The effect of numerical integration in mixed finite element approximation in the simulation of miscible displacement

Nguimbi Germain1, Pongui Ngoma Diogène Vianney2* and Likibi Pellat Rhoss Beauneur2

1Ecole Nationale Supérieure Polytechnique, Marien Ngouabi University
2Department of Mathematics, Marien Ngouabi University
*Corresponding author E-mail: diogene.ponguingoma@unmg.cg

Abstract

We consider the effect of numerical integration in finite element procedures applied to a nonlinear system of two coupled partial differential equations describing the miscible displacement of one incompressible fluid by another in a reservoir Ω ⊆ R2 of unit thickness and local elevation z(x), x ∈ Ω, with the Darcy velocity of the fluid mixture given by

\[u = \frac{k(x)}{\mu(c)} (\nabla p - \gamma_0(c) \nabla z), \]

(1)
can be described by differential system that can be put in the slightly more general form [6]

\[
\begin{aligned}
\nabla \cdot u &= \sum_{i=1}^{2} \frac{\partial}{\partial x_i} a_i(x,c) \left(\frac{\partial p}{\partial x_i} - \gamma_i(x,c) \right), \quad q, x, x \in \Omega, t \in [0, T], (a) \\
\phi \frac{\partial c}{\partial t} + u \cdot \nabla c - \nabla \cdot (D \nabla c) &= (\hat{c} - c) q = g(x,t,c), x \in \Omega, t \in [0, T], (b) \\
u \cdot \vartheta &= 0, \quad x \in \partial \Omega, t \in [0, T], (c) \\
\sum_{i,j} D_{ij}(\phi, u) \frac{\partial c}{\partial x_i} \delta_{ij} &= 0, \quad x \in \partial \Omega, \quad t \in [0, T], (d) \\
c(x,0) &= c_0(x), \quad x \in \Omega. \quad (e)
\end{aligned}
\]

(2)

In the above, p is the pressure and the initial pressure, modulo an additive constant, can be determined from (2a) and (2c); c is the concentration, c0 the initial concentration such that 0 ≤ c0(x) ≤ 1, and the term \(\hat{c} \) must be specified where \(q > 0 \) and \(\hat{c} = c \) where \(q < 0 \); \(q = g(x,t) \) is the imposed external flow, positive for injection and negative for projection, \(\vartheta \) is the exterior normal to \(\partial \Omega \); for compatibility (q, 1) = ∫Ω q(x,t)dx = 0, \(t \in [0, T] \); \(a = a(c) = a(x,c) = \frac{k(x)}{\mu(c)} \).

where \(k(x) \) is the permeability of the medium, \(\mu(c) \) the viscosity of the fluid; \(\gamma_i \) is the density of the fluid and \(\gamma(x,c) = \gamma_i(c) \nabla z(x) \). The diffusion coefficient \(D = D(\phi, u) = 2 \times 2 \) matrix given by

\[D = \phi(x) \left[d_x I + | u | (d_1 E(u) + d_2 E^{-1}(u)) \right], \]

(3)

where \(\phi \) is the porosity of the medium and the matrix E is the projection along the direction of flow given by \(E(u) = (a_i a_i/|u|^2) \).

1. Introduction

The miscible displacement of one incompressible fluid by another in a reservoir \(\Omega \subset \mathbb{R}^2 \) of unit thickness and local elevation \(z(x), x \in \Omega \), with the Darcy velocity of the fluid mixture given by

\[u = \frac{k(x)}{\mu(c)} (\nabla p - \gamma_0(c) \nabla z), \]

(1)
can be described by differential system that can be put in the slightly more general form [6]

\[
\begin{aligned}
\nabla \cdot u &= \sum_{i=1}^{2} \frac{\partial}{\partial x_i} a_i(x,c) \left(\frac{\partial p}{\partial x_i} - \gamma_i(x,c) \right), \quad q, x, x \in \Omega, t \in [0, T], (a) \\
\phi \frac{\partial c}{\partial t} + u \cdot \nabla c - \nabla \cdot (D \nabla c) &= (\hat{c} - c) q = g(x,t,c), x \in \Omega, t \in [0, T], (b) \\
u \cdot \vartheta &= 0, \quad x \in \partial \Omega, t \in [0, T], (c) \\
\sum_{i,j} D_{ij}(\phi, u) \frac{\partial c}{\partial x_i} \delta_{ij} &= 0, \quad x \in \partial \Omega, \quad t \in [0, T], (d) \\
c(x,0) &= c_0(x), \quad x \in \Omega. \quad (e)
\end{aligned}
\]

