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Abstract

Pool testing for presence or absence of a trait is less expensive, less time consuming and therefore more cost effective. This study presents
a multi-stage adaptive pool testing estimator p̂en of prevalence of a trait in the absence of test errors. Pool testing is more efficient, less
expensive and less time consuming. An increase in the number of stages improves the efficiency of the estimator, hence construction of a
multi-stage model. The study made use of the Maximum Likelihood Estimate (MLE) method and Martingale method to obtain the adaptive
estimator and Cramer-Rao lower bound method to determine the variance of the constructed estimator. Matlab and R, statistical softwares
were used for Monte-carlo simulation and verification of the model, then analysis and discussion of properties of the constructed estimator
in comparison with the non-adaptive estimator in the literature of pool testing done alongside provision of the confidence interval of the
estimator. Results have shown that as the number of stages increases, the efficiency of the multi-stage adaptive estimator in the absence of
test errors also increases in comparison with the non-adaptive estimator in the absence of test errors. This makes the multi-stage adaptive
estimator better than the corresponding non-adaptive estimator in the literature of pool testing.
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1. Introduction

Prevalence of defective units in a large population from accurate
diagnostic tests is a fundamental risk assessment and management
factor [8]. Estimation of defective units one-by-one is inefficient
and uneconomical, considering that in a given population only a
few individuals may be defective. It is against this background that
pool testing comes in handy because it is more effective, less time
consuming and less expensive [4]. Pool testing occurs when units
from a population are pooled and tested as a group for the presence or
absence of a particular trait. It also reduces the Mean Squared Error
(MSE) of the estimates, hence it is more efficient, as was established
by Sobel and Ellashoff, [11]. There are two forms of pool testing
namely

(i) Non-adaptive pool testing scheme
(ii) Adaptive pool testing scheme

1.1. Non-adaptive testing scheme

In this testing scheme, a large population is divided in to n groups
which are then subjected to testing [4]. When tested, a group can
either test positive or negative and the outcome of the test aids in
constructing the non-adaptive model.

1.2. Adaptive testing scheme

In this scheme a population is divided in to n groups, which are
partitioned depending on the number of stages to be considered.
Predetermined parameters are used to partition the groups and the
number of partitioning parameters depends on the number of stages
[8]. Partitioned groups are then tested at various stages for the
presence or absence of a trait and the results used to construct the
adaptive model.

1.3. Introduction of the model

In this study we obtain a multi-stage adaptive estimator p̂en of preva-
lence of a trait in the absence of test errors, using the maximum
likelihood estimate (MLE) method and investigate its effeciency in
comparison with the non-adaptive estimator. The adaptive testing
scheme involves testing groups in stages and updating group sizes
from one stage to the next, with the group size at a stage depending
on the outcome of the test(s) at the preceding stage(s). That is testing
n1 groups each of size k1 at stage one; n2 groups each of size k2
at stage two; n3 groups each of size k3 at stage three and so on;
where k3 depends on both k1 and k2 while k2 depends on k1. For a
general adaptive scheme, at stage i ni groups each of size ki, where ki
depends on ki−1,ki−2,ki−3, .....k1 are constructed. The constructed
groups are then subjected to testing, where a group yields either
a positive or a negative result. The number of groups, ni is deter-
mined before the experiment is carried out while k′is are sequentially
determined as the experiment progresses [9].
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Figure 1: Multi-stage adaptive pool testing

2. Model Formulation and Analysis

We describe a multi-stage adaptive scheme with perfect tests as it
is the backbone of this study and thereafter perform comparison
analysis with other existing estimators, in the absence of test errors.
For a multi-stage adaptive scheme, we set n1 = λ1n, n2 = λ2n, n3 =
λ3n, ...., nn = (1− λ1n− λ2n− ....− λn−1n); where λ1, λ2,..... ,
λn−1 are parameters used to partition the pools; k2 depends on the
outcome at stage 1, k3 depends on the outcomes at stages 1 and 2
and kn depends on the outcomes at stages 1,2,3, .......,n−1. Each
constructed group at each stage is then subjected to testing, yielding
either a positive or negative result. This is shown in Figure 1 below:
To construct this estimator, we consider the non-adaptive estimator
in the absence of test errors, which according to [2] is given as

p̂e = 1−
(

1− X
n

) 1
k

. (1)

and using Cramer-Rao lower bound method its variance is obtained
as

var(p̂e) =
1− (1− p)k

nk2(1− p)k−2 (2)

The non-adaptive estimator now enables us to explore the multi-stage
adaptive estimator in the absence of test errors. This estimator is
constructed through stages starting with stage one.

