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Abstract 
 

In this work, we study the problem governed by the Laplacian operator perturbed by a spectral parameter and affected by a weight func-

tion in a cone. First, the study will be done in a space sector. We will show a theorem that links the study of this problem .This study is it 

provides original results in a richer functional space, more it covers the classical case. 
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1. Introduction 

The aim of our work is to study the role played by the weight func-

tions in 

The study Elliptic problems of the form:  
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Or K is a cone with boundary   , and f given in 2L ( )K and R

. 

 

 is the Laplace operator, it is defined by:  
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By rotation and by translation it is always possible to reduce the 

apex of K at the origin of the local coordinates. The solution of the 

problem: 
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Is of the form:  

 
k k

u( , , z) u a sin exp(kz) (a cons tan t).0




    


 

This solution is not necessarily in 2H ( )K because
2

2

u


  

 

2L ( )K if     

 

But it is found that
2

2

2u L ( )  
K  , which gives us the idea of 

affecting the Laplacian of a weight function that is class C (K )


and does not null out in K . 

1.1. Some general results 

In [7] we find the solvability conditions of the Dirichlet problem in 

a cone nK R of vertex origin, relative to the problem:  
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Where  is a complex parameter, called spectral parameter, belong-

ing to  C R  . 

We construct a class of Sobolev spaces with weight for which the 

problem Dirichlet has a unique solution and is given the necessary 

conditions and sufficient to ensure the existence of this solution. 

The results will serve as "models" for more general problems. 

The cace: 0   

We generalize in a certain direction the works of [4] and [3] and 

[6]. 

The cace: 0   

It calls for a separate study of the case 0   , the singularity at the 

end being different. The results generalize those of [3]. 
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Remark 1.1: This weight function absorb the singularities which 

occur in the eighborhood of the top of K  , also it makes calcula-

tions easier. Considering the presence of the angular point on this 

top, to recover this, we multiply the operator     by the function 

( )   which satisfies (x, y, z)     in the neighborhood of the 

origin. 

2. Position of the problem 

We propose to study the following problem:  

 

( u u) f in

u 0 on

       


  

K

                                         (2.1) 

 

There fore the problem (3.1) becomes:  
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u u u u1 1( u) f in
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u 0 on
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We thus choose a functional space with weight that we note E and 

defined by:  

 

E ( )

1 2 2u H ( ) a Compact sup port and D u L ( ){ }
 

    

K

K K

 

 

Where the symbol 2D denotes the partial derivatives of order 2 with 

respect to the variables  and  or 1 
  

. We will look for the 

solution of our problem, if it exists in the space E  . We shall see 

later that E is an intermediate space between 1H and 2H  . We will 

provide the space E ( ) K of the following norm (called norm of the 

graph):  

 

1u u D u
E H

| | 2

   
 

                                       (2.3) 

 

We pose 

 

1E ( ) E ( ) H ( ),0 0
     K K K                                       (2.4) 

 

2.1. Property of space 

We showed in [2], the following results 

 

2 1H ( ) E ( ) H ( )x, y,z ,0 x, y,z    K K K                                       (2.5) 

 

1 1H ( ) H ( )x, y, z , , z   K K                                                          (2.6) 

 

2 2H ( ) H ( )x, y, z , , z   K K                                                          (2.7) 

 

Proposition 2.1 If u is in E ( ) K so 1 u


is in 2L ( )K . 

Proof: We have if u is in E ( ) K  , so is compactly supported in K

and 1u H ( ) K  , and so u


 in 2L ( )K we pose v  u


and proof 

that 1v is in 2L ( )K  ,so that: 

 

2 2 21 1 2 2h hv v d d dz v d d dz
0 0 0 0 0 0     
               

  
 

 

We have 1  so
22 1v v  ,because 2 2 1  leads

(2 2)ln 0  and like 0 1   we must necessarily have ln 0   so

1 .  

So for 1 , The proposition2.1 is verified, and it remains the case

1  .  

We have for 1  : 

 

2
1h 1 v d d dz

0 0 0

2 22 2 2 2h h 1v d d dz v d d dz
0 0 0 0 0

2 22 2 2 2h h 1v d d dz v d d dz
0 0 0 0 0

  

     

     

      
  

          

           

 

 

Because the function 2 2 is decreasing and continuous on 

the compact [ ,1] so it is bounded and reaches its limits on this com-

pact. It remains to study the integral 2 2 2h v d d dz
0 0 0  
     for 

sufficiently small and not null. 