(2)

In the above, p is the pressure and the initial pressure, modulo an additive constant, can be determined from (2a) and (2c); c is the concentration, c0 the initial concentration such that 0 ≤ c0(x) ≤ 1, and the term \(\hat{c} \) must be specified where \(q > 0 \) and \(\hat{c} = c \) where \(q < 0 \); \(q = g(x,t) \) is the imposed external flow, positive for injection and negative for projection, \(\vartheta \) is the exterior normal to \(\partial \Omega \); for compatibility (q, 1) = ∫Ω q(x,t)dx = 0, \(t \in [0, T] \);\(a = a(c) = a(x,c) = \frac{k(x)}{\mu(c)} \).

where \(k(x) \) is the permeability of the medium, \(\mu(c) \) the viscosity of the fluid; \(\gamma_i \) is the density of the fluid and \(\gamma(x,c) = \gamma_i(c) \nabla z(x) \). The diffusion coefficient \(D = D(\phi, u) = 2 \times 2 \) matrix given by

\[D = \phi(x) \left[d_x I + | u | (d_1 E(u) + d_2 E^{-1}(u)) \right], \]

(3)

where \(\phi \) is the porosity of the medium and the matrix E is the projection along the direction of flow given by \(E(u) = (a_i a_i/|u|^2) \).

When numerical integration is not used the problem (2) has been studied by Jim Douglas Jr., Richard E. Ewing and Mary Fanett So-Hsiang Chou and Li Qian [4], Li Qian and Wang Daoyu [5] and others. When numerical integration is not used the problem (2) has been studied by Jim Douglas Jr., Richard E. Ewing and Mary Fanett So-Hsiang Chou and Li Qian [4], Li Qian and Wang Daoyu [5] and others. When numerical integration is not used the problem (2) has been studied by Jim Douglas Jr., Richard E. Ewing and Mary Fanett So-Hsiang Chou and Li Qian [4], Li Qian and Wang Daoyu [5] and others.
We shall consider $W^{m,1}(\Omega), H^m(\Omega) = W^{m,2}(\Omega), L^2(\Omega) = H^0(\Omega) = W^{0,2}(\Omega)$ and $L^2(\Omega) = W^{0,1}(\Omega)$ for any integer $m \geq 0$ and any number s such that $1 \leq s < \infty$, as the usual Sobolev and Lebesgue spaces on Ω respectively. The associated norms are denoted as follows: $\| \cdot \|_{m,x} = \| \cdot \|_{W^{m,1}(\Omega)}$, $\| \cdot \|_m = \| \cdot \|_{H^m(\Omega)}$ or $\| \cdot \|_{H^0(\Omega)}$ as appropriate, $\| \cdot \|_{L^2(\Omega)}$ or $\| \cdot \|_{L^2(\Omega)}$ as appropriate, $\| \cdot \|_{L^2(\Omega)}$.

Let X be any of L^2 or Sobolev spaces; for a function $f(x,t)$ defined on $\Omega \times [0,T]$ we set $\| f \|_{L^2(\Omega)} = \int \int |f(x,t)|^2 dt$, $\| f \|_{L^2(\Omega)} = \sup_{0 \leq t \leq T} |f(x,t)|$.

Set $H(div;\Omega) = \{ v, v \in L^2(\Omega)^2, \nabla \cdot v \in L^2(\Omega) \}$, provided with the norm

$$\| v \|_{H(div;\Omega)} = \left(\sum_{i=1}^2 \| v_i \|_{0,\Omega}^2 + \| \nabla \cdot v \|_{0,\Omega}^2 \right)^{\frac{1}{2}}$$

and let

$$V = \{ v, v \in H(div;\Omega), \nabla \cdot v = 0 \text{ on } \partial\Omega \}$$

and $W = L^2(\Omega)^2/\{ \phi \equiv \text{constant on } \Omega \}$.

Assumptions (A)

(i) The external flow is smoothly distributed, and the coefficients and domain are sufficiently regular as to allow a smooth solution of the differential problem.

