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Abstract 
 

The spectral radius r(A) of matrix A is the maximum modulus of the Eigen values. In this paper, the studies about the lower and upper 

bounds for the spectral radius and the lower bounds for the minimum eigen value of appositive and nonnegative matrices are investigate. 

The matrix norm, the spectral radius norm,and the column (row) sums of nonnegative and positive matrices are widely used to establish 

some inequalities for matrices. Then several existing results are improved for these inequalities for nonnegative and positive matrix. Fur-

thermore, the lower and upper bounds of the Perron roots for nonnegative matrices are examined, and some upper bounds are computed. 
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1. Introduction 

The spectral radius function is one of the most important functions 

of matrices. It is closely related to matrix norms and the numerical 

radius. 

Many functionals in matrix analysis are submultiplicative with 

respect to ordinary matrix multiplication, but the spectral radius is 

not. However, for nonnegative or positive semidefinite matrices 

A, B ∈  Mn, the norm ( spectral radius ) of nonnegative and posi-

tive matrices is submultiplicative with respect to the nonnegative 

theorems:  

 

min
1≤i≤n

1

xi
∑aijxj

n
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And 
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(See Theorem 5.1.8 and 5.1.9). 

This result, among other interesting properties of the spectral radi-

us and the nonnegative and positive matrix, can be found in the 

famous book of Halmos [5] and that of Horn and Johnson [6]. 

Equalities and inequalities for the spectral radii of nonnegative 

and positive of matrices have been given by Zhang [15], Cheng, 

G-H., [3], Barra and Boumazgour [1].  

The material of this research has been arranged, spread out in 

three parts. The arrangement of the subject matter is given in such 

a way to give a brief survey of results related to the norm of 

nonnegative and positive matrix. 

Firstly, the study introduces some preliminary results in matrix 

theory that will be very useful in this research. These include some 

elements of the spectral theory, positive definite matrices, 

nonnegative and positive matrices, and matrix norm. 

 Secondly, the study deals with matrix norms and introduces the 

concept of spectral radius. Special emphasis is given to properties 

of the spectral radius, and presents several inequalities for the 

spectral radii of sums, products, and commutators of matrices. 

Finally, the study introduces some basic definitions and properties 

of nonnegative matrices and positive matrices. Also it gives and 

proves some bounds for the Upper bounds of the Perron roots of 

nonnegative matrices. 

2. Previous studies 

1) The study of (PattrawutChansangiam_, PatcharinHemchote, 

PraiboonPantaragphong, 2009) aimed to develop inequali-

ties for Kronecker products and Hadamard products of posi-

tive definite matrices. A number of inequalities involving 

powers, Kronecker powers, and Hadamard powers of linear 

combination of matrices are presented. In particular, 

H¨older inequalities and arithmetic mean-geometric mean 

inequalities for Kronecker products and Hadamard products 

are obtained as special cases.  

2)  The study of (Roger A. Horn and Fuzhen Zhang, 2010) 

aimed to prove Zhan’s conjecture (the spectral radius of the 

Hadamard product of two square nonnegative matrices is 

not greater than the spectral radius of their ordinary prod-

uct), and a related inequality for positive semidefinite matri-

ces, using standard facts about principal sub matrices, 

Kronecker products, and the spectral radius. 

3) The study of (Dongjun Chen and Yun Zhang, 2015) pre-

sented some spectral radius inequalities for nonnegative ma-

trices. Used the ideas of Audenaert, and then proved the in-

equality which may be regarded as a Cauchy--Schwarz ine-

quality for spectral radius of nonnegative matrices 

 

r(A°B) ≤ [r(A°A)]
1

2⁄ [r(B°B)]
1

2⁄  

 

In addition, new proofs of some related results due to Horn and 

Zhang, Huang were also given. Finally, it interpolated Huang's 

inequality by proving 
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r(A1°A2° …  °Ak) ≤ [r(A1A2 …Ak]
1−

2

k[r((A1°A1)… (Ak°Ak)]
1

k ≤
r(A1A2 …AK). 

 

On the spectral radius of Hadamard products of nonnegative ma-

trices 

4) The study of (Koenraad M.R., 2010) aimed to prove an ine-

quality for the spectral radius of products of non-negative 

matrices conjectured by Zhan. And showed that for all n × n 

non-negative matrices A and B,r(A°B) ≤ r[(A°A)(B°B)]
1

2 ≤
r(AB), in which ◦ represents the Hadamard product.  

5) The study of (Maozhong Fang, 2007) aimed to prove an up-

per bound for the spectral radius of the Hadamard product 

of nonnegative matrices and a lower bound for the mini-

mum eigenvalue of the Fan product of M-matrices. 

6) The study of (M. Goldberg, G. Zwas, 1974) characterized 

all nxn matrices whose spectral radius equals their spectral 

norm. it showed that for n⩾3 the class of these matrices 

contains the normal matrices as a subclass. 

7) The study of (Zejun Huang, 2010) aimed to prove the spec-

tral radius inequality r(A1°A2° …  °Ak) ≤ r(A1A2 …Ak)for 

nonnegative matrices using the ideas of Horn and Zhang. It 

obtained the inequality ‖A°B‖ ≤ r(ATB)  for nonnegative 

matrices, which improves Schur’s classical inequality 
‖A°B‖ ≤ ‖A‖‖B‖, where ‖. ‖ denotes the spectral norm. It 

also gave counterexamples to two conjectures about the 

Hadamard product. 

3. Fundamentals of matrix analysis 

3.1. Basic results in matrix theory 

Let Mmn denote the space of all m × n complex matrices and let Mn 

denote the algebra of all n×n complex matrices.  

 

Definition 3.1.1: Let A ϵ M n , Then a complex number λ is called 

an eigenvalue of A, if there exists a nonzero vector x ∈ Cn. Such 

that Ax = λx. Such a vector x is called an eigenvector of A associ-

ated with λ. 

 

Definition 3.1.2: If A∈ M n, then det(λI – A) = 0 is called the 

characteristic equation of A, where det (.) is the determinant func-

tion. The polynomial p(λ ) = det (λI – A) is called the characteris-

tic polynomial of A. the set of all eigenvalues of A is called the 

spectrum of A, denoted by σ (A). 

 

Theorem 3.1.3: If A ∈ Mn  thenλ ∈ σ (A) is an eigenvalue of A if  

 

and only if  det(λI – A) = 0. 

 

Definition 3.1.4:Let A= [a ij] ∈ Mn. Then 

 

1) The trace of A is given by trA =∑ aii
n
i=1 . 

2) The transpose of A is given by At=[aji]and A* =[aji̅̅ ̅]is called 

the adjoint of A. 

 

Theorem 3.1.5: For all A, B ∈Mn 

 

1) σ(AB) = σ (BA( 

2) If σ(A) = {λ1,...,λn }, then det(A) =∏ λj
n
j=1 , and  

tr(A)= ∑ λn
j=1 j. 

3) σ(A∗) = {λ:̅ λ ∈ σ  (A)}. 

 

Theorem 3.1.6: Let A,B ∈Mn, and let α ∈ C. Then 

 

1) det AB = (det A)(det B( 

2) det (αA) = αn detA. 

3) Σ(Ak) = (σ(A))k = {λk: λ σ(A)}, where k is a natural num-

ber. 

4) σ(At)=σ (A) . 

5) for any matrix A with rank at most 1,σ(A)= {trA,0} 

 

Theorem 3.1.7: Let A, B Є M n a Є C. Then 

1) tr(A + B)= trA +trB. 

2) traA = a trA. 

3) trAB = trBA. 

4) tr0 = 0, trIn= n, whereInis the identity matrix of order n. 

 

Theorem3.1.8: Let A,B Є Mn ,α Є C. Then 

 

1)  (A*)*= A. 

2)  (A+B)*= A* + B* 

3) (αA∗) = α̅A*. 

4)  (A B)* = B* A* 

5) det(A*) = det (A)̅̅ ̅̅ ̅̅ ̅̅ ̅ 

6) trA* = trA̅̅ ̅̅ . 

7) trA* A ≥ 0 . 

8) σ(A*) = σ(A)̅̅ ̅̅ ̅̅ . 

 

Definition 3.1.9: A,B Є Mn are called similar if there exists in-

vertible S  M n such that 

 

B = S -1 AS or� A = SBS-1 

 

Theorem 3.1.10:Similar matrices have the same eigenvalues. 

 

Corollary 3.1.11: Similar matrices have the same determinant and 

trace. 

 

Theorem 3.1.12: (The spectral mapping theorem), Let A ∈ M n. 

Then for every polynomial fσ( f (A))= f (σ(A)). 

 

Theorem 3.1.13:(Cayely - Hamilton). Every matrix satisfies its 

characteristic Polynomial (i.e, if A ∈ M n and p is the characteristic 

polynomial of A, then P(A) = 0). 

 

Remark 3.1.14: Let A ∈ M n and let k ∈C.Then σ(kA)= kσ(A( 

 

Definition 3.1.15: If A ∈ Mn , then 

 

1) A is called Hermitian if A* = A. 

2) A is called skew-Hermitian if A* = -A. 

3) A is called unitary if A* A = AA*= I. 

4) A is callednormal if A* A = AA* 

It is obvious that Hermitian, skew-Hermitian and unitary matri-

ces are normal matrices. 

 

Remark 3.1.16: 

1) The sum of two Hermitian matrices is Hermitian. 

2) The product of two Hermitian matrices is Hermitian if and 

only if these matricescommute. 

3) If A ∈ M n  then AA* , A* A , A + A*are Hermitian. 

4) If A∈ M n is Hermitian, then every eigenvalue of A is a real 

number. 

 

Remark 3.1.17:Let A ∈ M n . Then 

 

1) If A is unitary, then | det A |= 1. 

2) The product of two unitary matrices is unitary. 

3) Ais unitary if and only if A-1 = A* is unitary. 

4) If A is unitary, then every eigenvalue of A has modulus one. 

