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3Unité de Formation et de Recherche en Science Exacte et Appliquée, Université Ouaga I Professeur Joseph Ki-Zerbo, Burkina Faso.
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Abstract

In this paper, we propose a new approach to the resolution of linear programs, whose coefficients are fuzzy triangular numbers. This new
approach is an adaptation from the method MOMA-plus (Multi-Objective Metaheuristic based on Alineor method) [1] to the resolution of
fuzzy linear programs. First of all it consists in using of a new procedure proposed here to the converting of the fuzzy linear program into a
deterministic multi-objective linear program, secondly of the using of the MOMA-plus procedure for resolution. Finally, three numerical
examples are given to explain the procedures and highlight the performances of this new approach.
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1. Introduction

Since the appearance of Zadeh’s article [18] on the fuzzy sets,
several works were born. Some works are for the development
of theory and others for applications. The concept of fuzzy
decision was first proposed by Bellman and Zadeh [22]. The
first application of fuzzy concepts to linear programming was
introduced by Zimmerman [24]. Since then, several researches
have been carried out for the resolution of linear programs with
fuzzy triangular curves. The methods of resolution emanating from
these researches can be classified into two categories. On the one
hand, there are those which transform the fuzzy linear problem
into a deterministic multi-objective linear problem. Among them,
we can quote P. Pandian [5], P.A. Thakre and al. [8], G. Zhang
and al. [15], Mr Zangiabadi and Mr H. Maleki. [20]. On the
other hand, there are those that directly solve the problem using
operations in fuzzy sets. For this category we can quote interactive
methods proposed by Mariano Jiménez and al. [19], the primal-dual
fuzzy simplex algorithm proposed by Nezam Mahdavi-Amiri
and al. [10], the inner point method proposed by Yi-hua Zhong
and al. [3], the use of the comparison index proposed by Yozo
Nakahara and Mitsuo Gen [23], the use of membership functions
proposed by Mr. Zarafat Angiz and al. [21] and the principle of
comparison of fuzzy numbers proposed by H. R. Maleki and al. [17].

As the resolution of fuzzy linear problems generates difficulties as
soon as we have a very high number of variables and constraints, we
propose in the work a new approach to solve linear programs with
fuzzy elements in the same perspective as our predecessors to over-
come this difficulty. Sense it consists in converting a linear program
to fuzzy triangular elements in a deterministic multi-objective linear

program before applying MOMA which has proved its value in the
deterministic linear programs [2].

The MOMA method(Multi-Objective Metaheuristic based on
Alienor method), developed by Kounhinir Somé and al. [7], con-
sists in transforming a multi-objective optimization problem into a
global optimization problem of a single variable using an Alienor
transformation(see [11, 13, 14, 16, 26]). In which desciption of the
theoretical foundations with didactic examples of MOMA is pre-
sented [2]. Subsequently, in order to improve the performance of
this method, another alternative named MOMA-plus is proposed
by Kounhinir Somé and al. [1]. This version MOMA-plus right
improves the speed, the good convergence and the good distribution
of the solutions in relation to the true front of Pareto [1, 4]. One of
the main challenges of this method MOMA-plus for the designers is
its generalization to the resolution of all problems of optimization.
As it is already done for the case of real optimization problems linear
[2] and nonlinear [7] we will interest in the case of the problems of
optimization in fuzzy numbers and particular to the cases of fuzzy
triangular numbers.

In this work we propose two new elements: the new way of convert-
ing a problem with fuzzy elements into a real-world problem and
the extension of the scope of MOMA, For the first time, to fuzzy
optimization schemes. Thus, for a good presentation of this work,
we will present it in 5 sections. Indeed, in the next section, we will
describe the MOMA-plus method and in section 3 we will present
some elements of the fuzzy triangular numbers. Section 4 will be
devoted to the hybrid method. And end tis work with the section 5 in
which we will make a didactic example and two other applications.

Copyright © 2017 Author. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.
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2. Fuzzy triangular numbers

This part presents some notions about the fuzzy triangular numbers
we will need for the rest of the work. The essence of this section is
taken from [5, 6, 8, 18, 22, 27].

2.1. Definitions

Definition 2.1. Let X be a set, called universe, whose elements are
denoted by x. A fuzzy subset Ã of X is defined using a µÃ The interval
[0,1]. Ã is therefore characterized by :

Ã = {(x,µÃ(x))|x ∈ X}. (1)

The membership function may, according to the situation, represent
a degree of possibility or a degree of preference.

