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Abstract 
 

In this paper we present a novel model to analyze the behavior of random asset price process under the assumption that the stock price 

process is governed by time-changed generalized mixed fractional Brownian motion with an inverse gamma subordinator. This model is 

constructed by introducing random time changes into generalized mixed fractional Brownian motion process. In practice it has been ob-

served that many different time series have long-range dependence property and constant time periods. Fractional Brownian motion pro-

vides a very general model for long-term dependent and anomalous diffusion regimes. Motivated by this facts in this paper we investi-

gated the long-range dependence structure and trapping events (periods of prices stay motionless) of CSCO stock price return series. The 

constant time periods phenomena are modeled using an inverse gamma process as a subordinator. Proposed model include the jump be-

havior of price process because the gamma process is a pure jump Levy process and hence the subordinated process also has jumps so 

our model can be capture the random variations in volatility. To show the effectiveness of proposed model, we applied the model to cal-

culate the price of an average arithmetic Asian call option that is written on Cisco stock. In this empirical study first the statistical proper-

ties of real financial time series is investigated and then the estimated model parameters from an observed data. The results of empirical 

study which is performed based on the real data indicated that the results of our model are more accuracy than the results based on tradi-

tional models. 

 
Keywords: Arithmetic Average Asian Option Pricing; Generalized Mixed Fractional Brownian motion; Inverse Gamma Subordination; Time-Chanced 

Processes. 

 

1. Introduction 

Stochastic models have ability to represent the complex phenome-

na in a simple fashion diffusion process is one of the most ele-

mental stochastic processes in a variety of applications in natural 

and social sciences. Brownian motion is the only stochastic pro-

cess which is Gaussian, stationary and Markovian. In a broad 

range of contexts, Brownian motion used to model as a driving 

force for the random behavior of many natural random phenome-

na(for log returns) whose value is the result of a large number of 

small shots occurring in time. In the Black-Scholes model, the 

asset prices are assumed to behavior according to the geometric 

Brownian motion. This model assumes that the logarithmic returns 

are independent and satisfies the efficient market hypothesis. But 

empirical studies represent that financial asset price processes 

have heavy tails, leptokurtosis, stochastic volatility and jump be-

haviors [24], [25], [27].The tail distributions of logarithmic returns 

in financial time series behavior as   ~ , 3
t

P r x x     where 

t
r log returns on time interval t . and  is Pareto exponent[29]. 

The models which based on classic Brownian motion are unable to 

match the stylized facts as self-similarity, long range correlations, 

heavy-tailed and skewed marginal distributions, volatility cluster-

ing[1], [12]. 

We don’t know completely what the causes of these statistical 

properties are. The discovering the long-range dependence in fi-

nancial markets is stimulates the application of fractional Browni-

an motion. Long range dependence properties of a time series is 

founded in a variety of fields for example physiology, finance, 

solar physic. Long range dependence denotes the property of time 

series to exhibit persistence behavior. A process has the long 

range dependence properties if the autocorrelations decay to zero 

so slowly so    ~ , 0,1k c k


   . The empirical studied suggest 

to use Fractional Brownian motion with  1 2,1H   as a model for 

logarithmic returns [23]. Fractional Brownian motion is a proto-

typical model for displaying the long term depending stochastic 

processes. It is an important model for fractional dynamical sys-

tems. Fractional Brownian motion is a generalization of Brownian 

motion. Such that dropping the Markovian property in Brownian 

motion is obtained the fractional Brownian motion. So Ito calculus 

does not apply to the FBM. It is not semi martingale for 1 2H  . 

To overcome this shortcoming, [5] was proposed a mixed frac-

tional Brownian (MFBM) model with  3 4,1H  . MFBM model 

has been employment for pricing currency option [16], pricing 

European options pricing Asian power options [2].  

Especially in the emerging markets, the financial data represent 

the motionless periods, i.e. the price path shows constant periods 

[14]. Normal diffusion is characterized by Gaussian probability 

density function whose variance increases linearly in time. The 

anomalous diffusion processes refers to the processes which the 

mean square displacement (MSD) of a price process is no longer 
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linear in time. They are characterized by variance growing slower 

(sub diffusion) or faster (super diffusion) than normal diffusion. 