 

Definition 3.1.18:If x = [x1,x2,...,x n]t ,y = [y1,y2,...,y n]t  C n , then 

the Euclidean inner product of xandyis given by:(x, y) = ∑ xiyi̅
n
i=1  

 

Note that,(x, y ) = y∗x 

 

Remark 3.1.19:Let x, y, z ∈ Cn, α ∈ C Then 
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1)  (y, x)=(x, y)̅̅ ̅̅ ̅̅ ̅ 

2)  (αx, y) = α(x, y) 

3)  (x +y, z) = (x, z)+(y, z) 

4)  (x, x) = ∑  | xi  | 
2  ≥ 0 with equality iff x=0 

5)  (x, αy) = α̅ (x, y) 

6)  (z, x + y) = (z, x) + (z, y) 

 

Definition 3.1.20: A matrix B ∈ M n is said to be unitarily equiva-

lent to A ∈ Mn if there is a unitary matrix U ∈ M n such that  

B = U *AU. 

 

Theorem 3.1.21:(Schur's unitary triangularization theorem). Let 

A ∈ M n with σ(A) = {λ1,λ2, … ,λn}. Then there is a unitary matrix 

U ∈ M n such that U * AU = T, whereT = [t ij] ∈ M n is an upper 

triangular matrix with diagonal entries tii = λi   for i = 1, 2… n. 

 

Theorem 3.1.22:(Spectral theorem for normal matrices). A ∈ M n 

is normal if and only if A is unitarily equivalent to a diagonal 

matrix (that is, A = UDU*, where D is diagonal and U is unitary( 

3.2.Positive definite matrices 

 

Definition 3.2.1: A Hermitim matrixA ∈ M n is said to be positive 

definite, if (Ax,x)> 0 for all nonzero x ∈ Cn , and it is called posi-

tive semi-definite, if (Ax,x) ≥ 0 for all x ∈ Cn 

 

Remark 3.2.2: 

1) The sum of any two positive definite (semi-

definite)matrices of the same size ispositive definite (semi-

definite). 

2) )The product of any two positive definite (semi-definite) 

matrices is positivedefinite (semi-definite) if and only if the 

two matrices commute. 

3) Each eigenvalue of a positive definite (semi-definite) matrix 

is a positive) nonnegative) real number. 

4) A Hermitian matrix whose eigenvalues are positive 

(nonnegative) is positivedefinite (positive semi-definite) 

5) The trace and determinant of a positive definite (semi-

definite) matrix are positive(nonnegative) real numbers. 

 

Theorem 3.2.3:Let A ∈M n be a positive semi-definite (definite) 

matrix and let k ≥1be a given integer .Then there exists a unique 

positive semi-definite (definite) matrixB such that A = Bk ,written 

as B = A
1

k⁄ . 

 

Theorem 3.2.4:A matrix A ∈M n is positive semi-definite if and 

only if A = BB* for some B ∈ M n . In the positive definite case B 

is taken to be invertible. 

 

Definition 3.2.5:The eigenvalues of the matrix ⟨A⟩ = (A∗A)
1

2⁄  are 

called the singular values of A. They are denoted by s1 (A), 

s2(A)...sn (A) and they are arranged in non-increasing order so that 

s1(A) ≥ s2 (A) ≥ …≥sn(A). 

 

Theorem 3.2.6: (Singular value decomposition).If A ∈ M n, then 

Amay be written in the form A = VDW*, where V,W ∈ M n are 

unitary, and the matrix D = diag(s1(A),s2(A),...,s n(A). 

 

Theorem 3.2.7:(Polar decomposition). If A ∈  M n, then there 

exists a unitary matrix U ∈ M n such that A=U⟨A⟩ 
 

Remark 3.2.8: Let A  M n and let U, V ∈Mn be unitary, then 

 

1) The matrices A*A and AA* are unitarily equivalent, and 

hence, they havethe same eigenvalues. 

2) The matrices ⟨UAV⟩ and (A) are unitarily equivalent, which 

implies that sj(UAV)= sj(A) for all j = 1,2... n. 

3) lf A is normal with eigenvalues λ (A) ordered in such a way 

that| λ 1 (A) |≥ … ≥| λ n (A) |, then sj (A)= | λj(A)│for all j= 

1,2,…., n. 

 

Definition 3.2.9: A matrix A = [aij] ∈ M n is called diagonally 

dominant if |aii| >∑ |aij|i≠j   for i = 1, 2… n. 

 

Definition 3.2.10: Let A∈ M mn  For index sets αϵ{1, 2, ..., m} 

and β ∈{1, 2, .., n}, we  denote the sub-matrix that lies in the rows 

of A indexed by α and the columns indexed by ß as A(α, β). If m = 

n and β = α, the submatrix A(α, α) is called a principal submatrix 

of A and is abbreviatedA(α). 

 

Definition 3.2.11: Let B = [b ij] ∈ M n and A = [a ij] ∈ M n . 

We write 

 

B ≥ 0 if all bij≥ 0 

B > 0 if all bij> 0 

A ≥ B if A-B ≥ 0 

A > B if A – B > 0.  

IfA ≥ 0, we say that A is a nonnegativematrix, and if A > 0, we 

say that A is a positive matrix. We define |A| = [|aij|]. 

 

Theorem 3.2.12:Let A, B, C, D  M n , Then 

 

1) |A| ≥ 0 and |A|= 0 if and only if A = 0. 

2) |aA| = |a||A|, for all complex numbers a. 

3) |A+B| ≤  |A| + |B|. 

4) If A ≥ 0, B ≥ 0, and a, b ≥ 0, then aA + bB ≥ 0. 

5) If A ≥B and C ≥ D, then A+C ≥ B+D. 

6) If A ≥ B and B ≥ C, then A ≥ C. 

 

Theorem 3.2.13:Let A, B, C, D ∈ M n, and let x ∈Cn. Then. 

 

1) |Ax| ≤ |A| |x|. 

2) |AB| ≤ |A||B|. 

3) |Am | ≤ |A| m for all m = 1,2,… 

4) If 0 ≤ A ≤ B and 0 ≤ C ≤ D, then 0 ≤ AC ≤ BD.  

5) If 0 ≤ A ≤ B, then 0 ≤ Am ≤ B m for all m = 1, 2, … 

6) If A ≥ 0, then Am ≥ 0, and if A > 0, then Am > 0 for all m = 

1, 2, … 

7) If A > 0, x ≥ 0, and x ≠ 0, then Ax > 0. 

8) If A ≥ 0, x > 0, and Ax = 0, then A = 0.  

3.3. Matrix norm 

Definition 3.3.1:Let V be a vector space over a field F. A Func-

tion‖ . ‖:V → R is a vector norm if for all x, y ∈ V. 

 

1) ‖x‖ ≥ 0, and‖x‖ = 0 if and only if x = 0(Positivity). 

2) ‖cx‖ =  |c|‖x‖ for all scalars c ∈ F(Homogenity). 

3) ‖x + y‖ ≤ ‖x‖ + ‖y‖(Triangle inequality). 

 

For a vectorx = ( x1 , x2, … , xn) ∈ Cn, we define 

‖x‖p = (∑|xj|
p

n

j=1

)

1

p

 , 1 ≤ p < ∞ 

 

‖x‖∞ = lim
p→∞

‖x‖p = max
1≤j≤n

|xj|. 

 

For each 1≤ p ≤ ∞, ‖x‖p defines a norm on Cn. These are called 

the p-norms or ℓp norms. While for 0< 𝑝 < 1 this defines a quasi 

norm. Instead of the triangle inequality we have. 

 

‖x + y‖p ≤ 2
1

p−1⁄ (‖x‖p + ‖y‖p), 0 < 𝑝 < 1 

 

Definition 3.3.2:A function N:M → R is a matrix norm if for all 

A, B ∈ Mn it satisfies the following axioms: 
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1) N(A) ≥ 0 and N(A) = 0 if and only A = 0 . 
2) N(aA) = |a|N(A) for all complex numbers a . 
3) N(A + B) ≤ N(A) + N(B). 
4) N(AB) ≤ N(A)N(B). 

 

Remark 3.3.3: A vector norm onMn, that is a function that satis-

fies (1) – (3) and not necessarily (4), is often called a generalized 

matrix norm. 

 

Examples 3.3.4: Let = ⌊aij⌋ ∈  Mn . Then 

1) The ℓ1norm is defined by‖A‖1 = ∑ |aij|
n
i,j=1 . 

 

Note that ‖. ‖1 is a matrix norm because 

 

‖AB‖1 =  ∑ |∑ aikbkj

n

k=1

|

n

i,j=1

 ≤ ∑ |aikbkj|

n

i,j,k=1

 

 

≤ ∑ |aikbmj|

n

i,j,k,m=1

= ( ∑ |aik|

n

i,k=1

)( ∑ |bmj|

n

j,m=1

 

 

=‖A‖1‖B‖1 

 

2) The ℓ2 norm (or the Euclidean norm) is defined by 

 

‖A‖2=(∑ |aij|
2
)n

i,j=1

1

2
 

 

Note that ‖. ‖2 is a matrix norm because 

 

‖AB‖2
2 =  ∑ |∑ aikbkj

n

k=1

|

2n

i,j=1

 

 

≤ ∑(∑|aik|
2

n

k=1

n

i,j=1

)(∑|bmj|
2

n

m=1

) 

 

= ‖A‖2
2‖B‖2

2 

 

This inequality is just the Cauchy – Schwarz inequality. When 

applied to matrices, this norm is sometimes called the Forbenius 

norm, the Schur norm, or the Hilbert – Schmidt norm. 

3) The maximum column sum matrix norm is defined by 

 

‖|A|‖1 =  max
1≤j≤n

∑|aij|

n

i=1

 

 

4) The maximum row sum matrix norm is defined by 

 

‖|A|‖∞ = max
1≤i≤n

∑|aij|

n

j=1

 

 

Note that, the norms ‖|. |‖1, and ‖|. |‖∞  are induced by the 

ℓ1and ℓ∞ vectors norms, respectively, and hence must be matrix 

norms. 