(ii) The functions $a_i(x,c),(c \in [0,1])$ are bounded above and below by positive constants and there exist a uniform positive constant M such that $|q(x,t)| + |V_c(x)| + |f(x,c)| \leq M$; and the matrix D should be uniformly positive-definite:

$$\sum_{i,j=1}^2 D_{ij}(\phi,u)\xi_i\xi_j \geq D_0 \| \xi \|^2, \xi \in \mathbb{R}^2,$

with D_0 being independent of x and u.

(iii) g is Lipschitz continuous and the various bounds that are used for the coefficients and their derivatives hold only in a neighborhood of the solution of the differential problem.

Let $h = (h_c,h_p)$, where h_c and h_p are positive, and different in general. Let $M_h = M_h \subset H^1(\Omega)$ be a standard finite element space of index at least l associated with a quasi-regular polygonalization T_h of Ω and having the following approximation and inverse hypotheses:

$$\inf_{z \in M_h} \| z - z_h \| \leq h^{l+1} M_h \| z \|_{H^{l+1}(\Omega)}, (a)$$

$$\| z_h \|_{M_h} \leq h^{-m} M_h^{1-m} \| z \|_{l+1}, 1 \leq m \leq l+1, z_h \in M_h. (b)$$

Suppose that Ω is a polygonal domain. Let $V_h \times W_h$ be one of the Raviart-Thomas spaces of index at least k associated with a quasi-regular triangulation or quadrilateralization T_h of Ω such that the elements have diameters much smaller than h.

Set $V_h = \{ v \in V_h : v \cdot \theta = 0 \text{ on } \partial\Omega \}$ and $W_h = W_h/\{ \phi \equiv \text{constant on } \Omega \}$.

The approximation properties of $V_h \times W_h$ are given by the following relations:

$$\inf_{v \in V_h} \| v - v_h \|_{L^2(\Omega)} \leq M \| v \|_{H^{l+1}(\Omega)} + \| \nabla v \|_{H^{l+1}(\Omega)} h_p^{k+1}. (a)$$

$$\inf_{w \in W_h} \| w - w_h \| \leq M \| w \|_{H^{l+1}(\Omega)} h_p^{k+1}. (b)$$

whenever the norms on the right-hand side are finite.

The weak form of (2) is defined by finding the map $\{c,u,p\} : [0,T] \rightarrow H^1 \times V \times W$ such that

$$\int_{\Omega} (\phi \cdot) + (u \cdot V_c, z) + (D(u) V_c, V_c) = (g,c), \quad z \in H^1(\Omega), 0 < t \leq T, (a)$$

$$A(c,u,v) + B(v,p) = (f,c), \quad v \in V, \quad 0 < t \leq T, (b)$$

$$B(u,\phi) = -(q,\phi), \quad \phi \in W, \quad 0 \leq t \leq T, (c)$$

$$c(0) = c(0), D(u) = D(f,u); \quad c_t = \frac{\partial c}{\partial t}, \quad u \cdot V_c \in L^2(\Omega), (6)$$

$$A(\theta,\alpha,\beta) = \sum_{i=1}^2 \frac{1}{a_i(\theta)} \alpha_i \beta_i, \quad \beta_i \in \Omega \sum_{i=1}^2 \frac{1}{a_i(\theta)} \alpha_i \beta_i dx, \quad \alpha, \beta \in V, \quad \theta \in L^2(\Omega),$$

$$B(\alpha,\phi) = -\langle \nabla \cdot \alpha, \phi \rangle = -\int_{\Omega} \nabla \cdot \alpha \phi \text{dx}, \quad \phi \in W.$$}

Following [1], we now give a general description of the corresponding formulation of (6) when numerical integration is present. In what follows let f be c or p as appropriate, and s be l or k as appropriate.

Let T_{h}^j be a quasi-regular polygonalisation of the set Ω with elements (K_j,P_j,C_j), with diameters $\leq h_j$.

The following assumptions shall be made

(i) The family $(K_j,P_j,C_j), K_j \in T_{h}^j$ for all h_j is a regular affine family with a single reference finite element (K_0,P_0,C_0).

(ii) $\hat{P}_j = P_j(K_j)$, the set of polynomials of degree less than or equal to s.

(iii) The family of triangulations or quadrilateralizations T_{h}^j satisfies an inverse hypothesis.

(iv) Each polygonalization T_{h}^j is associated with a finite-dimensional subspace M_h^0 or V_h or W_h of trial functions which is contained in $H^1(\Omega) \cap C^0(\Omega)$.