Definition 2.2. A fuzzy number ã is said to be triangular if it is in
the form ã = (a1,a2,a3), where a1,a2 and a3 are real, And has as a
membership function:

µã(x) =


x−a1
a2−a1

if a1 ≤ x≤ a2,
a3−x
a3−a2

if a2 ≤ x≤ a3,

0 if else
(2)

2.2. Operations

Let ã=(a1,a2,a3) and b̃=(b1,b2,b3) two triangular fuzzy numbers
and k a real. We have:

1. (a1,a2,a3)⊕ (b1,b2,b3) = (a1 +b1,a2 +b2,a3 +b3);
2. (a1,a2,a3)	 (b1,b2,b3) = (a1−b3,a2−b2,a3−b1);

3. k(a1,a2,a3) =

{
(ka1,ka2,ka3) si k ≥ 0,
(ka3,ka2,ka1) si k < 0.

4. max
(
(a1,a2,a3),(b1,b2,b3)

)
=
(

max(a1,b1),min(a2,b2),max(a3,b3)
)

5. min
(
(a1,a2,a3),(b1,b2,b3)

)
=
(

min(a1,b1),max(a2,b2),min(a3,b3)
)

.

in which min and max denote respectively minimum and maximum.

2.3. Comparison

Let ã = (a1,a2,a3) and b̃ = (b1,b2,b3) two fuzzy triangular num-
bers. We have:

1. ã≈ b̃⇐⇒ ai = bi,∀i = 1,2,3;
2. ã� b̃⇐⇒ ai ≥ bi,∀i = 1,2,3;
3. ã� b̃⇐⇒ ai ≥ bi; i = 1,2,3 et ar > br, ∀r ∈ {1,2,3};

4. ã� b̃⇐⇒


a1 ≤ b1
a1−a2 ≤ b1−b2
a1 +a3 ≤ b1 +b3.

3. Linear program with fuzzy triangular ele-
ments

3.1. Definition and property

Definition 3.1. A linear program with fuzzy triangular curves is any
mathematical program of the form:

max Z̃ =
n

∑
j=1

c̃ jx j

S.t :


n

∑
j=1

ãi jx j ≤ b̃i ; i = 1, · · · , p

x j ≥ 0 ; j = 1, · · · ,n

(3)

Where the c̃ j, ãi j and b̃i are the fuzzy triangular elements of the
problem and x j of the positive reals.

By putting c̃ j = (cm
j ,c

l
j,c

u
j), ãi j = (am

i j,a
l
i j,a

u
i j), and b̃i = (bm

i ,b
l
i ,b

u
i )

The fuzzy linear program can be written as follows:

max Z̃ =
n

∑
j=1

(cm
j ,c

l
j,c

u
j)x j

S.t :


n

∑
j=1

(am
i j,a

l
i j,a

u
i j)x j ≤ (bm

i ,b
l
i ,b

u
i ) ; i = 1, · · · , p

x j ≥ 0 ; j = 1, · · · ,n.
(4)

Property 3.1. :

Let’s note X = {x j ∈ R∗+ |
n

∑
j=1

(am
i j,a

l
i j,a

u
i j)x j ≤ (bm

i ,b
l
i ,b

u
i ); i =

1, · · · , p}. then:

� A point x∗ ∈ X is called the optimal solution of the fuzzy PL if

n

∑
j=1

(cm
j ,c

l
j,c

u
j)x
∗
j ≥

n

∑
j=1

(cm
j ,c

l
j,c

u
j)x j,∀x ∈ X

;
� A point x∗ ∈ X is called the non-dominated solution of the fuzzy

PL if there is no x ∈ X, such as

n

∑
j=1

(cm
j ,c

l
j,c

u
j)x j ≥

n

∑
j=1

(cm
j ,c

l
j,c

u
j)x
∗
j ;

� A point x∗ ∈ X is called a weakly dominated solution of the
fuzzy PL there is no x ∈ X, such as

n

∑
j=1

(cm
j ,c

l
j,c

u
j)x j >

n

∑
j=1

(cm
j ,c

l
j,c

u
j)x
∗
j .

The steps of the new method are as follows:

3.2. Converting a fuzzy problem into a deterministic
problem

This conversion will be done in two stages, namely the conversion
of the fuzzy objective into deterministic objectives and fuzzy
constraints into deterministic constraints.