2.1. Adaptive Estimator at stage one

For the adaptive estimator at this stage, suppose X1 out of n groups
test positive on the test. Then X1 has a Binomial distribution given
by

X1 ∼ Binomial(λn,τ(p)|k=k1). (3)

with its probability density function given by

f (x) =
(

λn
x

)
τ1(p)x(1− τ1(p))λn−x (4)

where,

τ1(p) = 1− (1− p)k1 (5)

Using the Maximum Likelihood Estimate (MLE) method, the adap-
tive estimator at stage one is obtained as

p̂e1 = 1−
(

1− X1

λn

) 1
k1
. (6)

and using Cramer-Rao lower bound method the variance is obtained
as

var(p̂e1) =
1− (1− p)k1

λnk1
2(1− p)k1−2

(7)

2.2. Adaptive Estimator at stage two

Next we determine the two-stage adaptive estimator which is a
function of k2, the group size at stage two and is determined by.

k2 = argminl [Var(p̂1)]|p1=p, (8)

For the estimator at stage two, the total number of groups, n is divided
in to λn groups each of size k1 tested at stage one and 1−λn groups
each of size k2 tested at stage two. Suppose that X2 groups out of the
(1−λ )n groups tested at stage two are defective, then

X2|X1 ∼ Binomial((1−λ )n,τ2|1(p))

and the joint distribution of X1 and X2 is given as

f (X1,X2)=Binomial(λn,τ1(p)|k=k1)∗Binomial((1−λ )n,τ2|1(p)).

(9)

Using the Maximum Likelihood Estimate (MLE) method, the adap-
tive estimator at stage two, p̂e2 of p is obtained as the solution to

k1 ∗X1

1− (1− p)k1
+

k2(X1)∗X2

1− (1− p)k2(X1)
= n(λk1 +(1−λ )k2(X1)) (10)

and using cramer-Rao lower bound method its variance is obtained
as

Var(pe2)=
τ1(p)τ2(p)(1− τ1(p))(1− τ2(p))

τ2(p)(1− τ2(p))λnk1
2(1− p)2k1−2 + τ1(p)(1− τ1(p))(1−λ )nk2

2(1− p)2k2−2
,

(11)

with τ1 described in Equation (5) and τ2 given as

τ2|1(p) = 1− (1− p)k2(X1). (12)

2.3. Adaptive Estimator at stage three

For the estimator at this stage, the total number of groups, n is
divided in to λ1n groups each of size k1 tested at stage one, λ2n
groups each of size k2 tested at stage two and (1−λ1−λ2)n groups
each of size k3 tested at stage three, with k3 described as

k3 = argminl [Var(p̂2)]|p2=p1 , (13)

Suppose that X3 groups out of the (1−λ1−λ2)n groups tested at
stage three are defective, then

X3|X2,X1 ∼ Binomial((1−λ1−λ2)n,τ3|2,1(p))

and the joint distribution of X1, X2 and X3 is given as

f (X1,X2,X3) = Binomial(λ1n,τ1(p)|k=k1)

∗ Binomial(λ2n,τ2|1(p))

∗ Binomial((1−λ1−λ2)n,τ3|2,1(p)). (14)



International Journal of Applied Mathematical Research 95

The adaptive estimator at stage three, p̂e3 of p is then obtained from
Equation (14) using MLE method as the solution to

k1 ∗X1

1− (1− p)k1
+

k2(X1)∗X2

1− (1− p)k2(X1)
+

k3(X2)∗X3

1− (1− p)k3(X2)

= n(λ1k1 +λ2k2(X1)+(1−λ1−λ2)k3(X2)) (15)

and using cramer-Rao lower bound method its variance is obtained
as

Var(pe3) =
τ1(p)τ2(p)τ3(p)(1− τ1(p))(1− τ2(p))(1− τ3(p))

E
,

(16)

where E is described in the appendices. τ1 and τ2 are described by
Equations (5), (12) while τ3 is given by

τ3|2,1(p) = 1− (1− p)k3(X2) (17)

We can now consider the four-stage adaptive model in the absence
of test errors and thereafter generalize to the multi-stage adaptive
model