We now introduce a quadrature scheme over the reference set K_j. A typical integral $\int_{K_j} \hat{\phi} d\hat{x}$ is approximated by

$$\sum_{I_j=1}^{L_j} \omega_{I_j} \hat{\phi}(b_{I_j}),$$

where the points $b_{I_j} \in K_j$ and the numbers $\omega_{I_j} > 0, 1 \leq I_j \leq L_j$ are respectively the nodes and the weights of the quadrature.

Let $F_{K_j} : \hat{x} \mapsto x \equiv F_{K_j}(\hat{x}) \equiv B_{K_j} \hat{x} + b_{K_j}$ be the inverse affine mapping from K_j onto K_j with the Jacobian of $F_{K_j}, \text{det}(B_{K_j}) > 0$.

Any two functions ϕ and $\hat{\phi}$ on K_j and \hat{K}_j are related as $\phi(\hat{x}) = \hat{\phi}(x)$ for all $x \in F_{K_j}(\hat{x}), \hat{x} \in K_j$.

The induced quadrature scheme over K_j is

$$\int_{K_j} \phi(x) dx \approx \text{det}(B_{K_j}) \int_{\hat{K}_j} \hat{\phi}(\hat{x}) d\hat{x} \approx \sum_{I_j=1}^{L_j} \omega_{I_j} \phi(b_{I_j}),$$

with $\omega_{I_j} \equiv \text{det}(B_{K_j}) \omega_{I_j}$, and $b_{I_j} \equiv F_{K_j}(b_{I_j}), 1 \leq I_j \leq L_j$.

Accordingly, we introduce the quadrature error functionals

$$E_{K_j}(\phi) \equiv \int_{K_j} \phi(x) dx - \sum_{I_j=1}^{L_j} \omega_{I_j} \phi(b_{I_j}).$$
\[\hat{E}(\hat{\phi}) \equiv \int_{\Omega} \hat{\phi}(x) dx - \sum_{i=1}^{L_\phi} \hat{\alpha}_i \hat{\phi}(\hat{b}_i), \]
(8)

which are related by

\[E_{K_\phi}(\phi) = \det(B_{K_\phi})\hat{E}(\hat{\phi}). \]
(9)

The quadrature scheme is exact for the space of functions \(\hat{\phi} \), if \(\hat{E}(\hat{\phi}) = 0, \forall \hat{\phi}. \)

If the approximations for the concentration, the velocity, and the pressure are denoted by \(C(U), P \), respectively, then using these quadrature formulas, the continuous-time approximation procedure of (6) is given by finding the map \(\{C(U,P) : [0,T] \to M_b \times V_h \times W_h \} \) such that

\[\begin{align*}
(C(0) &= c_0 \text{ small: } L^2(\Omega)-\text{or } H^1(\Omega)-\text{projection of } c_0 \text{ into } M_b \text{ or some interpolation of } c_0 \text{ into } M_b, \\
\Phi(C(\cdot),\cdot) + (U'V_C,\cdot) + (D(U)\nabla C, \nabla \cdot) = (g(C), \cdot), \quad \forall \nu \in M_b, \quad \tau \in [0,T], \\
A_h(C,U) + B_h(U,P) = (g(C),v)\nu, \quad \forall v \in V_h, \quad \tau \in [0,T], \quad \text{(b.1)}
\end{align*} \]

\[B_h(U,\varphi) = -(\varphi,\cdot)_h, \quad \varphi \in W_h, \quad \tau \in [0,T]. \]
(10)

where

\[\begin{align*}
(a,\beta)_h &= \sum_{K_i \in T_h} \sum_{f_{ij} \in K_i} \alpha_i \beta_j \langle b_{ij}, f_{ij} \rangle, \\
A_h(\alpha,\beta) &= \left(\frac{1}{q(\theta)} \right) \sum_{i,j} \alpha_i \beta_j - \sum_{j} \left(\frac{1}{a_i(\theta)} \right) \alpha_i \beta_j, \\
&= \sum_{K_i \in T_h} \sum_{f_{ij} \in K_i} \alpha_i \beta_j \langle b_{ij}, f_{ij} \rangle,
\end{align*} \]

\[B_h(\alpha, \varphi) = -(\nabla \cdot \alpha \varphi)_h = -\sum_{K_i \in T_h} \sum_{f_{ij} \in K_i} \alpha_i \beta_j \langle b_{ij}, f_{ij} \rangle. \]