 

5) The spectral norm ( or the usual operator norm )is defined 

by 

 
‖A‖ =  max

‖x‖=1
‖Ax‖ . 

 

Note that, for any matrix A ∈ Mn, 
 

a) ‖A‖ = max
‖x‖=‖y‖=1

|(y, Ax)| . 

b) If A ∈ Mn is Hermitian, then, ‖A‖ = max
‖x‖=1

|(x, Ax)|. 

c) If A ∈ Mn is a unitary, then ‖A‖ = 1. 

d) ‖Ak‖ ≤ ‖Ak‖, for k = 1,2,…. 

e) If |A| ≤ |B| , then‖A‖2 ≤ ‖B‖2 . 

6) The norm ‖A‖∞ = max
1≤i,j≤n

|aij| is a generalized matrix norm. 

 

Definition 3.3.5:Let ∈ Mn . Then the numerical radius w(A) of A 

is defined by  

 

w(A) = max
‖x‖=1

|(Ax, x)|. 

 

Theorem3.3.6:The numerical radius w(. ) is a norm on Mn. That 

is, for all A, B ∈ Mn and a ∈ C, we have  

 

1) w(A) ≥ 0 and w(A) = 0 if and only if A = 0. 
2) w(aA) = |a|w(A) for all complex numbers a . 
3) w(A + B) ≤ w(A) + w(B). 

 

Theorem 3.3.7: If ∈ Mn , then 

 

(1) w(A) = w(A∗). 
(2) w(U∗AU) = w(A) for every unitary U ∈ M . 
(3) w(A) ≤ ‖A‖. 

 

If A is normal, we have w(A) = ‖A‖. 
 

Theorem3.3.8: The norms w(. ) and ‖. ‖ are equivalent on Mn. In 

fact for everyA ∈ Mn , we have  

 

w(A) ≤ ‖A‖ ≤ 2w(A). 
 

Proof: Note that, 

 

w(A) ≤ ‖A‖                (By Theorem 3.3.7) 

 

Top prove that ‖A‖ ≤ 2w(A), note that 

 

‖A‖ =
1

2
‖(A + A∗) + (A − A∗)‖ 

 

≤
1

2
‖A + A∗‖ +

1

2
‖A − A∗‖     (By the triangle inequality) 

 

=
1

2
w(A + A∗) +

1

2
w(A − A∗)     (by Theorem1.3.7) 

 

(Since A + A∗ and A − A∗ are normal) 

  

 ≤ w(A) + w(A∗) = 2w(A)     (byTheorem1.3.7) 

 

Remark 3.3.9: w(. ) is not submultiplicative, that is it is not true 

that 

 

w(AB) ≤ w(A) w(B) 

 

Even if = BA. To see this, 

 

LetA = [

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

]andB = A2. 

 

Then 

 

AB = BA = A3, w(A) = cos
π

5
= 0.80901699 

w(B) = w(A2) = w(A3) = w(AB) = 0.5 

 

Thus 

 

w(AB) = 0.5 > 𝑤(A)w(B) = 0.4045085 
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Remark 3.3.10: Let 𝐴, 𝐵 ∈ 𝑀𝑛. Then 

 

1) If 𝐴, 𝐵 are normal, then𝑤(𝐴𝐵) ≤ 𝑤(𝐴)𝑤(𝐵). To see this , 

note that  

 

𝑤(𝐴𝐵) ≤ ‖𝐴𝐵‖ ≤ ‖𝐴‖‖𝐵‖ = 𝑤(𝐴)𝑤(𝐵). 
 

2) If 𝐴, 𝐵 are arbitrary , then 𝑤(𝐴𝐵) ≤ 4𝑤(𝐴)𝑤(𝐵). Note that,  

 

 𝑤(𝐴𝐵) ≤ ‖𝐴𝐵‖‖𝐴‖‖𝐵‖ ≤ (2𝑤(𝐴))(2𝑤(𝐵)) 

 

                                            = 4𝑤(𝐴)𝑤(𝐵) 

 

3) 𝑤(𝐴𝑘) for 𝑘 = 1,2,…. 
For recent numerical radius inequalities, we refer to Kittaneh 

(2003 and 2005). 

 

Definition 3.3.11:A matrix norm ‖. ‖ on 𝑀𝑛 is said to be unitarily 

invariant if  

 
‖𝑈𝐴𝑉‖ = ‖𝐴‖ 

 

For all 𝐴 ∈ 𝑀𝑛 and for all unitary matrices, 𝑉 ∈ 𝑀𝑛 . 

Theorem 3.3.12: The spectral norm is a unitarily invariant matrix 

norm. 

Proof: 

Let 𝐴 ∈ 𝑀𝑛 and 𝑈, 𝑉 ∈ 𝑀𝑛be unitary, and let 𝐵 = 𝑈𝐴𝑉. Then 

 
‖𝐵‖ = ‖𝑈𝐴𝑉‖ ≤ ‖𝑈‖‖𝐴‖‖𝑉‖ =  ‖𝐴‖. 

 

Since 𝐴 = 𝑈∗𝐵𝑉∗ it follows that 

 
‖𝐴‖ = ‖𝑈∗𝐵𝑉∗‖ ≤ ‖𝑈∗‖‖𝐵‖‖𝑉∗‖ = ‖𝐵‖. 

 

So  

 
‖𝐴‖ = ‖𝐵‖ = ‖𝑈𝐴𝑉‖ . 

 

Theorem3.3.13:The Euclidean norm is a unitarily invariant ma-

trix norm. 

 

Proof: 

Let 𝐴 ∈ 𝑀𝑛 and 𝑈, 𝑉 ∈ 𝑀𝑛 be unitary, and let 𝐵 = 𝑈𝐴𝑉. Then 

 

‖𝐵‖2
2 = 𝑡𝑟𝐵∗𝐵 = 𝑡𝑟(𝑉∗𝐴∗𝑈∗𝑈𝐴𝑉) = 𝑡𝑟(𝑉∗𝐴∗𝐴𝑉) 

 

= 𝑡𝑟𝐴∗𝐴 = ‖𝐴‖2
2 

4. Spectral radius inequalities 

4.1. Properties of the spectral radius 

The following properties of the spectral radius can be found in 

horn and Johnson [6]. 

 

Definition 4.1.1:The spectral radius 𝑟(𝐴) of a matrix𝐴 ∈ 𝑀𝑛 is 

𝑟(𝐴) =max{|𝜆|: 𝜆 is an eigenvalue of𝐴}. 
 

Observe that if λ is any eigenvalue of, then |𝜆| ≤ 𝑟(𝐴). 

 

Theorem 4.1.2: If 𝑁(. ) is any matrix norm and if 𝐴 ∈ 𝑀𝑛 , 

then 𝑟(𝐴) ≤ 𝑁(𝐴). 
Proof: 

Let λ∈ 𝜎 (𝐴) such that |𝜆| = 𝑟(𝐴) and let 𝑥 ∈ 𝐶𝑛  be a nonzero 

vector such that𝐴𝑥 = 𝜆𝑥. 
 

If 𝑋 = [𝑥: 𝑥:… : 𝑥] , then |𝜆|𝑁(𝑋) = 𝑁(𝜆𝑋) = 𝑁(𝐴𝑋) ≤
𝑁(𝐴)𝑁(𝑋). Since 𝑁(𝑋) ≠ 0, we have |𝜆| ≤ 𝑁(𝐴), and so 𝑟(𝐴) ≤
𝑁(𝐴). 
 

Corollary 4.1.3: If 𝐴 ∈ 𝑀𝑛 , then (𝐴) ≤ ‖𝐴‖, and equality holds if 

𝐴 is normal. 

 

Remark 4.1.4: If 𝐴, 𝐵 ∈ 𝑀𝑛, then 𝑟(𝐴𝐵) = 𝑟(𝐵𝐴). 
 

To see this, use the fact 𝜎(𝐴𝐵) = 𝜎(𝐵𝐴). 
 

Theorem 4.1.5: If 𝐴, 𝐵 ∈ 𝑀𝑛 and 𝐴𝐵 = 𝐵𝐴, Then  

 

1) 𝑟(𝐴 + 𝐵) ≤ 𝑟(𝐴) + 𝑟(𝐵). 
2) 𝑟(𝐴𝐵) ≤ 𝑟(𝐴)𝑟(𝐵). 

Proof: 

 

(1) Since 𝐴𝐵 = 𝐵𝐴, by schur’s theorem there is a unitary ma-

trix 𝑈 ∈ 𝑀𝑛 such that 

 

𝑈∗𝐴𝑈And𝑈∗𝐵𝑈 are both upper triangular, 

I.e, 

𝑇1=𝑈∗𝐴𝑈 =

[
 
 
 
 
𝜆1 𝑎12 𝑎13 … . . 𝑎1𝑛

0 𝜆2 𝑎23 … . . 𝑎2𝑛

0 0 𝜆3 … . . 𝑎3𝑛

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … . . 𝜆𝑛 ]

 
 
 
 

 

 

Where 𝜆𝑖 , 𝑖 = 1,2,… , 𝑛 are the eivgenvalues of 𝐴, and  

 

𝑇2 = 𝑈∗𝐵𝑈 =

[
 
 
 
 
𝜇1 𝑏12 𝑏13 … 𝑏
0 𝜇2 𝑏23 … 𝑏2𝑛

0 0 𝜇3 … 𝑏3𝑛

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 𝜇𝑛 ]

 
 
 
 

 

 

Where 𝜇𝑖 , 𝑖 = 1,2, … , 𝑛 are the eivgenvalues of B. 

Note that 𝜎(𝐴) = 𝜎(𝑇1) = {𝜆𝑖 ∶ 𝑖 = 1,… , 𝑛} , and 𝜎(𝐵) =
𝜎(𝑇2) = {𝜇𝐼: 𝑖 = 1,…𝑛}. 