2.4. Adaptive Estimator at stage four

At this stage, the total number of groups, n is divided in to λ1n
groups each of size k1 tested at stage one, λ2n groups each of size k2
tested at stage two, λ3n groups each of size k3 tested at stage three
and (1−λ1−λ2−λ3)n groups each of size k4 tested at stage four.
The group size, k4 is described as

k4 = argminl [Var(p̂3)]|p3=p2 , (18)

. Now if X4 groups out of the (1−λ1−λ2−λ3)n groups tested at
stage four are defective, then

X4|X3,X2,X1 ∼ Binomial((1−λ1−λ2−λ3)n,τ4|3,2,1(p))

and the joint distribution of X1, X2, X3 and X4 is given as

f (X1,X2,X3,X4) = Binomial(λ1n,τ1(p)|k=k1)

∗ Binomial(λ2n,τ2|1(p))

∗ Binomial(λ3n,τ3|2,1(p)) (19)

∗ Binomial((1−λ1−λ2−λ3)n,τ4|3,2,1(p)).

The adaptive estimator at stage four, p̂e4 is then obtained from equa-
tion 18 as the solution to

k1 ∗X1

1− (1− p)k1
+

k2(X1)∗X2

1− (1− p)k2(X1)

+
k3(X2)∗X3

1− (1− p)k3(X2)
+

k4(X3)∗X4

1− (1− p)k4(X3)
(20)

= n(λ1k1 +λ2k2(X1)+λ3k3(X2)+(1−λ1−λ2−λ3)k4(X3))

and using cramer-Rao lower bound method its variance is obtained
as

Var(pe4) =
D
F

(21)

where D and F are described in the appendices. τ1, τ2 and τ3 are
described by Equations (5), (12) and (17) while

τ4|3,2,1(p) = 1− (1− p)k4(X3) (22)

Using these ideas, we can now construct the multi-stage adaptive
estimator, p̂en, determine its variance and do comparison analysis
with other existing estimators.

2.5. Adaptive Estimator at stage n

Here the total number of groups, n is divided as described in sub-
section 3.4 with the group size kn determined as

kn = argminl [Var(p̂(n−1))]|p(n−1)=p(n−2), (23)

Now if Xn groups out of the (1−λ1....−λn−1)n groups tested at
stage n are defective, then following the steps followed in sub-section
3.4 above, the multi-stage adaptive estimator, p̂en is obtained as the
solution to

k1 ∗X1

1− (1− p)k1
+ .....+

kn(Xn−1)∗Xn

1− (1− p)kn(Xn−1)

= n(λ1k1 + .....+(1−λ1....−λn−1)kn(Xn−1)) (24)

while its variance is given as

Var(pen) =
τ1(p)....τn(p)(1− τ1(p))....(1− τn(p))

G
(25)

G is given in the appendices.

3. Discussion of Results, Conclusion and Rec-
ommendations

In this section we discuss the results as provided by Table 4.1 and
Figure 4.1. The highlights of the results would enable us make a
detailed conclusion to this study. Here we compared our constructed
estimators at stages two, three and four in the absence of test errors,
that is p̂e2, p̂e3 and p̂e4 with the non-adaptive estimator in the ab-
sence of test errors. For the non-adaptive estimator in the absence of
test errors, var(p̂e) is given by Equation (2), [2] Asymptotic Relative
Efficiency (ARE) values for stages two, three and four for the adap-
tive estimator in the absence of test errors are obtained by dividing
Equation (2) by Equations (11), (16) and (21) respectively. That is,

Var(p̂e)

Var(p̂e2)
,

Var(p̂e)

Var(p̂e3)
and

Var(p̂e)

Var(p̂e4)
,

where Var(p̂e), Var(p̂e2), Var(p̂e3) and Var(p̂e4) are given by Equa-
tions (2), (11), (16) and (21) respectively. On simplifying we obtain

AREp̂e2 =
U

k2(1− p)k−2τ2τ1(1− τ1)(1− τ2)
(26)

AREp̂e3 =
V

k2(1− p)k−2τ1τ2τ3(1− τ1)(1− τ2)(1− τ3)
(27)

and

AREp̂e4 =
W

k2(1− p)k−2τ1τ2τ3τ4(1− τ1)(1− τ2)(1− τ3)(1− τ4)

(28)

where U , V and W are desribed in the appendices. Using
these Equations and R-Gui software Table 1 was generated.

p Stage2 Stage3 Stage4
0.1 0.6472 0.7476 5.6716
0.2 0.9789 1.2274 6.4893
0.3 1.7039 2.7864 11.6500
0.4 3.5081 9.6128 40.3185
0.5 8.8854 52.0772 270.3464
0.6 29.6982 463.8524 3419.826