The analysis of the convergence of finite element methods will make use of two useful projections. Let the map \(\{\hat{u}, \hat{b}_i\} : [0,T] \rightarrow V_h \times W_h \) be the projection of the pressure solution \(\{u, p\} \) given by

\[\begin{align*}
A(c;\hat{u}, \hat{v}) + B(\hat{u}, \hat{v}) &= (\gamma(c), \hat{v}), \quad \forall \hat{v} \in V_h, \quad \text{(a)} \\
B(\hat{u}, \varphi) &= -(\varphi, \hat{u}), \quad \varphi \in W_h. \quad \text{(b)}
\end{align*} \]

Then, by \(\{6\} \), the map exists and (5) implies that

\[\|u - \hat{u}\| + \|p - \hat{p}\| \leq M_{\|\cdot\|_{L^\infty(H^{s+1}(\Omega))}}\|p\|^{H_{s+1}} \]
(12)

where \(M \) depends only on uniform bounds for \(a_i(c) \), but not on \(c \) itself.

Next, let \(\hat{c} : [0,T] \rightarrow M_b \) be the projection of \(c \) given by

\[(D(u)\nabla (\hat{c} - c), \nabla z) + (u \cdot \nabla (\hat{c} - c), z) + (\lambda (\hat{c} - c), z) = 0, \quad z \in M_b, \]
(13)

where \(\lambda = 1 + q^\tau. \)

Then, at any point \(r \in \Omega \), decomposing \(\nabla \xi \) into orthogonal components \(\alpha \) and \(\beta \), respectively parallel to \(u \) and orthogonal to \(u \), and using the assumption that \(d_i \geq d_i \), by \(\{6\} \),

\[(D(u)\nabla \xi, \nabla \xi) + (u \cdot \nabla \xi, \xi) + (\lambda \xi, \xi) \geq (\Phi(d_m + d_i |u|)\nabla \xi, \nabla \xi) + (\xi, \xi), \]
(14)

\[\langle d_i E(u) \nabla \xi, \xi \rangle + \langle d_i E^\perp \nabla \xi, \xi \rangle > k_e d_i = \alpha^2 + d_i \beta^2 \geq d_i \| \nabla \xi \|^2, \]
(15)

\[\|c - \hat{c}\| + h_c\|c - \hat{c}\| \leq M\|c\|_{H^{s+1}} + h_c^{H_{s+1}}, \]
(16)

\[\|g\|_{L^2(L^\infty(\Omega))} + \|\nabla g\|_{L^2(L^\infty(\Omega))} + \|\hat{c}\|_{L^2(H^{s+1})} \leq M \]
(18)

3. Lemmas

We point out that the general point of view in Ciarlet [11] for elliptic problems has provided a guide line for our development here. In what follows, let \(S_h \) denote \(M_h \) or \(V_h \) or \(W_h \) as appropriate.

Lemma 3.1. \[\{6\} \] Assume that, for some integer \(s \geq 1, \)

(i) \(\Phi = P_{l_f}(K_f) \),

(ii) the union \(\bigcup_{l_f=1}^{L_f} \{b_{ij}\} \) contains a \(P_{l_f}(K_f) \)-unisolvent subset

and/or the quadrature scheme is exact for the space \(P_{l_f}(K_f) \). Then

\[M_1\|w\|_{b} \leq \|w\| \leq M_2\|w\|_{b}, \quad w \in S_h, \]

\[\|w_1, w_2\|_h \leq M\|w_1\|_{h} \|w_2\|_h, \quad w_1, w_2 \in S_h, \quad \text{where} \quad \|w\|_h^2 \equiv (w,w)_h \]

Lemma 3.2. \[\{6\} \] Assume \(\tilde{g} \in C^0(K_f) \). Then for all \(w, v \in S_h, \)

\[|E_{K_f}(\tilde{g}w, v)| \leq M\|\tilde{g}\|_{L^2(K_f)}\|w\|_{L^2(K_f)}\|v\|_{L^2(K_f)}, \]

where \(E_{K_f}(\cdot) \) is the quadrature error functional in (7).

Lemma 3.3. \[\{6\} \] Assume that, for some integer \(s \geq 1, \Phi = P_{l_f}(K_f) \) and that \(\hat{E}(\hat{\phi}) = 0, \quad \forall \hat{\phi} \in P_{l_f}(K_f) \).

