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Abstract 

 

In this paper, the Adomian decomposition method is used to construct the solution of integral equations and the choice 

of the first term of the series solution in the algorithm of Adomian is different of the usual one.  
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1 Introduction 

The Adomian decomposition method (ADM) is useful to get the solutions of various kinds of problems of ODEs and 

PDEs [1]-[11].  Here, we use ADM, to investigate the nonlinear integral equations. We construct the series solutions, 

but the choice of his first term is different of usual procedure.  

 

2 About Volterra and Fredholm integral equations  

An integral equation is equation of the following form:  

 

          ,
G

x u x k x t g u t dt f x                                                                (1) 

 

Where  g u  and  f x are given functions;  ,K x t the kernel of the integral equation; and  u x  the unknown 

function in a certain domain nG  .  

 

Remark-1: If   0,x x G    , (1) is an equation of this kind. If   0,x x G    , (1) is an equation of second 

kind. If   0x  in a certain subset D  of ,G  (1) is an equation of third kind. 

 

2.1   Classification of integral equations 
 

A Fredholm integral equation of the first kind has the following form:   

 

      ,

;  

b

a

k x t g u t dt f x

a x b a t b







   

                                                                      (2)  

 

or  
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;  

b

a

k x t u t dt f x

a x b a t b







   

                                                                              (3) 

 

A Fredholm integral equation of second kind has the following form:  

 

        ,

,

b

a

u x f x k x t g u t dt

a x b a t b




 



   

                                                                 (4) 

 

Or 

 

      , ,

,

b

a
u x f x k x t u t dt

a x b a t b

  

    

                                                                  (5) 

 

A Volterra integral equation of the first kind has the following form:  

 

      ,

,

b

a
k x t g u t dt f x

a x b t x

 

   

                                                                       (6) 

 

or  

 

    , ,

,  

b

a
k x t u t dt f x

a x b t x

 

   

                                                                                     (7) 

 

A Volterra integral equation of the second kind has the following form: 

 

        ,

,  

x

a
u x f x k x t g u t dt

a x b t x

  

   

                                                              (8) 

 

or  

 

      , ,

,  

x

a
u x f x k x t u t dt

a x b t x

  

   

                                                                (9) 

 

Remark-2: The Volterra integral equation can be considered like a Fredholm integral equation where 

 , 0, .k x t t x    

 

3 The Adomian decomposition method 

Suppose that we need to solve the following equation: 

 

Au f                                                                                                                                        (10) 

 

In a real Hilbert space ,H  where :A H H is a linear or a nonlinear operator, f H and u is the unknown function. 

The principle of the ADM is based on the decomposition of the nonlinear operator A  in the following form:  
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A L R N    

 

where L R is linear, N nonlinear, L  invertible with 1L as inverse. Using that decomposition, equation (10) is 

equivalent to  

 
1 1 1u L f L Ru L Nu                                                                                                          (11) 

 

Where   verifies 0.L  (11) is called the Adomian’s fundamental equation or Adomian’s canonical form. We look 

for the solution of (10) in a series expansion form 
0

n

n

u u




 and we consider 
0

n

n

Nu A




 where nA are special 

polynomials of variables 0 1, ,..., nu u u called Adomian polynomials and defined by [1], [2], [3], [4]: 

 

0 0

1
; 0,1,2,...

!

n
i

n in
i

d
A N u n

n d







 

  
   

  
  

 

Where  is a parameter used by “convenience” and we obtain:  

 

1 1 1

0 0 0

n n n

n n n

u L f L R u L N A
  

  

  

   
      

   
                                                             (12) 

 

We suppose that the series 
0

n

n

u




 and 
0

n

n

A




 are convergent, and obtain by identification the Adomian algorithm:  

 

 

1

0

1 1

1 0 0

1 1

1

...