Now, 𝜎(A + 𝐵) ⊆ 𝜎(𝐴) + 𝜎(𝐵), and 𝜎(𝐴𝐵) ⊆ 𝜎(𝐴)𝜎(𝐵). 
So, we have 𝑟(𝐴 + 𝐵) ≤ 𝑟(𝐴) + 𝑟(𝐵) and𝑟(𝐴𝐵) ≤ 𝑟(𝐴)𝑟(𝐵). 
 

Remark 4.1.6:If 𝐴, 𝐵 ∈ 𝑀𝑛do not commute, then Theorem 4.1.5 

is false. To see this consider the following example. 

 

Let 𝐴 = [
0 1
0 0

] , 𝐵 = [
0 0
1 0

] 

 

Then 𝑟(𝐴) = 0 and 𝑟(𝐵) = 0, but 𝑟(𝐴 + 𝐵) = 1. 
 

So,𝑟(𝐴 + 𝐵) = 1 > 𝑟(𝐴) + 𝑟(𝐵) = 0. 
 

Lemma 4.1.7: If ∈ 𝑀𝑛 , then  

 

𝑟(𝐴) = inf {‖𝑆−1𝐴𝑆‖: 𝑆 ∈ 𝑀𝑛 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒}. 
 

Proof: 

If 𝑆 ∈ 𝑀𝑛 invertible, then 

 

𝑟(𝐴) = 𝑟(𝑆−1𝐴𝑆) ≤ ‖𝑆−1𝐴𝑆‖ . 

 

So,  

 

𝑟(𝐴) ≤ inf{‖𝑆−1𝐴𝑆‖: 𝑆 ∈ 𝑀𝑛 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒}. 
 

By the Schur traingularization theorem, there is a unitary matrix U 

and an upper triangular matrix T with diagonal entries 

𝜆1, … . 𝜆𝑛(the eigenvalues of 𝐴), such that 𝑈∗𝐴𝑈 = 𝑇 

 

Set 𝐷1 = 𝑑𝑖𝑎𝑔(𝑡, 𝑡2, 𝑡3, … 𝑡𝑛) for 𝑡 > 0, and comput𝐷𝑡𝑇𝐷𝑡
−1. 
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𝐷𝑡𝑇𝐷𝑡
−1 =

[
 
 
 
 
𝜆1 𝑡−1𝑑12 𝑡−2𝑑13  …  𝑡−𝑛+1𝑑1𝑛

0 𝜆2 𝑡−1𝑑23  … 𝑡−𝑛+2𝑑2𝑛

0 0 𝜆3  … 𝑡−𝑛+3𝑑3𝑛

⋮ ⋮ ⋮  ⋱  ⋮
0 0 0  … 𝜆𝑛 ]

 
 
 
 

 

 

Let 𝑆1=𝑈𝐷𝑡
−1. Then 𝑆𝑡

−1𝐴𝑆𝑡 = 𝐷𝑡𝑈
∗𝐴𝑈𝐷𝑡

−1 = 𝐷𝑡𝑇𝐷𝑡
−1 . 

Thus, for 𝑡 > 0 large enough, we can be certain that the sum of all 

the absolute values of the off-diagonal entries of 𝑆𝑡
−1A𝑆𝑡, can be 

made arbitrary small. It follows that  

 
‖𝑆𝑡

−1𝐴𝑆𝑡 − 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑛)‖ → 0 as 𝑡 → ∞. 
 

Thus 

 

‖𝑆𝑡
−1𝐴𝑆𝑡‖ → ‖𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑛)‖ = 𝑚𝑎𝑥

1≤𝑖≤𝑛
|𝜆𝑖| = 𝑟(𝐴). 

 

Now, 

 

𝑟(𝐴) ≤ 𝑖𝑛𝑓‖𝑆−1𝐴𝑆‖ ≤ ‖𝑆𝑡
−1𝐴𝑆𝑡‖, for all 𝑡 > 0 . 

 

Letting 𝑡 → ∞, we obtain 

 

𝑟(𝐴) ≤ inf‖𝑆−1𝐴𝑆‖ ≤ 𝑟(𝐴), and so 

 

𝑟(𝐴) =inf ‖𝑆−1𝐴𝑆‖ . 

 

Theorem 4.1.8: Let ∈ 𝑀𝑛 . Then 𝑙𝑖𝑚
𝑘→∞

𝐴𝑘 = 0 , if and only if 

𝑟(𝐴) < 1. 
 

Proof: If 𝐴𝑘 → 0 as 𝑘 → ∞, and if 𝑥 ≠ 0 is a vector such that  

 

𝐴𝑥 = 𝜆𝑥,Then 

 

𝐴𝑘𝑥 = 𝜆𝑘𝑥 → 0Only if |𝜆| < 1.since this inequality must hold for 

every eigenvalue of A,We conclude that 𝑟(𝐴) < 1. 
Conversely, 

 

If𝑟(𝐴) < 1, then by lemma 4.1.7 

 

inf{‖𝑆−1𝐴𝑆‖: 𝑆 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒} < 1 

 

  And so there is an invertible matrix 𝑆 ∈ 𝑀𝑛 such that  
‖𝑆−1𝐴𝑆‖ < 1. But then 

 

‖(𝑆−1𝐴𝑆)𝑘‖ ≤ ‖𝑆−1𝐴𝑆‖𝑘 → 0as 𝑘 → ∞. 

 

Thus(𝑆−1𝐴𝑆)𝑘 → 0 𝑎𝑠 𝑘 → ∞, which implies that 𝑆−1𝐴𝑆 →
0 𝑎𝑠 𝑘 → ∞, and so 

 

𝐴𝑘 → 0 𝑎𝑠 𝑘 → ∞ 

 

Corollary4.1.9: (Spectral radius formula). If 𝐴 ∈ 𝑀𝑛, then 𝑟(𝐴) =

𝑙𝑖𝑚
𝑘→∞

‖𝐴𝑘‖
1

𝑘⁄ . 

5. Nonnegative and positive matrices 

5.1. Nonnegative matrices 

Theorem 5.1.1:Let𝐵 ∈ 𝑀𝑛 . If |𝐴| ≤ 𝐵 , Then 𝑟(𝐴) ≤ 𝑟(|𝐴|) ≤
𝑟(𝐵). 

Proof: For every m= 1, 2…We have │𝐴𝑚│≤ │𝐴│𝑚 ≤ 𝐵𝑚 

 

And 

 

║𝐴𝑚║
2
 ≤ ║│𝐴│𝑚║

2
 ≤ ║𝐵𝑚║

2
 . 

 

Then 

 

║𝐴𝑚║
2

1
𝑚⁄

 ≤ ║|𝐴|𝑚║
2

1
𝑚⁄

≤║𝐵𝑚║
2

1
𝑚⁄

for all m= 1, 2… 

 

If we know let m → ∞ and apply Corollary 4.1.9, we have that 

𝑟(𝐴) ≤ 𝑟(|𝐴|) ≤ 𝑟(𝐵). 

 

Corollary5.1.2: Let , 𝐵 ∈ 𝑀𝑛. If 0 ≤ 𝐴 ≤  𝐵, then 𝑟(|𝐴|) ≤ 𝑟(𝐵). 

 

Corollary 5.1.3: Let 𝐴 ∈ 𝑀𝑛 . If 𝐴 ≥ 0 and if𝐴̃ is any principal 

submatrix of A, then 𝑟(𝐴̃) = 𝑟(𝐴̆) 

Proof: 

Let 1 ≤ r ≤ n and let 𝐴̃ be an r × r principal square submatrix of 𝐴, 

let 𝐴̆ denote the n × n matrix formed by placing the entries of 𝐴̃ in 

their former position and Placing 0's elsewhere. Then 

 

𝑟(𝐴̃) = 𝑟(𝐴̆) and 0 ≤ 𝐴̆ ≤ 𝐴. 

 

So,  

 

𝑟 (𝐴̃) = 𝑟(𝐴̆) <𝑟(A)             ( by corollary 5.1.2 ) 

 

Lemma 5.1.4:Let 𝐴 ∈ 𝑀𝑛, and suppose that 𝐴 ≥  0 . If the row 

sums of 𝐴 are constant, then r(A) =║|𝐴|║
∞

. If the column sums of 

𝐴 are constant, then 𝑟(𝐴) =║|𝐴|║
1
 

 

Proof : We know that 𝑟(𝐴) ≤║|𝐴|║for any matrix norm ‖|. |‖. 

But if the row sums are constant, x=[1, 1,… ,1]𝑡is an eigenvector 

with eigenvalue ║|𝐴|║
∞

, and so 𝑟(𝐴) = ║|𝐴|║
∞

. The other asser-

tion follows by similar argument. 