Then there exists a constant \(M \) independent of \(K_f \in T_h \) and \(h_f \) such that for any \(\tilde{g} \in W^{s+1,0}(K_f), \quad \bar{q} \in P_{l_f}(K_f), \quad \bar{q} \neq 0 \in P_{l_f}(K_f), \)

\[\|E_{K_f}(\tilde{g}w, \bar{q})\| \leq M_{l_f}\|w\|_{W^{s+1,0}(K_f)}\|\tilde{g}\|_{H^{s}(K_f)}\|\bar{q}\|_{H^{s}(K_f)}, \]

where \(h_{f,K_f} = \text{diam}(K_f) \).

Lemma 3.4. \[\{6\} \] Under the same hypotheses as in Lemma 3.3. Furthermore assume that there exists a number \(q_0 \) satisfying \(s + 1 \geq 2q_0 \).

Then there exists a constant \(M \) independent of \(K_f \in T_h \) and \(h_f \) such that for any \(\tilde{g} \in W^{s+1,q_0}(K_f) \) and any \(w \in P_{l_f}(K_f), \)

\[|E_{K_f}(\tilde{g}w)| \leq M_{l_f}\|w\|_{W^{s+1,q_0}(K_f)}\|\tilde{g}\|_{H^{s}(K_f)}\|w\|_{H^{s}(K_f)}. \]
4. Error Estimates

Theorem. Let \{c, u, p\}, \{C, U, P\}, \{\tilde{u}, \tilde{p}, \tilde{c}\} satisfy (6), (10), (11) and (13), respectively.
Let \(f\) denote \(c\) or \(p\) as appropriate and \(s\) denote \(l\) or \(k\) as appropriate.
Assume that

(i) \(\tilde{P}_L = P_0(\tilde{K}_f)\),
(ii) the quadrature scheme \(\int_{\tilde{K}_f} \tilde{\phi}(x)dx \approx \sum_{i=1}^{L_k} \tilde{\phi}_i(\tilde{b}_i), \tilde{b}_i\) is exact

for the space \(P_2(\tilde{K}_f)\) and also exact for the space \(P_{2(l-1)}(\tilde{K}_f)\).
and the union \(\bigcup_{i=1}^{L_k} \{\tilde{b}_i\}\) contains a \(P_3(\tilde{K}_f)\)-unisolvent subset.

Then, if \(C(0)\) is determined in such a way that

\[\|C(0) - \tilde{c}(0)\| \leq M \|c_0\| + 1 \|h^l+1, \text{then for } l \geq 1, \quad k \geq 0 \]

and \(h\) sufficiently small.

\[\|c - C\|_{L_p} + \|u - U\|_{L_p} + \|p - P\|_{L_p} \leq M\left\| \left(1 + \|C\|_{L^p(H^{l+1}(\Omega))} + \|c_0\|_{L^p(H^{l+1}(\Omega))} \right) h^{l+1} \right. \]

\[+ \|p\|_{L^p(H^{l+1}(\Omega))} h^{k+1} \right\} \]

Proof. With (12) and (16) known, the convergence analysis will have only to bound

\[U - \tilde{u}, \quad P - \tilde{p}, \quad \text{and } C - \tilde{c}. \]

Let \(E(\tilde{w}_1 \tilde{w}_2) = (\tilde{w}_1, \tilde{w}_2)_h\). We first consider the estimate of \(U - \tilde{u}\) and \(P - \tilde{p}\). Manipulation of (2.3b), (2.7b) and (11) leads to

(a)

\[A_h(C; U - \tilde{u}, V) + B_h(V, P - \tilde{p}) = A(c; \tilde{u}, V) - A(C; \tilde{u}, V) + + (\gamma(C) - \gamma(c), V) + E(\frac{1}{a(C)} \tilde{\nu}) + E(-\nu \cdot \tilde{p}) - E(\gamma(c), V), \quad \nu \in V_h \]

(b)

\[B_h(U - \tilde{u}, \phi) = E(q \phi) + E(-\nu \cdot \tilde{u} \phi), \quad \phi \in V_h \]

Existence and uniqueness of \(U\) and \(P\) can be proved based on ideas of [13, 14]. Hence, as in [6], it follows from assumptions (A), the quasi-regularity of the grid combined with the bound (12) and Lemmas 3.1, 3.3 and 3.4 that

\[\|U - \tilde{u}\| + \|P - \tilde{p}\| \leq M\left\| \left(1 + \|\tilde{u}\|_{L^p} \right) c - C \right. \]

\[+ \|\tilde{p}\|_{L^p} + \|C\|_{L^p(H^{l+1}(\Omega))} + \|\gamma\|_{L^p(H^{l+1}(\Omega))} + \|\nu \tilde{\nu}\|_{L^p} \right\} \]

\[\leq M\left\| c - C \right\| + h^{l+1} \]

where the constant \(M\) depends only on constants in (A).