To model the anomalous behavior one of ways is change the real 

time in Brownian diffusion by inverse subordinators. The time 

changed process exhibits properties of anomalous diffusion [19]. 

Subordination of fractional Brownian motion consists of time-

changing the paths of FBM by an independent subordinator.  

We investigated the stochastic origin of financial asset price pro-

cess and the arithmetic average Asian option pricing problem. In 

this study, the time-changed generalized mixed fractional Browni-

an motion model was based on a fractional stochastic differential 

equation which is proposed by [31] .We introduce the subordina-

tor process into the generalized mixed fractional Brownian mo-

tion, that is, we change the original clock as calendar time of main 

stochastic process with a new random clock as a business time 

which a non-negative, non-decreasing, nonlinear process  , ,1
M t

 
. 

The randomness in business time generates randomness in volatili-

ty. We obtain the time-changed generalized mixed fractional 

Brownian motion, i.e.,   , , ,1H
Z M t

  
where parent pro-

cess  ,
.

H
Z


is a generalized mixed fractional Brownian mo-

tion(GMFBM) and  , ,1
M t

 
is the inverse Gamma subordinator. 

We can deduce properties of   , , ,1H
Z M t

  
 from properties of the 

subordinator  , ,1
M t

 
.  

The remainder of this paper is organized as follows. In section 2, 

we review definitions and the basic properties that we will need 

for the rest of the paper of fractional Brownian motion and we 
describe the different methods to estimate Hurst exponent H . In 

section 3, we give a time-changed fractional Brownian motion and 

time-changed mixed generalized fractional Brownian motion. In 

section 4, we review the Asia option pricing problem, in section 5, 

the performance of the proposed model is illustrated by some nu-

merical experiments. Finally section 6 presents the conclusions. 

2. Fractional Brownian motion 

Fractional Brownian motion (FBM) first was introduced by Kol-

mogorov (1940) in Hilbert spaces and a stochastic integral repre-

sentation provided by [15]. The FBM is the usual candidate to 

model the phenomena which have self-similarity and long range 

dependence properties can be observed from the empirical data. 

Fractional Brownian motion is only stochastic process which is 

Gaussian, non- stationary, non-Markovian and statistically self-

similar with continuous sample path. 

 

Definition 2. 1: A fractional Brownian motion (FBM), 

  H t R
B t


with Hurst exponent  0,1H   on the probability spac-

es  , ,P   is a stationary, mean-zero Gaussian process with the 

features, 

 

i).  0 0
H

B   

 

ii). 
   0 , 0

H
E B t t 

 
 

iii). 
   

2
22 2, , , 0

2

HH HH

H H
Cov B t B s t s t s s t


         

 
 

Where     2 1 2 cos
H

H H H     . If 2 1   case is called a 

normalized fractional Brownian motion. If 1 2H  corresponding 

FBM is standard Brownian motion  B t , for 1 2H  ,  H
B t  is 

neither a semi-martingale nor a Markov process. The main differ-

ence between them is that the increments of  B t are independent 

while the increments of  H
B t  are dependent. 

Fractional Brownian motion is characterized by the following 

properties [17]: 

•  H
B t is a self-similar process, i.e for every con-

stant 0c  ,      ; 0 ; 0
d

H

H H
B ct t c B t t    so  

   1
d

H

H H
B t t B        

22 22 21 1H H H

H H H
E B t E t B t E B t      
    

 

Let      1 , 1,2,...
H H H

b k B k B k k    then  .H
b  are called 

fractional Gaussian noise (fGn) and are stationary and they have 

following covariance function 

•      1
, 1,2,...,

H k H k H k
b t B t B t k n


  

,
 .H

b
 are called 

fractional Gaussian noise (fGn) and are stationary. 

       
2

1 1
~ 0,

H

H k H k H k k k
b t B t B t N t t

 
  

 [20].Fractional 

Gaussian noise process has following covariance function, 

 

          

 

2 2 2

2 2

1
, 1 1 2

2

2 1 ,

H H H

H H

H

n Cov b k b k n n n n

H H n n





       
 

  

 

 

• The useful measure of the degree of dependence between 

the values of a time series at different times is given by the 

following expected value, 

 

 
 2

22 2 !
( ) ( )

!2

H kk

H H k

k
E B t B s t s

k


   
 

 

 

• For 1 2H   the process 
  : 0

H
B t t 

exhibit a long range 

dependence, that is, and for n  large enough, 
 

1n

n




 
. 