 

Theorem 5.1.5: Let 𝐴 ∈ 𝑀𝑛, and suppose 𝐴> 0. Then 

 

𝑚𝑖𝑛
1≤𝑖≤𝑛

∑𝑎𝑖𝑗

𝑛

𝑗=1

 ≤ 𝑟(𝐴)  ≤ 𝑚𝑎𝑥
1≤𝑖≤𝑛

∑𝑎𝑖𝑗

𝑛

𝑗=1

 

 

And 

 

𝑚𝑖𝑛
1≤𝑗≤𝑛

∑𝑎𝑖𝑗

𝑛

𝑖=1

 ≤ 𝑟(𝐴)  ≤ 𝑚𝑎𝑥
1≤𝑗≤𝑛

∑𝑎𝑖𝑗

𝑛

𝑖=1

 

 

Proof: 

 

Let 𝛼 = 𝑚𝑖𝑛
1≤𝑖≤𝑛

∑ 𝑎𝑖𝑗
𝑛
𝑗=1 , and let 𝐵 = |𝑏𝑖𝑗| ∈ 𝑀𝑛 Such that A ≥ B ≥ 0, 

∑ 𝑏𝑖𝑗
𝑛
𝑗=1 =  𝛼 for all, 

 

𝑖 =  1,2, . . . . , 𝑛 Then 

 

𝑟(𝐵) = ║𝐵║
∞

 = 𝛼 

 

And 

 

𝑟(𝐵)  <  𝑟(𝐴)       (By corollary 5.1.2) 

 

Let 𝛽 = 𝑚𝑎𝑥
1≤𝑖≤𝑛

∑ 𝑎𝑖𝑗
𝑛
𝑗=1 , and let C = ⌊𝑐𝑖𝑗⌋ ∈ 𝑀𝑛 such that C ≥ A ≥ 

0 And ∑ 𝑐𝑖𝑗
𝑛
𝑗=1 = 𝛽 for all 

 

𝑖 =  1,2, . . . , 𝑛 .Then 

 

𝑟(𝐶)  =  ║|𝐶|║
∞

=  𝛽 

 

And 

 

𝑟 (𝐶)  ≥  𝑟(𝐴)       (By corollary 5.1.2) 
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The column sum bounds follow form applying the row sum 

bounds to 𝐴1 

Corollary 5.1.6: Let 𝐴 ∈  𝑀𝑛 . If 𝐴 ≥  0 and ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 > 0 for all 

𝑖 =  1,2,… . , 𝑛, then 

 

𝑟(𝐴)  >  0 

 

Proof: 

Since 𝐴 ≥  0and ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 > 0, we have 

 

𝑚𝑖𝑛
1≤𝑖≤𝑛

∑ 𝑎𝑖𝑗
𝑛
𝑗=1  ≤ 𝑟(𝐴)         ( by Theorem 5.1.5 ) 

 

So, 

 

𝑟(𝐴)  >  0. 

 

Corollary5.1.7: Let 𝐴 ∈  𝑀𝑛 , and 𝐴 >  0. Then 𝑟(𝐴)  >  0. 

 

Theorem 5.1.8: Let 𝐴 ∈  𝑀𝑛, and suppose 𝐴 ≥  0. Then for any 

positive vector x ∈ 𝐶𝑛 

We have 

 

𝑚𝑖𝑛
1≤𝑖≤𝑛

1

𝑥𝑖
∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

 ≤ 𝑟(𝐴) ≤ 𝑚𝑎𝑥
1≤𝑖≤𝑛

1

𝑥𝑖
∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

 

 

And 

 

𝑚𝑖𝑛
1≤𝑗≤𝑛

𝑥𝑗 ∑
𝑎𝑖𝑗

𝑥𝑖

𝑛

𝑖=1

 ≤ 𝑟(𝐴) ≤ 𝑚𝑎𝑥
1≤𝑗≤𝑛

𝑥𝑗 ∑
𝑎𝑖𝑗

𝑥𝑖

𝑛

𝑖=1

 

 

Proof: 

Since 𝑟(𝑆−1 𝐴𝑆)  =  𝑟(𝐴) whenever S is invertible, if  

S= 𝑑𝑖𝑎𝑔(𝑥1, 𝑥2 , … . , 𝑥𝑛), all 𝑥𝑖 > 0, and since 𝐴 ≥  0, then 

 

𝑆−1𝐴𝑆 =  ⌊𝑎𝑖𝑗𝑥𝑗𝑥𝑖
−1⌋  ≥ 0 . 

 

So, 

 

𝑚𝑖𝑛
1≤𝑖≤𝑛

1

𝑥𝑖
∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

 ≤ 𝑟(𝑆−1𝐴𝑆)

≤ 𝑚𝑎𝑥
1≤𝑖≤𝑛

1

𝑥𝑖
∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

 ( 𝑏𝑦 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 5.1.5)  

 

Corollary 5.1.9: Let 𝐴 ∈  𝑀𝑛 , let 𝑥 ∈ 𝑅𝑛, and suppose that 𝐴 ≥
 0 and 𝑥 >  0. If  

 

𝛼 , 𝛽 ≥  0 are such that 𝛼𝑥 <  𝐴𝑥 < 𝛽𝑥, Then 

 

𝛼 ≤  𝑟(𝐴)  ≤ 𝛽 

 
𝐼𝑓 𝛼𝑥 <  𝐴𝑥 , 𝑡ℎ𝑒𝑛 

 
𝛼 <  𝑟(𝐴) . 

 
𝐼𝑓 𝐴𝑥 < 𝛽𝑥 , 𝑡ℎ𝑒𝑛 

 

𝑟(𝐴)  < 𝛽 

 
Proof: 

 

𝐼𝑓 𝛼𝑥 ≤  𝐴𝑥 , 𝑡ℎ𝑒𝑛 𝐴𝑥 −  𝛼𝑥 ≥  0 . So  

 

∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

−  𝛼𝑥𝑖  ≥ 0 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2,… , 𝑛 

 

Then 

 

𝛼 ≤ 𝑚𝑖𝑛
1≤𝑖≤𝑛

𝑥𝑖
−1 ∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

 

 

We conclude the 𝛼 ≤  𝑟(𝐴)        (by the theorem 5.1.8) 

 

If 𝛼𝑥 < 𝐴𝑥, then there is some 𝑎′ >  𝑎 such that 𝑎′𝑥 ≤  𝐴𝑥. 

 

In this event, 𝑟(𝐴)  > 𝑎′ >  𝑎. 
 

𝐼𝑓 𝐴𝑥 ≤ 𝛽𝑥, 𝑡ℎ𝑒𝑛 𝛽𝑥 −  𝐴𝑥 ≥ 0 . 𝑆𝑜 

 

𝛽𝑥𝑖 − ∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑛 

 

Then 

 

𝛽 ≥ 𝑚𝑎𝑥 𝑥𝑖
−1 ∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

 ≥ 𝑟(𝐴) ( 𝑏𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 5.1.8) 

 

If 𝐴 𝑥 <  𝛽𝑥, then there is some 𝛽′ < 𝛽 such that 𝐴𝑥 ≤ 𝛽′𝑥 , so 

we have that  

 

𝑟(𝐴)  ≤  𝛽′ < 𝛽 

 

Corollary 5.1.10: Let 𝐴 ∈  𝑀𝑛 , and suppose that 𝐴 in nonngative. 

If 𝐴 has a postive eigenvector, then the corresponding eingenvalue 

is 𝑟(𝐴), that is,  

 

if 𝐴𝑥 =  𝜆𝑥 , 𝑥 > 0 𝑎𝑛𝑑 𝐴 ≥  0, then 𝜆 = 𝑟(𝐴). 

 

Proof: 𝐼𝑓 𝑥 >  0 𝑎𝑛𝑑 𝐴𝑥 =  𝜆𝑥 , 𝑡ℎ𝑒𝑛 𝜆 ≥ 0 𝑎𝑛𝑑 𝜆𝑥 ≤ 𝐴𝑥 ≤
 𝜆𝑥 , 𝐵𝑢𝑡 𝑡ℎ𝑒𝑛 

 

𝜆 ≤ 𝑟(𝐴) ≤  𝜆 (𝑏𝑦 𝑐𝑜𝑟𝑜𝑙𝑙a𝑟𝑦 5.1.9) 

 

So,  

 

𝑟(𝐴)  =  𝜆 

5.2 Positive matrices 

Lemma 5.2.1: 𝐿𝑒𝑡 𝐴 ∈ 𝑀𝑛  and suppose that 𝐴 >  0 , 𝐴𝑥 =
 𝜆𝑥 , 𝑥 ≠ 0 𝑎𝑛𝑑 |𝜆| = 𝑟(𝐴) 

 

Then  

 

𝐴|𝑥| = 𝑟(𝐴)|𝑥| 𝑎𝑛𝑑 |𝑥| > 0 . 
 

Proof: 

 

Since 𝐴𝑥 =  𝜆𝑥 and |𝜆| = 𝑟(𝐴), we have  

 

𝑟(𝐴)|𝑥| =  |𝜆||𝑥| =  |𝜆𝑥| =  |𝐴𝑥| ≤  |𝐴||𝑥| = 𝐴|𝑥| 
 

So that  

 

𝑦 =  𝐴|𝑥| − 𝑟(𝐴)|𝑥| ≥ 0 

 

Since |𝑥|  ≥ 0 𝐴𝑛𝑑 |𝑥| ≠ 0 we have  

 

𝐴|𝑥| > 0 𝑏𝑦 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦(7)𝑇ℎ𝑒𝑜𝑟𝑒𝑚 3.2.13 

 

And we have that 

 

𝑟(𝐴) > 0 𝑏𝑦 𝑐𝑜𝑟𝑜𝑙𝑙𝑎𝑟𝑦 5.1.7 
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So if 𝑦 =  0, we have  

 

𝐴|𝑥| = 𝑟(𝐴)|𝑥| 
 

If 𝑦 ≠ 0 , set 𝑧 = 𝐴|𝑥| > 0, Since 𝑦 ≥  0 , 𝑦 ≠ 0 and 𝐴 >  0 ,  

we have  

 

𝐴𝑦 > 0 (𝑏𝑦 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (7)𝑜𝑓 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 3.2.13 ) 

 

= 𝐴𝑧 − 𝑟(𝐴)𝑧 > 0 , 𝑎𝑛𝑑 𝑠𝑜 𝐴𝑧
> 𝑟(𝐴)𝑧.  𝐵𝑢𝑡 𝑡ℎ𝑒𝑛   𝑏𝑦 𝑐𝑜𝑟𝑜𝑙𝑙𝑎𝑟𝑦 5.1.9  

 

We have that 

𝑟(𝐴)  >  𝑟(𝐴). So,𝑦 = 0, and this completes the proof. 

 

Theorem 5.2.2: Let 𝐴 ∈ 𝑀𝑛 , and suppose that 𝐴 >  0 . Then 

𝑟(𝐴)  >  0 , 𝑟(𝐴)  is an eigenvalue of 𝐴 , and there is a positive 

vector𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐴𝑥 =  𝑟(𝐴)𝑥. 