The function be analytic by serie 2 2 2 2(1 1)    . We 

have for | X | 1 : 

 

1 n(1 X) ( 1)( 2)...( n 1)X
n!n 0


      



 

 

And 

 

0 1   from Where | 1| 1  we pose X 1 and 2 2  and 

apply development in serie entier , we will have:  

 

22 2h v d d dz
0 0 0

1 2n(2 2)(2 3)...(2 n 1)( 1) v d d dz
n!n 0

  
     


           



 

 

From where: 

 

 

2 22 2 2 2h h0 v d d dz (1 1) v d d dz
0 0 0 0 0 0

1 2 2h h(2 2)(2 3)...(2 n 1) v d d dz S v d d dz
0 0 0 0 0 0n!n 0

     

     

           

                 


p

 

Where S is the sum of the series of general terms 

1
(2 2)(2 3)...(2 n 1)

n!
       . This series is surely convergent. 

Then we have: 

 

2 22 2h h0 v d d dz S v d d dz
0 0 0 0 0 0     
            

 

And since 2v L we have the desired result. 

 Proposition2.2.There exists a constant C 0  , C depends on the 

open K such that:  
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Proof: From proposition2.1we have 2u L ( ) K so that

1 2u L ( )   
K we posons 1 uv   


the functions integrable 

with respect to the measure and being compactly supported in K  , 

the function v is also. It's about of a proof The following inequality:  

 

v
v C





 

 

v
v(x, y,z) ( cos t, sin ,z)dt

0

 
   


 

 

v2 2
v(x, y, z) C ( cos t, sin , z) dt

0

 
   


 

 

So that:  

 

v2 2h hv(x, y,z) d d dz ( cos t, sin ,z) d d dzdt
0 0 0 0 0 0

0

     

            


 

 

2h v(x, y,z) d d dz
0 0 0  
      

 

So:  

 

22 2u u1 1C
    
 

 

 

The result is verified.  

Proposition2.3: The space E ( ), 0 K Can be written in the follow-

ing form:  

 

1 2E ( ) u H ( ) such as u H ( ), 0 0 0{ }      K K K            (2.8) 

 

Where the functions are compactly supported in K . 

Proof 

Let 

1 2G ( ) u H ( ) such as u H ( ), 0 0 0{ }      K K K  

 

And made proof by double inclusion G ( ) E ( ), 0 , 0   K K and

G ( ) E ( ),0 , 0   K K that these two spaces coincide .L and

u G ( ), 0  K so that 1u H ( )
0

 K and 2u H ( )
0

  K from where:

1 1u u H ( )
0

     
K and so

2

2

1 2u 2 u L ( )     
K and as 

theproposition2.1 1 2u L ( )   
K so that

2

2

1 2u L ( )   
K  

Similarly, 2u H (
0

  K implies that 1u1 H ( )
0

    
K  , so that 

2

2

2 2u L ( ).   
K We also have: 

 

2u H ( )
0

  K  implies that 
21 2( u)L ( )
  

 
K  

 

And like: 

 

1 u 1 2H ( ) L ( )
0

   
 

K K So
21 2u L ( )   

K  

 

We have the result G ( ) E ( ), 0 , 0   K K . 

And by the same process one shows the inclusion in the other di-

rection. 

 

Lemma2.4: For all function u in E ( ),0 K , We have the follow-

ing inequality: 

 

2u u1(2 1)
2

      
 

 

 

We have
2

2

21 u u 0     
 

, which means that: 

 

2 2u u u u1 22 d d dz 0
2 2

K


            
  

 

And we have: 

 

2u u u u2 2 22 d d dz 2 ( ) d d dz
2

K K
 

           
  

. 

 

We integrate this last integral by parts, and taking into account that 

the functions are with compact support in K , so that: 

 

22u u u2 12 d d dz 2
2

K


        
 

 

Hence the expression 

 

2

2

2
21 u u 0     

 
 

 

So: 

 

2u u1(2 1)
2

      
 

 

3. Study of the existence of the solution 

We propose to study the solution of the problem (2.1) in plane sec-

tor. K  . This study will be extended to the cone by using a partition 

of the unity of this one. 