The parameter H determines the memory of the process 

and also controls the roughness of its path. If 
 0,1 2H 

 
the process has short memory and its trajectory is rough and 

for 
 1 2,1H 

 far away observations have significant influ-
ence on the present values of the process. The autocorrela-

tion function 
 n

 behaves like
 

2 2

~
H

n n


. A fBm can be 

represented as an integral with respect to Brownian motion 

as [15] , [17] , [14],  

 

 
 

     

   

1 2 1 2

0

1 2

0

1

1 2

H H

tH H

t u u dB u

B t
H t u dB u

 




    
  

  
    

 

                      (1)
 

 

Where,  B t is standard Brownian motion, 

  1 2

0

1 2 H xH x e dx


    is Euler’s gamma function and 1 2d H   

is called the memory parameter. For each t , the random variable 

 H
B t  has a Gaussian distribution with    2 2~ 0, H

H
B t N t [7]. 

The probability density function (pdf) of FBM given by 

 

  2 21 1
, exp ,

22
H

H

B H
f x t x t x R

t

 
   

 
 

 

The Laplace transform of FBM is described as 

 

    2 21
exp exp , 0

2

H

H
E uB t u t t

 
    

 
, 

 

We can approximate to the Mandelbrot and van Ness representa-

tion with Riemann type sums as follows, 

 

            
0 1 2 1 2 1 2

1 2
0

ˆ
tH H H

H H
k d k

B t c t k k B k t k B k
  

 

        
 (2) 

 

Where, 
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     2 1 sin 1 2
H

c H H H      

 

Remark: We denotes the increments of fractional Brownian mo-

tion as    
H

H t
dB t dt , ~ (0,1)

t
N . 

2.1. Hurst exponent H estimation method 

There are many methods to estimate the Hurst parameter H . 

Let
k

S denotes the price of a financial asset which follows a FBM 

of stock (index) at time k  0,1,2,...,k n ,  ln
k k

Y S  and t  is 

the observation interval t T n  , T is observation period. 

Let
 1i i t i t

Z Y Y
  

  , 1,2,...,i n  and ˆ
i i

x Z t    [22], [26] 

 

 
   

  

 
2 1 2 1

2 2

2 1 2 2 2 1
1 1

2

1

1

2 21ˆ ln
12ln 2

n n

i i i i
i i

n

i
i

x x x x
n

H

x
n

 

  
 



   





                 (3) 

 

1
2

2
3

ˆ

n

i i
i

nRobust

i i
i

x x
H

x x











                                                                         (4) 

 

R/S method: Given a return series  : 1,2,...
t

X x t  with average 

 
1

1 n

t
t

x n x
n 

   and variance     
2

2

1

1

1

n

t
t

S n x x n
n 

 


 then,  

 

 
   

    1 2 1 2

1
max 0, , ,..., min 0, , ,...,

n n

R n
w w w w w w

S n S n
   

 

Where    1 2
... , 1,2,...,

k k
w x x x kx n k n       

If the sample series satisfy long range dependence, then  

 

     ~ ,HE R n S n cn n   

 

If we take the logarithm both of side the equation, we obtain that, 

 

        log log .logR n S n c H n   

 

If we assume that the time series displays a power law 

as   ~ , 1 3p x x     . 

Then Hurst exponent H is related with   as  3 2H   . The 

probability density of power-law distribution is given by  

 

     min min
1p x x x x






                                                         (5) 

 

The MLE of the power-law exponent   is obtained as  

 

  
1

min
1

ˆ 1 log
n

MLE i
i

n x x




                                                             (6) 

 

Where , 1,2,...,
i

x i n  are independent observed values 

as
mini

x x . 

Remarks: Fractional Brownian motion exhibits sub diffusive be-

havior for 1 2H   and super diffusive behavior for 1 2H  and 

normal diffusion for 1 2H  . 

3. Time-changed generalized mixed fractional 

Brownian motion 

In this section, we will consider a superposition of two independ-

ent mechanisms, namely a generalized mixed FBM and a time 

process. Here time process can be considered an operational time 

of main process. The generalized mixed fractional Brownian mo-

tion (GMFBM) is combination of standard Brownian motion and 

fractional Brownian motions. In [13] is introduced the sub-

diffusive geometric Brownian motion to model the asset prices. 