First, by applying the operations on the fuzzy numbers to problem
(4), we obtain:

max Z̃ = (
n

∑
j=1

cm
j x j,

n

∑
j=1

cl
jx j,

n

∑
j=1

cu
j x j)

S.t :

 (
n

∑
j=1

am
i jx j,

n

∑
j=1

al
i jx j,

n

∑
j=1

au
i jx j) ≤ (bm

i ,b
l
i ,b

u
i ) ;

x j ≥ 0

(5)

where i = 1, · · · , p and j = 1, · · · ,n. Then by applying the techniques
of comparison to problem (5), we deduce:

max Z̃ = (
n

∑
j=1

cm
j x j,

n

∑
j=1

(cm
j − cl

j)x j,
n

∑
j=1

(cm
j + cu

j)x j)

S.t :



n

∑
j=1

am
i jx j ≤ bm

i ; i = 1, · · · , p

n

∑
j=1

(am
i j−al

i j)x j ≤ (bm
i −bl

i) ; i = 1, · · · , p

n

∑
j=1

(am
i j +au

i j)x j ≤ (bm
i +bu

i ) ; i = 1, · · · , p

x j ≥ 0 ; j = 1, · · · ,n.
(6)
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Finally, by using operations on the maxima and minima of fuzzy tri-
angular numbers, the problem (6) is converted to a fully deterministic
linear multi-objective problem as follows:

maxz1 =
n

∑
j=1

cm
j x j

minz2 =
n

∑
j=1

(cm
j − cl

j)x j

maxz3 =
n

∑
j=1

(cm
j + cu

j)x j)

S.t :



n

∑
j=1

am
i jx j ≤ bm

i ; i = 1, · · · , p

n

∑
j=1

(am
i j−al

i j)x j ≤ (bm
i −bl

i) ; i = 1, · · · , p

n

∑
j=1

(am
i j +au

i j)x j ≤ (bm
i +bu

i ) ; i = 1, · · · , p

x j ≥ 0 ; j = 1, · · · ,n
(7)

For the resolution, we will use the MOMA-plus method.

4. MOMA-plus method

4.1. Basic Concept

Consider a constraint optimization problem that takes into account
several objectives

min f1(x), · · · , fp(x)

S.c:
{

Gk(x)≤ 0, k = 1, · · · ,m
x ∈Rn.

(8)

The procedure of the MOMA-plus method for solving a multi-
objective problem consists in transforming the problem into a global
optimization problem without constraints to a single variable. The
algorithm of this MOMA-plus method for the solving of a problem
of type (8) proceeds in five essential steps that are [1]:

1. the aggregation of objective functions: consists in transforming
a multiobjective problem into a mono-objective problem;

2. penalization of the problem: this makes it possible to reduce
an optimization problem with constraints to a problem of opti-
mization without constraint;

3. reductive transformation: this step makes it possible to reduce
the optimization of a function of several variables to a function
of a single variable using an Alienor transformation;

4. search for the global optimum: it consists in using the simplex
algorithm of Nelder-Mead to determine the global optimum of
the mono-objective function of a single variable obtained in the
previous step;

5. configuration of the solution: it consists in bringing the ob-
tained solution in dimension one into a solution of dimension n
conform to the initial problem.

The algorithm of the MOMA-plus method is described in [1], the
interested reader can consult it.

4.2. Description of Steps

4.2.1. Aggregate of Objective Functions

After transforming the problem (7) into a problem in which all
the objectives to be minimized and by using the weighted sum,
we transform the multiobjective problem (7) into a mono-objective

problem as follows:

mins(z,λ ) =−λ1z1 +λ2z2−λ3z3

S.t :



n

∑
j=1

am
i jx j ≤ bm

i ; i = 1, · · · , p

n

∑
j=1

(am
i j−al

i j)x j ≤ (bm
i −bl

i) ; i = 1, · · · , p

n

∑
j=1

(am
i j +au

i j)x j ≤ (bm
i +bu

i ) ; i = 1, · · · , p

x j ≥ 0 ; j = 1, · · · ,n.
(9)

With λ1 + λ2 + λ3 = 1. Let D be the set of admissible solutions
defined by the deterministic constraints of (9).
The obtaining of optimal Pareto solutions, relative to the method of
weighting of the objective functions, is guaranteed by the following
theorem:

Theorem 4.1. [25]
Either the parametric problem

min
x∈D

s(z,λ ) (P)

with λ ∈ Λ =
{

λi ∈ [0,1];∑
i

λi = 1
}
.

• If x is an optimal solution of (P), x is an efficient solution.
• If x is an efficient solution and ZD (image set of D) is convex, if

exists λ ∈ Λ such as x is an optimal solution of (P).