Table 1: ARE values of p̂e2, p̂e3 and p̂e4 relative to p̂e.
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Figure 2: ARE of p̂e2, p̂e3 and p̂e4 vs probability, p

Table 1 provides generated ARE values of adaptive estimators at
stages two, three and four, that is p̂e2, p̂e3 and p̂e4 relative to p̂e.
From the table it is evident that these estimators register relatively
high ARE values, except for p= 0.1 at stage two where the efficiency
is slightly less than 1. This means that adaptive estimators in the
absence of test errors are fairly more efficient than the non-adaptive
estimator in the absence of test errors. It is also clear from the tables
that ARE values increase with increase in the number of stages;
the adaptive estimator at stage two having the lowest ARE values
while the estimator at stage four has the highest ARE values. This is
another important point to support the fact that the adaptive testing
scheme gets better as the number of stages increases. This scenario
is also depicted by Figure 2 below:

4. Conclusion and Recommendation

4.1. Conclusion

From our discussions, it is clear that as the number of stages increases
the efficiency of the multi-stage adaptive estimators also increases.
It is therefore evident that the multi-stage adaptive estimators out-
perform the non-adaptive estimators. We therefore recommend the
adoption of the multi-stage adaptive estimation scheme in estimating
prevalence of a trait.

4.2. Recommendation For Further Work

This study focused on testing groups at various stages, with results
at a stage depending on results at previous stages. However, a more
inclusive scheme would consider retesting groups that test negative
for example, with the view of checking quality to ensure that a
positive group is not erroneously labeled as negative. This creates
an opening for further research work.
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Appendices

D= τ1(p)τ2(p)τ3(p)τ4(p)(1−τ1(p))(1−τ2(p))(1−τ3(p))(1−τ4(p))

E = τ2(p)τ3(p)(1− τ2(p))(1− τ3(p))λnk1
2(1− p)2k1−2

+ τ1(p)τ3(p)(1− τ1(p))(1− τ3(p))λ2nk2(X1)
2(1− p)2k2(X1)−2

+ τ1(p)τ2(p)(1− τ1(p))(1− τ2(p))(1−λ1−λ2)nk3(X2)
2(1− p)2k3(X2)−2

F = τ2(p)τ3(p)τ4(p)(1− τ2(p))(1− τ3(p))(1− τ4(p))λnk1
2(1− p)2k1−2

+ τ1(p)τ3(p)τ4(p)(1− τ1(p))(1− τ3(p))(1− τ4(p))λ2nk2(X1)
2(1− p)2k2(X1)−2

+ τ1(p)τ2(p)τ4(p)(1− τ1(p))(1− τ2(p))(1− τ4(p))λ3nk3(X2)
2(1− p)2k3(X2)−2

+ τ1(p)τ2(p)τ3(p)(1− τ1(p))(1− τ2(p))(1− τ3(p))(1−λ1−λ2−λ3)nk4(X3)
2(1− p)2k4(X3)−2

G = τ2(p)....τn(p)(1− τ2(p))....(1− τn(p))λnk1
2(1− p)2k1−2

+ ....τ1(p)....τn−1(p)(1− τ1(p))....(1− τn−1(p))(1−λ1....−λn−1)nkn(Xn−1)
2(1− p)2kn(Xn−1)−2.

U = 1− (1− p)k
[

τ2(1− τ2)λk1
2(1− p)2k1−2

+ τ1(1− τ1)(1−λ )k2
2(1− p)2k2−2

]

V = 1− (1− p)k
[

τ2τ3(1− τ2)(1− τ3)λk1
2(1− p)2k1−2

+ τ1τ3(1− τ1)(1− τ3)λ2k2
2(1− p)2k2−2

+ τ1τ2(1− τ1)(1− τ2)(1−λ1−λ2)k3
2(1− p)2k3−2

]
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W = 1− (1− p)k
[

τ2τ3τ4(1− τ2)(1− τ3)(1− τ4)λk1
2(1− p)2k1−2

+ τ1τ3τ4(1− τ1)(1− τ3)(1− τ4)λ2k2
2(1− p)2k2−2

+ τ1τ2τ4(1− τ1)(1− τ2)(1− τ4)λ3k3
2(1− p)2k3−2

+ τ1τ2τ3(1− τ1)(1− τ2)(1− τ3)(1−λ1−λ2−λ3)k4
2(1− p)2k4−2

]
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