We now turn to the examination of the concentration equation.
Let \(\eta = c - \tilde{c}\), \(\xi = C - \tilde{c}\) and \(E(\tilde{w}_1 \tilde{w}_2) = (\tilde{w}_1, \tilde{w}_2)\).
Subtract (2.3a) from (2.7a), apply (13), set \(z = \xi\) and use the following relation

\[(\phi \xi, \xi)_h = \frac{1}{2} \frac{d}{dt} (\phi \xi, \xi)_h \]

To obtain

\[\frac{1}{2} \frac{d}{dt} (\phi \xi, \xi)_h + (U \cdot \nabla \xi, \xi)_h + (D(U) \nabla \xi, \xi)_h = (\phi \eta, \xi) - (\lambda \eta, \xi) + + - (\nu \cdot u) \Delta \xi - ((D(U) - D(u)) \nabla \xi) + E(\phi \xi \xi) + E(U \cdot \nabla \xi) + + + E(D(U) \nabla \xi) + E(g(C) \xi) \]

\[= \sum_{i=1}^{R_i} R_i. \]

First, we shall bound the left-hand side of (19). As in [6], it follows from Lemma 3.1 and (15) that

\[\frac{1}{2} \frac{d}{dt} (\phi \xi, \xi)_h + (D(U) \nabla \xi, \xi)_h \geq \frac{1}{2} \frac{d}{dt} (\phi \xi, \xi)_h + (\phi (d_m + d_t) \nu \xi, \xi)_h \]

\[\geq M \left\{ 1 + \|\xi\|^2 \right\} \|\xi\|^2 + \|\xi\|^2 \]

(22)

Using the argument of [6], it follows from Lemma 3.1 that

\[(U \cdot \nabla \xi, \xi)_h = - \frac{1}{2} \frac{d}{dt} (\xi^2, \xi)_h \]

\[\leq M \left\{ 1 + \|\xi\|^2 \right\} \|\xi\|^2 + \|\xi\|^2 \]

(23)

Hence

\[\frac{1}{2} \frac{d}{dt} (\phi \xi, \xi)_h + (D(U) \nabla \xi, \xi)_h + (D(U) \nabla \xi, \xi)_h \geq \frac{1}{2} \frac{d}{dt} (\phi \xi, \xi)_h + + + (\phi (d_m + d_t) \nu \xi, \xi)_h \]

\[\leq M \left\{ 1 + \|\xi\|^2 \right\} \|\xi\|^2 + \|\xi\|^2 \]

(24)

Now, we need to bound the right-hand side of (21). By (18), we have

\[|R_1| + |R_2| + |R_3| \leq M \left\{ \|\eta\|^2 + \|\eta\|^2 \right. \]

\[+ \|\nu \xi\|_{L^p} + \|\nabla \xi\|_{L^p} + \|\nu \xi\|_{L^p} \]

\[\leq M \left\{ \|\eta\|^2 + \|\eta\|^2 + \|\nu \xi\|_{L^p} \right\} \]

(25)

Use [6] and (18) to see that

\[|R_4| = \left| - ((D(U) - D(u)) \nabla \xi) \right| \leq M \|\nabla \xi\|_{L^p} + \|\nabla \xi\|_{L^p} \]

\[\leq M \left\{ \|\xi\|^2 + \|\xi\|^2 \right\} \]

(26)

By Lemma 3.4 and (18)

\[|R_6| = |E(\phi \eta \xi)_h| \leq M \left\{ \|\xi\|_{L^p} + \|\xi\|_{L^p} \right\} \]

\[\leq M \left\{ \|\xi\|^2 + \|\xi\|^2 \right\} \]

(27)

Observe that \(R_7 = E(U \cdot \nabla \xi \xi) = E((U - u) \cdot \nabla \xi) + E(u \cdot \nabla \xi \xi) \)

Thus, using Lemma 3.2 and (18), we see that

\[|R_7| \leq M \left\{ \|\nabla \xi\|_{L^p} + \|\nabla \xi\|_{L^p} \right\} \]

\[\leq M \left\{ \|\xi\|^2 + \|\xi\|^2 \right\} \]