 

Theorem3.1:If f  is a function given in 2L ( )K the problem (2.1) 

admits an unique solution in space E ( ) K  if and only if the fol-

lowing problem: 

u f g in

u 0 on

      


  

K

                                                      (3.1) 

 

Admits an unique solution in space E ( ) K  
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Proof: It is evident that if the Problem(2.1) admits an unique solu-

tion in space E ( ) K  then the Problem (3.1) admits an unique so-

lution in space E ( ) K  ,because the problem (3.1) is a particular 

case of the problem (2.1), it suffices to pose 0  in (2.1). We will 

prove the reciprocal. We propose to seek the solution if it exists for 

the problem (3.1) in the space E ( ) K to study the existence of the 

solution of this problem, we will study the image of the operator

A    in space 2L ( )K  . To establish that the image of A is 

closed in 2L ( )K  ,we will be the following inequality : There is a 

constant C 0 such that: 

 

2 1

, 0 0

u C u ( ) u
E ( ) L ( ) H ( ){ }   

 KK K K
                       (3.2) 

 

The inequality (3.2), is deduced from the following lemma showed 

in [5] 

 

Lemma3.2:of Peetre:: If X  , Y  , Z  are three Banach reflex-

ivexive spaces such that X Y  with compact injection, and P  is a 

continuous linear operator from X  to Z  , then the following con-

ditions are equivalent:  

 

1) the image of P is closed in Z and kernel of P has finite dimen-

sion 

2) there is constant C 0 such that:  

 

u C u ( ) u
X Z Y{ } K                                               (3.3) 

 

For our problem we consider P A  ; X E ( ),0  K  ; 1Y H ( )
0

 K

and 2Z L ( ) K  , that all the hypothesis of the Lemma 4.1 are veri-

fied, so to obtain (1) in the Lemma 4.1, we will prove (2), then we 

will establish the inequality (3.2).We prove now the inequality 

(3.2).For this we be calculate
2

u   . 

 

2 222 u u1u
2

2 2
2 2u u2 2(I J K L M N)
2 2z

        
 

           
 

 

 

Or 
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2

2 2

2 2

2

2

2 u uI d d dz ;

2 1 u uJ d d dz ;

2 2 u uK d d dz
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K
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2 2

2 2

2

2

2 2

2 2

2 1 u uL d d dz ;
z

2 u uM d d dz ;
z

2 1 u uN d d dz
z













     
 

     
 

     
 

K

K

K

 

 

We calculate each of the expressions I , J , K , L , M , N by integra-

tion by parties and taking into account boundary conditions and the 

fact that functions are compactly supported we get:  

 

2
u1I
  


 

 

And 

 

22 21 u u2 1 1J K (2 2 )
        

  
 

 

And 

 

2 2
2u u

L M 2 (2 1)
z z

         
 

 ; 

2
2u

N
z

  


 

 

So: 

 

2 2 222 2 22 u u u u1 2u
2 2 2z

                
   

 

 

+2[

2
u1   



22 21 u u2 1 1(2 2 )
      

  
 

 

+

2 2
2u u

2 (2 1)
z z

       
 

+

2
2u

N
z

  


] 

 

So we have:  

 

1

,0

2 2 2
u u u

H E

2 2
u u1 2 1(1 2 ) 2(2 2 )

2 2
2 2u u12 2

z

22 2u u
4 (2 1) 2

z z



    

         
 

     
 

       
 

 

 

,0

2
u2 1u (1 2 )

E

2 2
2 2u u12 2

z

2
u

4 (2 1)
z



    


     
 

    


 

 

Because: 

22 2u u2 12(2 2 ) 2 0
z
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And according to propositions 2.2 and lemma 2.4 we have the de-

sired result by choosing a suitable constant C  .We thus have a con-

stant for the case 1
2

  and another constant for the case 1
2

  . 

 

2 1

0 , 0

C u ( ) u u
L ( ) H ( ) E ( ){ }   

  KK K K
. 