4.2.2. Penalization of the problem

The penalization of the problem (9) leads to a problem without
constraints. The function of penalization we use is given in [2] and
makes it possible to obtain the problem in the following form:{

Glob.minL(X)
X ∈D

(10)

with

L(X) = s(z,λ )+K
p

∑
i=1

(
g1i(X)+g2i(X)+g3i(X)+ |g1i(X)|+ |g2i(X)|+ |g3i(X)|

)
and

D =
{

X ∈Rn;gki(X)≤ 0, i = 1, p, k = 1,3
}

K is a positif real defined by :

K ≥ M− s(z,λ )
p

∑
i=1

3

∑
k=1

gki(X)

et M = max
x∈D

s(z,λ ).

Theorem 4.2. [12]
Let X∗ be the global minimum of L(X), then X∗ is the global mini-
mum of min

x∈D
s(z,λ ).

4.2.3. Reductive transformation

The application of a transformation, Alienor, that of Konfé-
Cherruault [11], in the form

x j = h j(θ) =
1
2
[(b j−a j)cos(ω jθ +ϕ j)+b j +a j ]; j = 1, · · · ,n et θ ∈ [0,2π]

in which :

• (ω j) j=1;n et (ϕ j) j=1;n are slowly increasing,
• a j et b j are the extreme values of x j, in other words, x j ∈
[a j;b j],
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to the problem (10) makes it possible to obtain the problem in the
form :
Glob.minL(θ) =−λ1z1(θ)+λ2z2(θ)−λ3z3(θ)+K

p

∑
i=1

[
g1i(θ)+g2i(θ)+g3i(θ)

+ |g1i(θ)|+ |g2i(θ)|+ |g3i(θ)|, θ ∈ [0,2π]
]

Theorem 4.3. [2, 7]
If θ∗ is global minimum of L(θ) then X∗ = h(θ∗) is global minimum
of L(X).

4.2.4. Search for the global optimum

As the problem (11) is the minimization of a function of a single
variable without constraint, we use the simplex algorithm of Nelder
Mead, known as ” fminsearch” in MATLAB software, to determine
its overall minimum.

4.2.5. Configuring the solution

The solutions of the Problem (7) are deduced by using the previous
reductive transformation. It gives:

x∗j = h(θ∗).

5. Adaptation of MOMA-plus to fuzzy opti-
mization

5.1. Principle

The extension of the MOMA-plus algorithm to the linear problem
with fuzzy coefficients can be summarized as follows:

Step 1 Converting the fuzzy linear problem into a deterministic
multi-objective linear problem (the moving of the problem (5)
to the problem (7));

Step 2 Using of MOMA-plus;
Step 3 Determination of the solution of the fuzzy linear problem:

This step consists in deducing the solution of the initial problem
(linear problem with fuzzy agents) from the solution obtained
using MOMA-plus which is the solution of the associated de-
terministic linear program. Thus the optimal solution Z̃∗ is
obtained and solving the following problem:

Z̃∗ = max
( n

∑
j=1

cm
j x∗j ,

n

∑
j=1

cl
jx
∗
j ,

n

∑
j=1

cu
j x
∗
j

)
.

in which x∗j are the optimal solutions of the problem (7).

5.2. Numerical experiences

In this section we will apply the new method to deal with three
examples.

Example 1

Let’s consider the following fuzzy linear program:

max Z̃ = (7,10,14)x1 +(20,25,35)x2

S.t :


(3,2,1)x1 +(6,4,1)x2 ≤ (13,5,2)
(4,1,2)x1 +(6,5,4)x2 ≤ (7,4,2)

x1;x2 ≥ 0.

(11)

Using Step 1.

The program (12) can be written as follows:

max Z̃ = (7x1 +20x2,−3x1−5x2,21x1 +55x2)

S.t :



3x1 +6x2 ≤ 13
x1 +2x2 ≤ 8

4x1 +7x2 ≤ 15
4x1 +6x2 ≤ 7
3x1 + x2 ≤ 3

6x1 +10x2 ≤ 9
x1;x2 ≥ 0.

(12)

Using Step 2.

Let us transform the problem (13) into a deterministic multi-objective
linear problem as follows:

maxz1 = 7x1 +20x2
minz2 =−3x1−5x2
maxz3 = 21x1 +55x2

S.t :



3x1 +6x2 ≤ 13
x1 +2x2 ≤ 8

4x1 +7x2 ≤ 15
4x1 +6x2 ≤ 7

3x1 + x2 ≤ 3
6x1 +10x2 ≤ 9

x1;x2 ≥ 0.

.

(13)

Using Step 3.

minZ =−λ1(7x1 +20x2)+λ2(−3x1−5x2)−λ3(21x1 +55x2)

S.t :



3x1 +6x2 ≤ 13
x1 +2x2 ≤ 8

4x1 +7x2 ≤ 15
4x1 +6x2 ≤ 7
3x1 + x2 ≤ 3

6x1 +10x2 ≤ 9
x1;x2 ≥ 0.