[9] Proposed a time-changed mixed Brownian fractional Black-

Scholes model for the price of the underlying stock. The details of 

subordinated generalized mixed fractional Brownian motion mod-

el, you can look [21]. 

3.1. The subordinator process 

The changing time t  of main stochastic process with another 

increasing process (subordinator)  , ,1
M t

 
 is a way to construct 

new stochastic process from a main process. A subordinator is a 

real-valued Levy process which only takes nonnegative values. 

From the Levy-Ito decomposition, for a subordinator the  must 

be zero, the drift   must be nonnegative. We denote the Laplace 

exponent of a subordinator process X as  

 

     
0

1 , 0xe v dx   


   
                                           (7) 

 

The Laplace exponent of a subordinator is closely related to the 

concept of Bernstein functions. The Laplace exponent  of any 

subordinator is a Bernstein function with  
0

lim 0
t

t


 . It can be 

shown that the converse is also valid. That is, a function 

   : 0, 0,    is the Laplace exponent of a subordinator if and 

only if  is a Bernstein function with  
0

lim 0
t

t


 .We consider the 

time change process  , ,1
M t

 
 is given by inverse first hitting time 

process of   ,1 0t
G t

 
which is an increasing right continuous pro-

cess with left limits. The relationship between the two processes is 

expressed as     , ,1 ,1
inf 0 :M t G t

  
    .   , ,1 0t

M M t
  

 Is an 

inverse subordinator associated with the Bernstein func-

tion .      ,1 , ,1
P G t P M t

  
     

Choosing the different stochastic process as  ,1
G t


, we can gener-

ate wide range of stochastic time processes [23]. In this study we 

consider the physical time t  as  , ,1
t M t

 
  with the drift less 

strictly increasing and pure jump Levy process  ,1
G t


.The Laplace 

transform of  ,1
G t


 is given by    

1
log 1u u


  [16] , [19]. We 

change the time process of main process by an inverse gamma 

subordinator. It is continuously increasing process and denoted by 

 , ,1
M t

 
[31]. 

3.2. Mixed fractional Brownian motion 

We consider the a linear combination of a Brownian motion  B t  

and independent fractional Brownian motion   , 0H H t
B B t


 with 

Hurst exponent  0,1H  , MFBM is defined as   
0t

Z Z t


   

 

       , , / 0
H

Z t a B t b B t a b R                                             (9) 

 

The process   
0t

Z Z t


 is centered Gaussian process with 

 0 0Z   and with covariance function [2], 

 

        
2

22 2 2, min ,
2

HH Hb
Cov Z t Z s a t s t s t s                  (10) 

3.3. The time changed generalized mixed fractional 

Brownian motion model 



88 International Journal of Applied Mathematical Research 

 
The generalized mixed fractional Brownian motion process intro-

duced by [34] as a linear combination of a countable number of 

Brownian motions and fractional Brownian motions. This process 

is defined as follows. 

 

Definition ([21] definition2.1: Let be  1 2
, ,...,

n
     coeffi-

cients and  1 2
, ,...,

n
H H H H  Hurst parameters. A gmfBm is a 

stochastic process   , 0H H t
Z Z t

 
 where,  ,

1
k

N

H k H
k

Z B t





  . 

The mean and variance of gmfBm are   0
H

E Z  and 

  22

1

k

N
H

H k
k

Var Z t


  , respectively[21].  

 

      
22 22

, ,
1

1
,

2

k
k k

N HH H

H H k
k

Cov Z t Z s t s t s
 




                          (11) 

3.4. Pricing model 

In this study we describe the time- changed generalized mixed 

fractional Brownian motion model as follows, 

 

        , , ,1 , ,1 , ,1

H

H G
Z M t B M t B M t

     
                               (12) 

 

We assume that the dynamics of underlying stock price 
t

S  follow 

following time-changed generalized mixed fractional Brownian 

motion, 

 

       

   

2
2

, , ,1

1
2

, ,1

1

2exp
H G

t t

H

t t Z M t
S S

B M t

 

 

   




 
  

  
 
 

                   (13) 

 

Where 

 

     , ,1 , ,1
1t M t M t

   
     

