best time.
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Table 1: The Numerical Results for EMFD and DFCG on problems 1 to 10

EMFD DFCG
Problems Dim Iter Time(s) ‖F(xk)‖ Iter Time(s) ‖F(xk)‖

1 10 13 0.058072 7.55E-04 33 0.137884 9.74E-05
100 15 0.082624 4.92E-04 38 0.182246 9.55E-05
1000 18 0.717315 3.62E-04 53 2.285821 8.72E-05
2000 13 1.818927 4.03E-04 54 7.791001 8.10E-05

2 10 9 0.061803 4.26E-04 49 0.18529 4.08E-05
100 10 0.082281 8.71E-04 60 0.291577 8.65E-05
1000 11 0.480761 4.77E-04 63 2.874518 9.31E-05
2000 11 1.517515 5.57E-04 61 9.321487 9.30E-05

3 10 13 0.006141 8.75E-04 52 0.021726 9.57E-05
100 13 0.009908 7.68E-04 52 0.021726 9.57E-05
1000 13 0.035568 8.72E-04 54 0.105493 8.83E-05
2000 13 0.063945 9.35E-04 54 0.176152 8.43E-05
3000 13 0.078942 9.75E-04 62 0.237935 9.52E-05

50000 14 0.824716 7.36E-04 55 3.550896 7.53E-05

4 10 10 0.008541 9.11E-04 47 0.018898 8.07E-05
100 11 0.010594 4.45E-04 66 0.034618 9.72E-05
1000 12 0.032936 3.62E-04 60 0.072484 8.25E-05
5000 12 0.108037 8.09E-04 57 0.308569 9.39E-05

10000 13 0.178396 1.22E-04 58 0.637811 6.51E-05

5 10 7 0.00348 2.86E-04 431 0.176174 9.54E-07
100 7 0.004733 9.04E-04 431 0.31315 3.02E-06
1000 8 0.019697 2.84E-04 431 0.996263 9.54E-06
5000 8 0.061381 6.36E-04 431 4.354077 2.13E-05

10000 8 0.10864 8.99E-04 431 8.684382 3.02E-05
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Table 1: Continued.
EMFD DFCG

Problems Dim Iter Time(s) ‖F(xk)‖ Iter Time(s) ‖F(xk)‖
6 10 5 0.003168 1.13E-04 279 - -

100 5 0.004443 3.57E-04 279 - -
1000 6 0.020648 1.12E-04 261 - -
5000 6 0.062225 2.51E-04 279 - -

10000 6 0.119242 3.55E-04 279 - -

7 10 4 0.005876 2.15E-04 5 0.036751 5.23E-06
100 4 0.022792 3.14E-04 5 0.017619 2.35E-05
1000 4 0.154512 7.43E-04 5 0.206744 7.52E-05
5000 5 1.063497 1.60E-04 6 1.910818 3.28E-08

10000 5 2.899741 2.25E-04 6 5.167084 4.64E-08

8 10 5 0.00258 9.09E-04 14 0.005212 5.80E-05
100 5 0.003375 7.96E-04 13 0.008095 6.11E-05
1000 7 0.017057 9.89E-04 27 0.057786 6.03E-05
5000 11 0.091527 9.17E-04 23 0.138946 6.18E-05

10000 10 0.132313 4.25E-04 36 0.466298 1.29E-06

9 10 4 0.001606 2.45E-06 6 0.003028 3.53E-11
100 4 0.002407 7.74E-06 6 0.004275 1.12E-10
1000 4 0.005958 2.45E-05 6 0.014771 3.53E-10
5000 4 0.023534 5.47E-05 6 0.050129 7.90E-10

10000 4 0.043643 7.74E-05 6 0.076038 1.12E-09

10 10 6 0.002224 1.73E-05 13 0.005993 4.42E-05
100 3 0.002276 6.53E-05 5 0.00527 2.78E-06
1000 2 0.006544 3.19E-05 4 0.018547 4.78E-06
5000 2 0.025431 6.68E-06 3 0.04724 8.67E-05

10000 2 0.044978 3.36E-06 3 0.074872 4.32E-05
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Figure 1: Performance profile of EMFD and DFCG methods with respect to
the number of iteration for the problems 1-10
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Figure 2: Performance profile of EMFD and DFCG methods with respect to
the CPU time (in second) for the problems 1-10
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5. Conclusion

In this paper we present an enhanced matrix-free via double step
length approach (EMFD) method for solving large-scale system
of nonlinear equations and compare its performance with that of a
derivative-free conjugate gradient (DFCG) method for symmetric
nonlinear equations [2] by doing some numerical experiments. We
however proved the global convergence of our proposed method by
using a backtracking type line search, and the numerical results show
that our method is very efficient.
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