 

Proof: 

There is an eigenvalue 𝜆 with |𝜆| =  𝑟(𝐴)  >  0 and an associated 

eigenvector 𝑥 ≠ 0 by the Lemma (5.2.1), the required vector is 
|𝑥|. 
 

Lemma 5.2.3:Let 𝐴 ∈ 𝑀𝑛 , and suppose that 𝐴 > 0 , 𝐴𝑥 =
 𝜆𝑥 , 𝑥 ≠ 0 𝑎𝑛𝑑 |𝜆|  =  𝑟(𝐴). Then for some real number 𝜃 

 

𝑒−𝑖𝜃𝑥 = |𝑥| > 0 

 

Theorem 5.2.4:Let 𝐴 ∈ 𝑀𝑛 and suppose A is a positive. Then 

|𝜆| <  𝑟(𝐴) For every eigenvalue 𝜆 ≠ 𝑟(𝐴). 
 

Proof: 

For every eigenvalue 𝜆 of, |𝜆|  ≤ 𝑟(𝐴) .Suppose that |𝜆| = 𝑟(𝐴) , 

and 𝐴𝑥 =  𝜆𝑥, 𝑥 ≠ 0 . Then 

 

𝑤 = 𝑒−𝑖𝜃𝑥 > 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑟𝑒𝑎𝑙 n𝑢𝑚𝑏𝑒𝑟 𝜃 

 

And 

 

𝐴𝑤 =  𝜆𝑤 

 

But by corollary 5.1.10 we have 𝜆 = 𝑟(𝐴) 

 

Theorem 5.2.5: Let 𝐴 ∈ 𝑀𝑛 and suppose that 𝐴 >  0 and that 

𝑤 𝑎𝑛𝑑 𝑧 are nonzero vectors such that 𝐴𝑤 = 𝑟(𝐴)𝑤 𝑎𝑛𝑑 𝐴𝑧 =
𝑟(𝐴)𝑧. Then there exists some 𝛼 ∈ 𝐶 such that 𝑤 = 𝛼𝑧. 

 

Proof: 

Since 𝐴 >  0, and 𝑤, 𝑧 ≠ 0, there exist real number 𝜃1 , 𝜃2  such 

that p = 𝑒−𝑖𝜃1𝑧 > 0 and 

 

q = 𝑒−𝑖𝜃2𝑤 > 0 . Set 𝛽 = 𝑚𝑖𝑛
1≤𝑖≤𝑛

𝑞𝑖𝑝𝑖
−1 and define v = −𝛽𝑝 .  

 

It follows that 𝑣 ≥  0 . For if 𝑣 < 0 , then 𝑞 –  𝛽𝑝 <  0 , iff 

𝑒−𝑖𝜃2𝑤 < 𝛽𝑒−𝑖𝜃2𝑧, iff 𝑒−𝑖(𝜃2−𝜃1) 𝑤

𝑧
<  𝛽. This is a contradiction 

with = 𝑚𝑖𝑛
1≤𝑖≤𝑛

𝑞𝑖𝑝𝑖
−1. So, 𝑣 ≥ 0 and at least one coordinate of 𝑣 is 

0. So 𝑣 is not a positive vector, But 

 

𝐴𝑣 = 𝐴𝑞 − 𝛽𝐴𝑝 = 𝑟(𝐴)𝑞 − 𝛽𝑟(𝐴)𝑝 = 𝑟(𝐴)𝑣 

 

So if 𝑣 ≠ 0, then  

 

𝐴𝑣 > 0 ( 𝑏𝑦 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 3.2.13 ) 

 

But since 𝑟(𝐴)𝑣 =  𝐴𝑣 >  0 𝑎𝑛𝑑 𝑟(𝐴)  >  0, we have  

 

𝑣 =  𝑟(𝐴)−1 𝐴𝑣 > 0 (𝑡ℎ𝑖𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑟𝑢𝑒 ) 

 

So, v = 0 and hence 𝑞 =  𝛽𝑝 and = 𝛽𝑒𝑖(𝜃2−𝜃1)𝑧 . 𝑆𝑒𝑡 𝛼 =
 𝛽𝑒𝑖(𝜃2−𝜃1), then𝑊 =  𝛼𝑧. 

 

Now we can define the Perron vector of A ∈ 𝑀𝑛 as follow: 

If  

∈ 𝑀𝑛 𝑎𝑛𝑑 𝐴 >
0, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎 𝑢𝑛𝑖𝑞𝑢𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐴𝑥 = 𝑟(𝐴)𝑥,  

 

𝑥 >  0, 

 

𝑎𝑛𝑑 ∑ 𝑥𝑖
𝑛
𝑖=1 =

1. 𝑇ℎ𝑖𝑠 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 𝑥 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡ℎ𝑒 𝑝𝑒𝑟𝑟𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝐴 >
0 , and The associated eigenvalue 𝑟(𝐴) is called the Perron root of 

A. Since𝐴 >  0 𝑖𝑓𝑓 𝐴𝑡 > 0, and since 𝑟(𝐴)  =  𝑟(𝐴𝑡) it is clear 

that if 𝐴 >  0, then in addition to Perron eigenpair (𝑟(𝐴), 𝑥) for 𝐴 

there is a corresponding Perroneigenpair(𝑟(𝐴), 𝑦)𝑓𝑜𝑟 𝐴𝑡. 
The vector 𝑦𝑡> 0 is called the left hand Perron vector for 𝐴. 

 

Remark 5.2.6:If 𝐴 ∈ 𝑀𝑛 𝑎𝑛𝑑 𝐴 > 0, and if there is some 𝑧 ∈ 𝐶𝑛 

such that 𝑧 ≥ 0, 𝑧 ≠ 0, 𝑎𝑛𝑑 𝐴𝑧 = 𝜆𝑧 𝑡ℎ𝑒𝑛 𝑧 is a multiple of Per-

ron vector of 𝐴 and that 𝜆 = 𝑟(𝐴) . 

 

Lemma 5.2.7: Let ∈ 𝑀𝑛 , be given, let 𝜆 ∈ 𝐶 be given, and sup-

pose x and y are vectors such that: 

 

1) 𝐴𝑥 = 𝜆𝑥 

 

2) 𝐴𝑡𝑦 =  𝜆𝑦 , 𝑎𝑛𝑑 
 

3) 𝑥𝑡𝑦 = 1 
 

Define 𝐿 = 𝑥𝑦𝑡  , Then  

 

a) 𝐿𝑥 =  𝑥 and 𝑦𝑡𝐿 = 𝑦𝑡 

 

b) 𝐿𝑚 = 𝐿 𝑓𝑜𝑟 a𝑙𝑙 𝑚 = 1,2, …. 
 

c) 𝐴𝑚𝐿 = 𝐿𝐴𝑚 = 𝜆𝑚𝐿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 = 1,2,… 
 

d) 𝐿(𝐴 − 𝜆𝐿) = 0 
 

e) (𝐴 − 𝜆𝐿)𝑚 = 𝐴𝑚 − 𝜆𝑚𝐿 for all 𝑚 =  1,2,… 
 

f) Every nonzero eigenvalue of 𝐴 − 𝜆𝐿 is also an eigenvalue 
of 𝐴. 

If, in addition, we assume that 

 

1) 𝜆 ≠ 0 

2) 𝜆 is an eigenvalue of 𝐴 with geometric multiplicity 1, then 

we also have that  

a) 𝜆 is not an eigenvalue of 𝐴 − 𝜆𝐿 

Finally, if we assume that 

 

3) |𝜆| = 𝑟(𝐴) > 0 
 

4) 𝜆 is the only eigenvalue of 𝐴 with modulus 𝑟(𝐴) and if 
we order the eigenvalues of 𝐴 
as |𝜆1|  ≤  |𝜆2|  ≤  … ≤ |𝜆𝑛−1|  ≤  |𝜆𝑛| =  |𝜆|  =
𝑟(𝐴), 𝑡ℎ𝑒𝑛 

 
 

a) 𝑟(𝐴 −  𝜆𝐿) ≤  |𝜆𝑛−1| <  𝑟(𝐴) 

 
b) (𝜆−1𝐴)𝑚 = 𝐿 + (𝜆−1𝐴 − 𝐿)𝑚 → 𝐿 𝑎𝑠 𝑚 → ∞ 

 

For every 𝑘  such that (
|𝜆𝑛−1|

𝑟(𝐴)
) < 𝑘 < 1  there exists some 𝑐 =

 𝑐 (𝑘, 𝐴 ), such that  

 
‖(𝜆−1𝐴)𝑚 − 𝐿‖∞ < 𝑐𝑘𝑚, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 = 1 , 2 , … 
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Proof: 

The proofs of (a) – (f) are obvious. We notice, that x and y are 

nonzero vectors.  

Proof of (g):  

Suppose𝜆 is an eigenvalue of 𝐴 − 𝜆𝐿 , then for some eigenvec-

tor 𝑤 ≠ 0, (𝐴 − 𝜆𝐿)𝑤 =𝜆𝑤. 

But by (5) we must then conclude that 𝑤 = 𝛼𝑥 for some 𝛼 ≠ 0. 

Now, 

 

𝜆𝑤 = (𝐴 −  𝜆𝐿)𝑤 =  (𝐴 −  𝜆𝐿)𝛼𝑥 

 

= 𝐴𝛼𝑥 −  𝜆𝐿𝛼 

 

= 𝛼𝐴𝑥 −  𝜆𝛼𝐿𝑥 

 

=  𝛼𝜆𝑥 −  𝜆𝛼𝑥   (by (a)) 

 

= 0  
 

Which is impossible since 𝜆 ≠ 0 and 𝑤 ≠ 0 

Proof of (h): 

By (f), (g), if we order the eigenvalue of 𝐴 as  

 
|𝜆1|  ≤  |𝜆2|  ≤  … ≤ |𝜆𝑛−1|  ≤  |𝜆𝑛| =  |𝜆|  = 𝑟(𝐴),Then we 

have  

 

𝑟(𝐴 −  𝜆𝐿) ≤  |𝜆𝑛−1| < |𝜆𝑛| =  |𝜆| =  𝑟(𝐴). 
 