3.5. Parameter estimation of model 

Let  0, ,2 ,...,t t t n t     is the observation times and 

 0
, ,...,

t n t
X x x x

 
  are returns. The maximum likelihood estima-

tion of parameters   and  are determined as follows [31], [10], 

[26] [32], [33]. 
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                                    (15) 

3.6. Simulation of the model 

We use an inverse gamma process as new time process in pro-

posed model. The probability density function of inverse gamma 

distribution is given by  
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                                                   (16) 

 

Parameter estimation with methods of moments: The observed 

data is given by  1 2
, ,..., , 0

n i
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Maximum Likelihood method: 
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We can simulate the time- changed generalized mixed fractional 

Brownian motion process as follows [30].  
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Where 
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Where 
1 2
,U U and 

3
U  are uniform distributed random variables 

over  0,1 ,  is mean of exponential distribution and   is the 

stable exponent. The Simulation algorithm is can be summarize as 

follows: 

a)  Determine the time interval  0,t  and h t n , 

 1 2 1
, 2 ,..., 1 ,

n n
t h t h t n h t t


     , 

b)  Generate the gamma variates  1 2
, ,...,

n
G G G G  with 

 1
~ ,

i i i
G gamma t t


 , 

c) Generate  -stable random variates  1 2
, ,...,

n
S S S S , 

d)  Set 1 , 1
k k k

Y G S k   and 
1

, 1,2,...,
i

i k
k

M Y i n


  . 

The increments of FBM are discritized by Maruyama symbols as 

[10], [31]  
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Where 
i

t represent the ith  sub-interval. We get the FBM simula-

tion curves according to,  
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4. Asian option pricing 

A standard option is a financial contract which gives the owner of 

the contract the right but not the obligations, to buy or sell a speci-

fied asset to a pre specified price (strike price) at a per specified 

time (maturity). Estimating option pricing is an important topic in 

mathematical finance. The payoff of an option is described by the 

difference between the underlying asset price and strike price. 

Path dependent exotic options are options whose payoff is affected 

by how the price of the underlying asset at maturity was reached, 

the price path of the underlying asset. Asian options are popular 

hedging instruments for financial risk managers. Its payoff is de-

termined by the average value over some predetermined time in-

terval. From the stabilization effect which is short price changes in 

the market of average Asian options (average options) are widely 

used in commodity and stock markets as cheaper alternatives to 

European and American options for hedging and risk management. 

It reduce the volatility in option. The payoff of an Asian option is 

determined by the average value of the stock price over a prefixed 

time interval. The terminal payoff Asia call options with fixed 
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strike and floating strike prices are  max ,0

T
A X  and 

    max ,0S T A T respectively. Where  S T  is the asset price 

time T and X  stands for the strike price and  A T  denotes for 

the time average of the underlying asset’s prices from initial time 

to maturity dateT . The average is defined as either the arithmetic 

or the geometric mean form of the underlying asset prices. Let 

1 2
, ,...,

n
t t t  be predetermined times. Then the discrete geometric 

average is defined by   
1

1

n
n

n i
i

A S t


   and continuous geometric 

average is    
0

1
exp log

T

A T S t dt
T

 
  

 
 in continuous case, arithme-

tic average is obtained by    
0

1
log

T

A T S t dt
T

   where  0
0,t T , 

n
t T  are fixed and 0

T t
t

n


  . Then

0i
t t i t   , 1,2,..i n . The 

probability distribution of average is generally unknown in Black-

Scholes framework, geometric average Asian options can be for-

mula easily ([4] Theorem 2.2, pp.17). 

There is not analytically valuation formula to pricing arithmetic 

average Asian options. Different approaches proposed to pricing 

Asian options are based on numerical inversion method and con-

trol variates Monte Carlo methods, in this study we use the Monte 

Carlo approach to pricing the arithmetic average Asian options is 

given by 

 

Set Sum = 0 

 

For 1i   to n  
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  ˆ exp
A n

C rT Sum m  . 