(28)
Similar as in estimation of R_1, we have

$$
R_8 = E(D(U)\nabla \nabla \xi) = E((D(U) - D(u))\nabla \nabla \xi) + E(D(u)\nabla \nabla \xi)
\leq M\left[\|\nabla \nabla \|_{L^2(\Omega)}\|U - u\|_{L^2(\Omega)}^2 + \|\nabla \xi\|_2 + h^2 \|\xi\|_2 \right]
\leq M\left[\|U - u\|_{L^2(\Omega)}^2 + h^2 \|\xi\|_2 \right] + \varepsilon\|\nabla \xi\|^2.
$$

Note that

$$
R_9 = E(g(C)\xi) = E(g(C) - g(c))\xi) + E(g(c)\xi).
$$

Thus, using Lemma 3.4 and (2.1b) to see that

$$
R_9 \leq Mh^{2} \left[\left\|\xi_{t} - h\xi_{t} - g(c)\right\|_1 + \|g(C)\xi\|_1\right]
\leq Mh^{2} \left[\left\|\xi_{t} - g(c)\right\|_1 + \|g(C)\xi\|_1\right]
\leq M\left[\|\xi\|_2 \right].
$$

Then, combine the above estimates $|R_i|$, $1 \leq i \leq 9$, and use (12), (16), (17) and (20) to obtain

$$
9 \sum_{i=1}^{9} |R_i| \leq M\left[\left(\|c\|_2 \right)^2 + \|c\|_1 \right]h^{2} \|\xi\|_2 \left[\|\xi\|_2 + \|\nabla \xi\|_2 \right] + \varepsilon\|\nabla \xi\|^2.
$$

Then, (24) and (25) imply that

$$
\frac{d}{dt} (\phi \xi, \xi) + (\phi (du + d(U)) - \xi) \nabla \xi, \nabla \xi)
\leq M\left[\left(\|\xi\|_2 \right)^2 + \left(\|c\|_2 \right)^2 + \|c\|_1 \right]h^{2} \|\xi\|_2 \left[\|\xi\|_2 + \|\nabla \xi\|_2 \right]
+ \|\xi\|^2 + \|\nabla \xi\|^2.
$$

where M depends on certain lower norms of the solution of the differential problem but not on the solution of the approximation problem.

Make the induction hypothesis that

$$
\|\xi\|_{L^2(\Omega)} \leq 1;
$$

certainly, for any reasonable choice of the initial condition (27) holds for $t = 0$. Thus (27) will hold for $t \leq T_0$ for some $T_0 > 0$; we shall show for $h = (h_1, h_2, h_3)$ sufficiently small that $T_0 = \infty$ and convergence will take place asymptotically at an optimal rate.

Integrate (26) in time and assume that

$$
\|\xi(0)\| \leq M\left[c_0\right]_1 + 1h^{2}.
$$

Then, it follows from (26), (27) and Gronwall’s Lemma that

$$
\|\xi\|^2 \leq M\left[\left(\|\xi\|_2 \right)^2 + \left(\|c\|_2 \right)^2 + \|c\|_1 \right]h^{2} \|\xi\|_2 \left[\|\xi\|_2 + \|\nabla \xi\|_2 \right]
+ \|\xi\|^2 + \|\nabla \xi\|^2.
$$

thus, use (28) to obtain

$$
\|\xi\|_{L^2(\Omega)} \leq M\left[\left(\|\xi\|_2 \right)^2 + \|c\|_2 \right]h^{2} \|\nabla \xi\|_2 \left[\|\xi\|_2 + \|\nabla \xi\|_2 \right]
\left[\|\xi\|^2 + \|\nabla \xi\|^2\right].
$$

To complete the argument, note that (30) implies that the induction hypothesis (27) holds for small h.

Therefore use (30) with the inequalities (12), (16), (20) and the triangle inequality to obtain

$$
\|c - C\|_{L^2(\Omega)} + \|u - U\|_{L^2(\Omega)} + \|P - P\|_{L^2(\Omega)}
\leq M\left[\left(\|\xi\|_2 \right)^2 + \|c\|_2 \right]h^{2} \|\nabla \xi\|_2 \left[\|\xi\|_2 + \|\nabla \xi\|_2 \right]
\left[\|\xi\|^2 + \|\nabla \xi\|^2\right].
$$

References