(14)

avec λ1 +λ2 +λ3 = 1.

Using Step 4

Glob.minZ =−λ1(7x1 +20x2)+λ2(−3x1−5x2)−λ3(21x1 +55x2)+K
[
21x1 +32x2

−55+ |3x1 +6x2−13|+ |x1 +2x2−8|+ |4x1 +7x2−15|
+ |4x1 +6x2−7|+ |3x1 + x2−3|+ |6x1 +10x2−9|

]
.

Using Step 5.

Let’s use the reductive transformation, with ω1 = 1500,ω2 =
1500.05,ϕ1 = 0 et ϕ2 = 0.005. By using the eligible domain, we
find a1 = 0,b1 = 1,a2 = 0 et b2 = 0.9.
So x1 and x2 can be rewritten as follows:

x1 = h1(θ) = 1
2 [cos(1500θ)+1]

x2 = h2(θ) = 1
2 [0.9cos(1500.05θ +0.005)+0.9]

θ ∈ [0,2π].

(15)

Using Step 6.

By applying the techniques of penalization with the coefficient of
penalization K = 10000, we obtain :

L(θ) =−λ1z1(θ)+λ2z2(θ)−λ3z3(θ)+K
[
g1(θ)+g2(θ)+g3(θ)+g4(θ)+g5(θ)
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+g6(θ)+ |g1(θ)|+ |g2(θ)|+ |g3(θ)|+ |g4(θ)|+ |g5(θ)|+ |g6(θ)|
]

with θ ∈ [0,2π].

Using Step 7.

With Nelder Mead’s alogrithm, we obtain a permissible solution
set based on the λ values and by applying the fuzzy triangular
comparison techniques, the maximum value of the fuzzy objective
function is reached for (x∗1x∗2) = (0,0.9). So the solution of the fuzzy
linear program is (18,22.5,31.5) whose matching function is :

0 si x < 18
x−18
4.5 si 18≤ x≤ 22.5,

31.5−x
9 si 22.5≤ x≤ 31.5,

0 si x > 31.5

(16)

Example 2

Let’s consider the following problem :

max Z̃ = (19,20,21)x1 +(29,30,31)x2

S.t :


(4.5,5,5.5)x1 +(2.5,3,4)x2 ≤ (194,200,206)
(3,4,5)x1 +(6.5,7,7.5)x2 ≤ (230,240,250)
x1;x2 ≥ 0

(17)

The determination of the domain of admissible solutions leads us to
x1 ∈ [0,40] and x2 ∈ [0,

240
7

] and keeping the values of the slowly
rising sequences as in example 1, The solution of the problem (20)
which is:

x∗1 = 27.9;x∗2 = 18.3 et Z̃∗ = (1062,1108.3,1154.5) (18)

And whose function of belonging is :
0 si x < 1062
x−1062

46.3 si 1062≤ x≤ 1108.3,
1108.3−x

46.2 si 1108.3≤ x≤ 1154.5,
0 si x > 1154.5

(19)

Example 3

Let’s consider this linear program below whose objective function
coefficients are fuzzy triangular and non-fuzzy constraints :

max Z̃ = (2,3,5)x1 +2x2

S.t :


2x1− x2 ≤ 6
x1 +5x2 ≤ 10

x1;x2 ≥ 0

(20)

The coefficients of the constraints not being fuzzy, the transforma-
tions are carried out only in the objective function. The determination
of the domain of admissible solutions leads us to x1 ∈ [0,3.64] and
x2 ∈ [0,2], and keeping the values of the slowly rising sequences as
in Example 1, Solution of the problem (23) is:

x∗1 = 3.64;x∗2 = 1.27 et Z̃∗ = (9.824,13.464,20.744) (21)

Whose membership function is:
0 si x < 9.824
x−9.824

3,64 si 9.8624≤ x≤ 13.464,
13.464−x

7.28 si 13.464≤ x≤ 20.744,
0 si x > 40.744.

(22)

6. Conclusion

In this work we proposed a new version of MOMA-plus in order to
solve the fuzzy linear problems. In addition, a new way of defuzzifi-
cation has been proposed in this new method. Numerical experiences
during these works have proved the performance of this version of
MOMA-plus to the resolution of the linear problems with fuzzy
triangular numbers in the sense that it effectively treats the problems
even in the case of a high number of variables.
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Alienor pour la résolution des problèmes d’optimisation multiobjectif:
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