5. Application to real data 

In this section, we empirically analyze performance of time 

changed generalized mixed fractional Brownian process to evalu-

ate the prices of arithmetic average Asian option which is written 

on the Cisco System Inc (CSCO) stock. Cisco System Inc (CSCO) 

stock adjusted prices data across a range of 06.24.2010 to 

06.23.2016. Total number of the observed data is 1511n  . Ana-

lyzed data are obtained from Yahoo finance services. We assume 

that the price process  i
S t  is the stock adjusted closing price on a 

time
i

t . It is observed at times , 1,2,...,
i

t i i n    and T n t   

denotes the length of the observations window and we choice as 

1 252t  (data collected once a day). We have taken the loga-

rithmic adjusted closing prices of the CSCO stock, over a time 

scale of one day is defined as  1
log , 1

t t t
r S S t n


   . To give an 

intuitive illustration, we present the plots of prices and returns as 

follows. 

 

 
Fig. 1: (A) Daily Adjusted Closing Log Returns of CSCO. 

 

 
Fig. 1: (B) Daily Adjusted Closing Prices of CSCO. 

 

In figure1, we observe that the analyzed data have “volatility clus-

tering” i.e., the large moves follow large moves and small moves 

follow the small moves, but it has not trends. Furthermore the 

trapping events are observed. Before empirical research, we exam-

ine the empirical characteristics of CSCO logarithmic return data. 

We tabulated the basic descriptive statistics for return data during 

the sampled period. 

 
Table1: Summarize Descriptive Statistics of Daily Return of (CSCO) 

Stock 

Min Max Mean Std.dev. Skew.(S) Kurt.(K) JB  

-0.177 0.148 0.0003 0.017 -0.943 25.145 31078.9  

 

As seen Table1, we reject null hypothesis that the sample data of 

the Cisco System Inc (CSCO) returns is from a normal distribu-

tion using Jarque-Bera (JB) statistic calculated the return series is 

defined as     
226 3 4JB n S K   . Its null hypothesis is that 

the observations are iid normal distributed. JB statistic is asymp-

totically distributed as chi-square with two degree of freedom i.e 

 2

2
~ 0.05 5.9915JB   . Hence the distribution of CSCO return 

series is not a normal distribution. It has been exhibits leptokurtic 

and fat tails properties with skew value -0.9432 and kurtosis value 

25.1452. These findings represent that the return distribution of 

CSCO return has a long left tail and the series have a kurtosis that 

is more than three, which is the kurtosis of the normal distribution. 

This means that the distribution is more peak than the normal 

distribution. We can say that the observed data has not normally 

distributed. Stationary and non-stationary processes have different 

properties. If a time series have a trend or a varying volatility then 

it is not stationary. To represent a time series stationary or not, 

generally we use its increments. To test for the stationary the ADF 

test is used usually. We applied our time series to following model,  

  1t t
S t S  


    , 

Where   is a constant,   is the coefficient of the time trend. 

ADF test statistics is the t- statistics of the OLS estimate of  .The 

null hypothesis of the ADF test is 0  , as can be seen from fol-

lowing table, Augmented Dickey-Fuller (ADF) statistics have 

values are below the critical values at 1%,5% and 10% level of 

significance. Therefore we accept the stationary of the daily re-

turns of CSCO stock prices during the period 2010-2016. This 
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mean that return, squared return and absolute returns series may 

be consider stationary so our time series can be modeled by the 

long memory process. 

 
Table 2: Augmented Dickey-Fuller (ADF) Statistics for CSCO 

Null hypothesis 
0
:H  0   

Series ADF Test t-stat. Sign. level Critical value 

Returns -26.77 -38.76 
1% 
5% 

10% 

-3,4593 
-2.8738 

-2.5732 

Squared returns -27.81 -39.01 

1% 

5% 

10% 

-3,4593 

-2.8738 

-2.5732 

Absolute returns -26.25 -37.81 

1% 

5% 

10% 

-3,4593 

-2.8738 

-2.5732 

 

We can use a visual stationary test based on the behavior of the 

empirical second moment of the return series as 2

1

j

j i
i

C r


  . If the 

analyzed time series obtained from a sample with elements which 

has the same distribution, then the 
j

C  statistics is a linear function 

with respect to .j  

 

 
Fig. 2: 

j
C Statistics for CISCO Stock Returns. 

From above figure, we see that the returns obtained from depend-

ent random variables. Fractional Brownian motion and Gamma 

process both have stationary increments hence; the subordinated 

process also has stationary increments. The periods of time which 

stock prices stay motionless are captured by an anomalous diffu-

sion process. In analyzed data observed the motionless periods. 