 

There is existe therefore a constant C 0,   , which depends on 

and  , which checks the inequality (3.4).Thus according to inequal-

ity(3.4) and the lemma 3.2, we deduce that the problem (3.1) admit 

a solution in E ( ),0 K  .Now we prove that the inequality (3.4) can 

be extended to the problem (2.1).  

We have:  

 

2

2
2 2

u
L (K )

u u u Au u
L (K )L (K ) L (K )




 

 

             

 

 

Which implies 

 

2
2

2L ( K )

2
2u ( Au u )

L (K ) L (K )




        

 

So that: 

 

2 2L ( K ) L ( K )
2 2 2L ( K ) L ( K ) L ( K )

2 22
u Au u 2 Au u

 
  

            

 

According to the elementary formula: 

 

2 2 2(a b) a b 2ab    So 2 2a b 2ab   

 

We take 2a Au
L ( )




K

and
2

b u
L ( )



  
K

which give: 

 

2L ( K )
2 2L ( K ) L ( K )

2 22
u 2( Au u )


 

        

 

So that 

 

1 1

0 2 0L ( K )
2 2L ( K ) L ( K )

2 22 2 2
u u 2( Au u ) u

H H


 

          

 

So 

 

1
1

0 2L ( K )
2 2 0L ( K ) L ( K )

2 2 22
u u 2( Au u ) u

H H
 

                             (3.5) 

 

We have the function has compact support in K Then there existe

00  0 finite as: 

1

0
2L ( K )

2 2 2u u0 H


       

 

And injection of 1H
0

in 2L is continuous[4] , therefore the above in-

equality: 

 

1

0
2L ( K )

2 2 2u u0 H


       

 

So that (3.5): 

 

1

0 2L (K )
2L (K )

1

0
2L (K )

2 2
u u 2( Au

H

2 2 2u ) u0 H






   

      

                                             (3.6) 

 

From the inequalities (3.4) and (3.6) we deduce: 

 

1

2 0,0 L ( K )
2L ( K )

21 2 2 2u 2( Au u ) u0E HC 




         

 

So:  

 

1

2 0,0 L (K )

1 2 2 2u 2 Au (2 2 ) u0E HC 


                                 (3.7) 

 

Where  Is any non null constant. If one takes a constant

2 2C max(2,2 2 | | )1 0
    we have: There exists a constant

K CC 01  such that: 

 

1

2 0,0 L ( K )

2
u K Au u

E H




  
  

  

                                                  (3.8) 

 

Thus according to the inequality (3.8) and the Lemma 3.2, we de-

duce that the image of the operator A is closed in 2L ( )K and the 

kernel of the problem (2.1) has a finite dimension , thereafter the 

problem (2.1) admits at least a solution in E ( ),0 K  

4. Study of the uniqueness of the solution 

We propose to study the uniqueness of the solution of problem 

(3.2). For this we calculate its kernel in space E ( ),0 K the ele-

ments of the kernel of the problem (3.2) are solution of the follow-

ing problem:  

 

( u u) 0 in

u 0 on

     


  

K

                                                     (4.1) 

 

According to 0  in K , then the problem (4.1) can be written as:  

 

u u 0 in

u 0 on

    


 

K
                                                            (4.2) 

 

We will study the uniqueness of the solution of the problem (3.1), 

we have:  

22 2
u u u

u 0 u, u 0
x y z

  
         

  
 

 

Then u is a constant in 1H ( )K  , according to u 0 on  we deduce 

that u 0 in 1H ( )K then u 0 in E ( ),0 K . 

Now we study the uniqueness of the solution of the problem (2.1), 

for this we calculate its kernel, we remark that:  
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22 2

u u u 2
Au 0 u u, u u 0

x y z

  
            

  
 

 

We distinguish two cases: 

Case1: 0  Therefore u 0 in 1H ( )K then u 0 in E ( ),0 K  

Case2: 0  we pose 2   Then 2 2

2 22u u
L ( ) L ( )

 

 
K K

using the 

fact that 2

2
u

L ( )



K

is a norm equivalent to the usual norm of

1H ( )K we deduce that u 0 in 1H ( )K then u 0 in E ( ),0 K We 

deduce that the problem (2.1) admits an unique solution in

E ( ),0 K  . 

This completes the proof of the theorem 3.1 
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