Proof of (i): 

By (e), we have that  

 

( 𝐴 − 𝜆𝐿)𝑚 = 𝐴𝑚 − 𝜆𝑚𝐿 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 = 1,2,… .. 
 

So, 

 

𝜆𝑚(𝜆−1𝐴 − 𝐿)𝑚 = 𝜆𝑚( (𝜆−1𝐴)𝑚 − 𝐿)  
 

Then,  

 

(𝜆−1𝐴)𝑚 = 𝐿 + (𝜆−1𝐴 − 𝐿)𝑚 

 

Notice That 

 

𝑟(𝜆−1𝐴 − 𝐿) =  
𝑟( 𝐴 − 𝜆𝐿)

𝑟(𝐴)
≤  

|𝜆𝑛−1|

𝑟(𝐴)
<

𝑟(𝐴)

𝑟(𝐴)
= 1 

 

So, by theorem 4.1.8, 𝑙𝑖𝑚
𝑚→∞

(𝜆−1𝐴 − 𝐿)𝑚 = 0 

Then, 

 

(𝜆−1𝐴)𝑚  → 𝐿 𝑊ℎ𝑒𝑛 𝑚 → ∞  
 

Proof of (j): 

Applying (corollary 4.1.9) to the matrix 𝜆−1𝐴 − 𝐿 as follows. 

Let 𝜀 > 0. Then there is a constant 𝑐 >  0 such that  

 

|(𝜆−1𝐴 − 𝐿)𝑖 ,𝑗
𝑚 |  ≤ 𝑐(𝑟(𝜆−1𝐴 − 𝐿) +  𝜀)𝑚 

 

≤ 𝑐 (
|𝜆𝑛−1|

𝑟(𝐴)
+  𝜀)

𝑚

 

 

< 𝑐 ( 𝑘 + 𝜀)𝑚 

 

Since 𝜀 > 0 is arbitrary, it follows that 

 
‖(𝜆−1𝐴𝐿)𝑚‖∞ < 𝑐𝑘𝑚 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 = 1,2, … 

 

Theorem 5.2.8: Let 𝐴 ∈ 𝑀𝑛 and suppose that A > 0. Then 

 

𝑙𝑖𝑚
𝑚 →∞

(𝑟(𝐴)−1𝐴)𝑚 = 𝐿 , 

 

Where 

 

𝐿 =  𝑥𝑦𝑡 , 𝐴𝑥 =  𝑟(𝐴)𝑥, 𝐴𝑡𝑦 = 𝑟(𝐴)𝑦, 𝑥 > 0, 𝑦 >  0, 𝑎𝑛𝑑 𝑥𝑡𝑦 
=  1 

 

Proof: 

The assumptions (1)-(7) of lemma (5.2.7) are satisfied with 𝜆 =
𝑟(𝐴), x the Perron vector of 𝐴, and 𝑦 = (𝑥𝑡𝑧)−1𝑧, where 𝑧 is the 

Perron vector of 𝐴𝑡. The conclusion follows from (i). 

 

Theorem 5.2.9: (Perron’s theorem ). If 𝐴 ∈ 𝑀𝑛 and 𝐴 >  0, then 

 

a) 𝑟(𝐴) >  0 

 

b) 𝑟(𝐴) is an eigenvalue of 𝐴 
 
c) There is an 𝑥 ∈ 𝐶𝑛with𝑥 >  0 𝑎𝑛𝑑 𝐴𝑥 = 𝑟(𝐴)𝑥 . 
 
d) |𝜆 | < 𝑟(𝐴)𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝜆 ≠ 𝑟(𝐴) 
 
e) (𝑟(𝐴)−1𝐴)𝑚  → 𝐿 𝑎𝑠 𝑚 → ∞  where 𝐿 = 𝑥𝑦𝑡 , 𝐴𝑥 =

𝑟(𝐴)𝑥, 𝐴𝑡𝑦 = 𝑟(𝐴)𝑦, 𝑥 > 0,  
 

𝑦 >  0 , 𝑎𝑛𝑑 𝑥𝑡𝑦 =  1 

 

Corollary 5.2.10: If 𝐴 >  0 and if 𝑥  is the Perron vector of 𝐴, 

then  

 

𝑟(𝐴) = ∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑖,𝑗=1

. 

 

Proof:  

By Perron’s Theorem 𝐴𝑥 = 𝑟(𝐴)𝑥. So 

 

∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

= 𝑟(𝐴)𝑥𝑖  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2, … , 𝑛 

 

Thus 

 

∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑖,𝑗=1

=  ∑𝑟(𝐴)𝑥𝑖

𝑛

𝑖=1

= 𝑟(𝐴)∑𝑥𝑖

𝑛

𝑖=1

= 𝑟(𝐴) 

 

Theorem 5.2.11: If 𝐴 ∈ 𝑀𝑛and 𝐴 ≥  0, then 𝑟(𝐴) is an eigenval-

ue of 𝐴 and there is a nonnegative vector 𝑥 ≥  0 , 𝑥 ≠  0, such 

that 𝐴𝑥 = 𝑟(𝐴)𝑥. 

 

Proof: 

For any 𝜀 > 0, define A(𝜀) =  ⌊𝑎𝑦 +  𝜀⌋ > 0. Denote by 𝑥(𝜀) the 

Perron vector of𝐴(𝜀), so 𝑥(𝜀)  >  0 and 

 

∑𝑥𝑖

𝑛

𝑖=1

(𝜀) = 1 . 𝑆𝑖𝑛𝑐𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝑥(𝜀): 𝜀

> 0 )𝑖𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑡 
 
{𝑥 ∶ 𝑥 𝜖 𝐶𝑛 , ‖𝑥‖1 ≤ 1}, there is a monotone decreasing sequence 

𝜀1, 𝜀2, … with  

 

𝑙𝑖𝑚
𝑘 →∞

𝜀𝑘 = 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑙𝑖𝑚
𝑘 →∞

(𝜀𝑘) = 𝑥 𝑒𝑥𝑖𝑠𝑖𝑡.  

 

Since 𝑥(𝜀𝑘) >  0  for all 𝑘 =  1,2,… , it must be that 𝑥 =
𝑙𝑖𝑚
𝑘 →∞

𝜀k ≥ 0 𝑎𝑛𝑑 𝑥 ≠  0, because  
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∑𝑥𝑖

𝑛

𝑖=1

=  𝑙𝑖𝑚
𝑘 →∞

∑𝑥𝑖

𝑛

𝑖=1

(𝜀𝑘) = 1 

 

Since there is a monotone decreasing sequence 𝜀1, 𝜀2 , ….  with 

𝑙𝑖𝑚
𝑘 →∞

𝜀𝑘 = 0, we have  

 

𝑟(𝐴(𝜀𝑘)) ≥ 𝑟(𝐴(𝜀𝑘+1))  ≥ ⋯ ≥ 𝑟(𝐴)     ( by Theorem 5.1.1) 

 

For all k= 1, 2… So the sequence of real number {𝑟(𝐴(𝜀𝑘))}for 

k=1, 2… is a monotone decreasing sequence. Thus, 

r = 𝑙𝑖𝑚
𝑘 →∞

𝑟(𝐴(𝜀𝑘)) , exists and 𝑟 >  𝑟(𝐴). 

But from the fact that  

 

𝐴𝑥 =  𝑙𝑖𝑚
𝑘 →∞

𝐴(𝜀𝑘)𝑥(𝜀𝑘) =  𝑙𝑖𝑚
𝑘 →∞

𝑟(𝐴(𝜀𝑘))𝑥(𝜀𝑘) 

 

𝑙𝑖𝑚
𝑘 →∞

𝑟(𝐴(𝜀𝑘)) 𝑙𝑖𝑚
𝑘 →∞

𝑥(𝜀𝑘) = 𝑟𝑥 

 

And the fact that 𝑥 ≠ 0, we deduce that 𝑟 is an eigenvalue of 𝐴. 

But then 𝑟 ≤ 𝑟(𝐴), so it must be that 𝑟 = 𝑟(𝐴).  
 

Theorem 5.2.12: Let 𝐴 ∈ 𝑀𝑛, 𝐴 ≥ 0, 𝑥 ∈  𝐶𝑛, 𝑥 ≥ 0, and 𝑥 ≠
0. 𝐼𝑓 𝐴𝑥 ≥  𝛼𝑥 for some real number 𝛼 then 𝑟(𝐴)  ≥  𝛼. 

 

Proof: 

 

Let 𝐴 =  ⌊𝑎𝑖𝑗⌋ , 𝐿𝑒𝑡 𝜀 > 0 , and define 𝐴(𝜀 ) = ⌊𝑎𝑖𝑗 +  𝜀⌋ . Then 

𝐴(𝜀)> 0, so 𝐴(𝜀) has a positive left Perron vector y (𝜀), that is  

 

𝑦𝑡(𝜀)𝐴(𝜀) = 𝑟(𝐴(𝜀))𝑦𝑡(𝜀). 

 

Since 𝐴𝑥 ≥ 𝑎𝑥, we have that 

 

𝐴𝑥 − 𝑎𝑥 ≥ 0, 
 

So 

 

𝐴(𝜀)𝑥 −  𝛼𝑥 ≥ 𝐴𝑥 −  𝛼𝑥 ≥ 0. 
 

Hence 

 

𝑦𝑡(𝜀)[𝐴(𝜀)𝑥 −  𝛼𝑥] =  [𝑟(𝐴(𝜀)) −  𝛼]𝑦𝑡(𝜀)𝑥 ≥ 0 

 

Since𝑦𝑡(𝜀)𝑥 > 0,𝑤𝑒 ℎ𝑎𝑣𝑒: 

 

𝑟(𝐴(𝜀)) −  𝛼 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜀 > 0. 

 

But 𝑟(𝐴(𝜀))  → 𝑟(𝐴)as𝜀 → 0 , so we conclude that 𝑟(𝐴) ≥ 𝛼 

5.3. Upper bounds of the perron roots of nonnegative 

matrices 

For Any nonnegative matrix 𝐴 = [𝑎𝑖𝑗] ∈ 𝑀𝑛 , the numbers 

𝑇(𝐴), 𝑁(𝐴), 𝜏𝑘 , 𝜑𝑘are defined by:  

 

𝑇(𝐴) = ∑ 𝑎𝑖𝑗

𝑛

𝑖,𝑗=1

, 𝑁(𝐴) = 𝑛 𝑚𝑎𝑥
𝑖,𝑗

𝑎𝑖𝑗 , 𝜏𝑘 = (𝑇(𝐴2𝑘
))

2−𝑘

, 𝑎𝑛𝑑 𝜑𝑘

= (𝑁(𝐴2𝑘
))

2−𝑘

 

 

Lemma 5.3.1: If 𝐴  = ⌊𝑎ĳ⌋  ∈ 𝑀𝑛  is nonnegative matrix, then 

𝑟(𝐴)  ≤ 𝑇(𝐴). 

 

Proof: 

If 𝐴 ≥ 0, then by Theorem 5.2.11, there is a nonnegative vector 

𝑥 ≥ 0, such that 𝐴𝑥 = 𝑟(𝐴)𝑥. 

Let 𝑥 be the Perron vector of 𝐴. Then 

 

𝑟(𝐴)∑𝑥𝑖

𝑛

𝑖=1

= ∑∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

≤ ( ∑ 𝑎𝑖𝑗

𝑛

𝑖,𝑗=1

)(∑𝑥𝑗

𝑛

𝑗=1

) = ∑ 𝑎𝑖𝑗

𝑛

𝑖,𝑗=1

= 𝑇(𝐴). 
 

Lemma 5.3.2: If 𝐴  = ⌊𝑎ĳ⌋  ∈ 𝑀𝑛  is nonnegative matrix, then 

𝑟(𝐴)  ≤ 𝑁(𝐴). 

 

Proof: If 𝐴 ≥ 0,  then by Theorem 5.2.11, there is a nonnega-

tivevector 𝑥 ≥ 0 , 𝑥 ≠ 0 , and 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑡  corresponding 

to 𝑟(𝐴). Let 𝑥𝜇 = 𝑚𝑎𝑥
1≤𝑖≤𝑛

{𝑥𝑖}. Then  

 

𝑟(𝐴)𝑥𝑖 = ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 , 

 

And Hence 

 

 𝑟(𝐴)𝑥𝜇 = 𝑚𝑎𝑥
1≤𝑖≤𝑛

(∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

) ≤ 𝑛 𝑚𝑎𝑥
𝑖,𝑗

(𝑎𝑖𝑗x𝑗). 

 

Since 
𝑥𝑗

𝑥𝜇
≤ 1 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑛, 𝑤𝑒 ℎ𝑎𝑣𝑒 

 

𝑟(𝐴) ≤ 𝑛 𝑚𝑎𝑥
𝑖,𝑗

(𝑎𝑖𝑗

𝑥𝑗

𝑥𝜇
) ≤ 𝑛 𝑚𝑎𝑥

𝑖,𝑗
(𝑎𝑖𝑗) = 𝑁(𝐴). 

 

Theorem 5.3.3: If 𝐴 = ⌊𝑎ĳ⌋  ∈ 𝑀𝑛  is a nonnegative matrix, then 

for 𝑘 =  1,2,… 

 

1) 𝑟(𝐴) ≤ 𝜏𝑘  

 

2) 𝑟(𝐴) ≤ 𝜏𝑘 ≤ 𝜏𝑘−1 ≤ ⋯ ≤ 𝜏1 ≤ 𝜏0 
 

3) 𝑙𝑖𝑚
𝑘→∞

𝜏𝑘 = 𝑟(𝐴) 

Proof:  

1) We first note that the inequality (1) implies  

 

(𝑟(𝐴))2𝑘
= 𝑟(𝐴2𝑘

) ≤ 𝑇(𝐴2𝑘
)            (By Lemma 5.3.1) 

 

And hence  

 

𝑟(𝐴) = (𝑟(𝐴)2𝑘
)
2−𝑘

≤ (𝑇(𝐴)2𝑘
)
2−𝑘

= 𝜏𝑘 

 

2)  𝐿𝑒𝑡 𝑡 = 𝑡0 = T(𝐴), 𝑎𝑛𝑑 𝑛𝑜𝑡𝑖𝑐𝑒 𝑡ℎ𝑎𝑡 

 

𝑇(𝐴2) = ∑ (∑(𝑎𝑖𝑘𝑎𝑘𝑗)

𝑛

𝑘=1

)

𝑛

𝑖,𝑗=1

= ∑ (𝑎𝑖𝑘𝑎𝑘𝑗)

𝑛

𝑖,𝑗,𝑘=1

 

 

≤ ∑ (𝑎𝑖𝑘𝑎𝑚𝑗)

𝑛

𝑖,𝑗,𝑘,𝑚=1

 

 

= 𝑇(𝐴)𝑇(𝐴) = (𝑇(𝐴))2 = 𝜏2, so 

 

𝜏1 = (𝑇(𝐴2))
1

2 ≤ (𝜏2)
1

2 = 𝜏 

 

𝜏2 = (𝑇(𝐴4))
1

4 = (𝑇(𝐴2𝐴2))
1

4 ≤ (𝑇(𝐴2))
1

4(𝑇(𝐴2))
1

4 = (𝜏1)
1

2(𝜏1)
1

2

= 𝜏1 

 

And so on.  

3) Since 𝑇 (𝐴) is a matrix norm, Corollary 4.1.9 implies that 

 

𝑙𝑖𝑚
𝑘→∞

(𝑇(𝐴)2𝑘
)
2−𝑘

= 𝑟(𝐴). 
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Theorem 5.3.4: If A = ⌊𝑎ĳ⌋  ∈ 𝑀𝑛 is a nonnegative matrix, then 

for 𝑘 =  1,2,… 

1) 𝑟(𝐴) ≤ 𝜑𝑘 

 

2) 𝑟(𝐴) ≤ 𝜑𝑘 ≤ 𝜑𝑘−1 ≤ ⋯ ≤ 𝜑1 ≤ 𝜑0 

 

3) 𝑙𝑖𝑚
𝑘→∞

(𝑁(𝐴)2𝑘
)
2−𝑘

= 𝑟(𝐴). 

 

Proof: 

1) It follows from the Lemma 5.3.2 that  

 

𝑟(𝐴)2𝑘
= 𝑟(𝐴2𝑘

) ≤ 𝑁(𝐴2𝑘
) 

 

Which implies that 

 

𝑟(𝐴) = 𝑟(𝐴2𝑘
)
2−𝑘

≤ (𝑁(𝐴)2𝑘
)
2−𝑘

= 𝜑𝑘 

 

2) Let 𝜑 = 𝜑0 = 𝑁(𝐴), notice that 

 

𝑁(𝐴2) = 𝑛 𝑚𝑎𝑥
𝑖,𝑗

(∑ 𝑎𝑖𝑘𝑎𝑘𝑗

𝑛

𝑘=1

) ≤ 𝑛 𝑚𝑎𝑥
𝑖,𝑗

(𝑛 𝑚𝑎𝑥
𝑖,𝑗,𝑘

𝑎𝑖𝑘𝑎𝑘𝑗) 

 

= (𝑛𝑚𝑎𝑥
𝑖,𝑘

𝑎𝑖𝑘) (𝑛 𝑚𝑎𝑥
𝑘,𝑗

𝑎𝑘𝑗) 

 

= 𝑁(𝐴)𝑁(𝐴) = 𝜑2, 𝑠𝑜 

 

𝜑1 = 𝑁(𝐴2)
1

2 ≤ (𝜑2)
1

2, 𝑠𝑜 

 

𝜑2 = 𝑁(𝐴4)
1

4 ≤ 𝑁(𝐴2)
1

4 𝑁(𝐴2)
1

4 = 𝜑1

1

2𝜑1

1

2 = 𝜑1, 

 

𝜑3 = 𝑁(𝐴8)
1

8 ≤ 𝑁(𝐴4)
1

8 𝑁(𝐴4)
1

8 = 𝜑2

1

2𝜑2

1

2 = 𝜑2 

 

And so on. 

We conclude this study with two examples illustrating the conclu-

sions of both theorem 5.3.3 and theorem 5.3.4  

 

For 𝐴 = [
2 1 3
3 2 1
5 4 2

] , 𝑟(𝐴) = 7.4354  

 

The first four terms of the sequences for A,  

 

τ = τ0 = 23,  τ1 = 12.9615,  τ2 = 9.8236,  τ3 = 8.5465,  τ4

= 7.9716 

 

φ = φ0 = 15,  φ1 = 9.7980,  φ2 = 8.5687,  φ3 = 7.9820,  φ4

= 7.7038 

 

For B = [
2 0 1
0 1 0
3 6 1

] , r(B) = 3.3028 

 

The first four terms of the sequences for B,  

 

τ = τ0 = 14,  τ1 = 6.4807,  τ2 = 4.6058,  τ3 = 3.8992,  τ4

= 3.5886 

 

φ = φ0 = 18,  φ1 = 6,  φ2 = 4.3004,  φ3 = 3.7606,  φ4

= 3.5242 

6. Conclusion 

This study has obtained many matrix inequalities involving matrix 

norm and spectral radius of nonnegative and positive matrices 

using the concepts of maps on matrix space. And it has investigat-

ed the lower and upper bounds of spectral radius for nonnegative 

and positive matrices. 

Finally, after examining the results for bounding column (row) 

sums with spectral radius of nonnegative and positive matrices, 

the study has been well proved to upper bounds of the Perron 

roots of nonnegative and positive matrices. 
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