We calculated an annualized historical volatility of total returns 

with a window function of 60 point and 255 trading days (estimat-

ed number of trade days in a year). 
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The characterization of short and long-range dependence in the 

time series required the knowledge of the auto covariance func-

tions. The slowly decaying auto covariance function is represent-

ing a long-range dependent process (LRD). The fractional Brown-

ian motion can be a suitable model for sub diffusive or super dif-

fusive behavior exhibit time series. For a random return series 

sample  : 1,2,...,
i

x i n , autocorrelation function (ACF) is de-

scribed by 
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Fig. 2: Autocorrelation Function for CSCO. 

 

The time series is called LRD if its autocorrelation function is 

non-sum able. The decay rates of the sample autocorrelations of 

return (squared and absolute returns) appear to be slow and this is 

the evidence of long-term dependence behaviour. The result of 

degree of autocorrelation proposed that the assumption of inde-

pendence for log returns of CSCO stock is not provided. So, we 

can use a model which is based on fractional Brownian motion for 

CSCO log return series. The Hurst parameter can be used to 

measure the self-similarity property of time series. Using the his-

torical data we estimated the Hurst parameter as ˆ 0.3985H  . In 

order to describe the stock price data exhibiting periods of con-

stant values. We are used the inverse Gamma subordinator process 

as the time for price process. 

 

 
Fig. 3: Simulated values for inverse subordinated gamma process. 

 

We simulated the 1000 trajectories of CSCO with the price pro-

cess that the time-changed generalized mixed fractional Brownian 

motion model using the inverse subordinator gamma distribution 

as the new time process. 

 

 
Fig. 4: The Plot of Simulated Generalized Mixed Fractional Brownian 

motion. 

 

Asian options are popular exotic derivatives for risk management 

since by taking the average price jumps and market manipulations 

are minimized. In this study we used the Monte Carlo Method to 

pricing of average Asian option which is writing on CSCO stock. 

To do this work, we generated random variables from known dis-

tribution, applying the law of large numbers; we estimated un-

known expected values using the generated outcomes. Then we 
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obtained the option price discounting the estimated expected value. 

The price behavior of arithmetic Asian call option prices when 

number of averages increase. As a result of Jensen’s inequality the 

arithmetic Asian option price is higher than the geometric Asian 

option price. 

 

 
Fig. 5: Asian Call Option Price. 

 

The space-time plot of arithmetic average Asian call option values 

for parameter values 0.02  , 2T  , 
0

19S  , 10X  , 0.05r  . 

 

 
Fig. 6: Plot of Arithmetic Average Asian Call Option Values. 

6. Conclusions 

In this paper we studied on a time-changed mixed fractional 

Brownian motion model to characterize the stock adjusted closing 

prices behavior. We describe the model as based on Langevin 

equation that describes the stochastic evolution of base process in 

micro level that time changed by suitable subordinator. To model 

the observed long range dependence in the financial price time 

series, we replaced Brownian motion by fractional Brownian mo-

tion in traditional exponential Levy model. FBM has not station-

ary increment and it is not Markov process. So, we cannot use the 

traditional parameter estimation methods for FBM. We chose the 

FBM process to include the long range dependence structure. To 

eliminate the arbitrage we used a mixed fractional Brownian mo-

tion model instead of FBM as a main process. We chanced the 

time of main process with an inverse gamma subordinator. We 

applied the inference methods to real data that is observed at dis-

crete time points. Analyzing the real data, we found that the in-

cremental process is not- Gaussian, stationary, non-Markovian and 

negative correlated. The based on these results we enabled de-

scribe the stock price behavior in a fractional Brownian frame-

work. We observed trapping events (motionless periods) in real 

data. To overcome this problem we modeled the price evaluation 

of CSCO price process with the time-changed mixed fractional 

Brownian motion model. Then we calculated the price of average- 

arithmetic Asian option that is written on CSCO stock, using the 

values that are simulated proposed model. Empirical studies show 

that the time changed generalized mixed fractional Brownian mo-

tion model provide good for arithmetic average Asian option pric-

ing with different maturities. It has a flexible structure that con-

tains jump components, motionless periods and time changed 

volatility dynamics. 
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