; 0n n n

u L f

u L R u L A

u L Ru L A n

 

 

 



  


  


    

                                                                                              (13) 

 

In practice, it is often difficult to calculate all the terms of an Adomian series, so we approach the series solution by the 

truncated series: 
0

n

n i

i

u


  where the choice of n depends on error requirements. It this series converges, the solution 

of (10) is:  

 

0

lim
n

i
n

i

u u




 
  

 
                                                                                                   (14) 

 

3.1   Application of the ADM to the integral equations 
 

3.1.1   The Adomian algorithm for nonlinear Fredholm integral equation of the second kind 

 

Let’s consider the following equation:  

 

        ,

b

a

u x f x k x t g u t dt                                                                             (15) 

 

where ,  and kf g are given functions; and u the unknown function. Let’s put  

 

      ,

b

a

Au u x k x t g u t dt                                                                              (16) 

 

and we obtain : 
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Au f                                                                                                                             (17) 

 

We suppose that g is nonlinear, we denote   ,Nu g u (17) can be rewritten in the following form: 

 

 

         ,

b

a

Au f x

Lu k x t N u t dt

 



 



                                                                                      (18) 

 

Where L  is the operator identifying. From (18), we have: 

 

      ,

b

a

Lu f x k x t N u t dt                                                                                            (19) 

 

From (19) we have: 

 

      

      

1 1 ,

  ,

b

a

b

a

u L f x L k x t N u t dt

f x k x t N u t dt





 
  

    
  



 






                                                                        (20) 

 

We suppose that the solution of (15) has the following form: 

 

0

n

n

u u




                                                                                                                               (21) 

 

and 

 

0

n

n

Nu A




                                                                                                              (22) 

 

From (20), we have:  

 

   
0 0

,

b

n n

n n a

u f x k x t A dt
 

 

 
    

 
                                                                       (23) 

 

and we obtain the following Adomian algorithm: 

 

   

     

     

0

1 0,

                 ...

,

b

b

b

n n

a

u x f x

u x k x t A t dt

u x k x t A t dt





 








 






                                                                                    (24) 

 

Remark-3: If in (24), one replaces b by x , we obtain the Adomian algorithm for nonlinear Volterra integral equation 

of second kind. 
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3.1.2   The Adomian algorithm for nonlinear Fredholm equation of first kind 

 

Let’s consider the following equation: 


      ,

;

b

a

k x t g u t dt f x

a x b a t b







   






Remark-4: The equation (25) can be considered like Volterra or Fredholm integral equation. Let’s make the following  

transformation: 

 

                 , , ,

b b b

a a a

k x t g u t dt g u x k x t dt k x t g u t g u x dt        

 

(26) 

 

 

We denote


   ,

b

a

h x k x t dt  

 

(27) 



              ,

b

a

h x g u x f x k x t g u x g u t dt     

 

(28) 

 

We denote 

 

    v t g u t 
(29)




From (28), we have:


           ,

b

h x v x f x k x t v x v t dt     

(30) 

 

We suppose that ( ) 0h x  , and we obtain: 

 

 
 

   
     

1
,

b

a

f x
v x k x t v x v t dt

h x h x
      

 

(31) 

 

(31) is an integral equation of second kind in relation to ( )v x . So we can get ( )v x and 1( ) ( ( ))u x g v x . 

 

3.1.3   The Adomian integral equation for linear integral equation of second kind 

 

Let’s consider the following equation: 


       ,

;

b

a

u x f x k x t u t dt

a x b a t b




 



   


(32) 

 

Remark-5: The equation (32) can be considered like a Volterra or Fredholm equation. We suppose that the solution of 

(32) has the following form: 
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0

n

n

u u




  
 

(33) 

 

Taking (33) in (32), we have: 


     
0 0

,

b

n n

n n a

u f x k x t u t dt
 

 

   (34) 

 

and we obtain the following Adomian algorithm: 


   

     

     

0

1 0

1

,

...

, ; 0

b

a

b

n n

a

u x f x

u x k x t u t dt

u x k x t u t dt n














  









3.1.4   The Adomian Algorithm for linear Fredholm equation of the first kind 

 

Let’s consider the following equation: 

 

   ,

;  

b

a

k x t u t dt

a x b a t b






   


                                                                                     (35) 

 

Remark-6:  The equation (35) can be considered like a Volterra equation or Fredholm integral equation. 

Let’s make the following transformation: 

 

             , , ,

b b b

a a a

k x t u t dt u x k x t dt k x t u t u x dt                                                   (36) 

 

We denote:  

   ,

b

a

h x k x t dt                                                                                                       (37) 

 

Taking (37) in to (36), we can rewrite (35) in the following form:  

 

           ,

b

a

h x u x f x k x t u x u t dt                                                                  (38) 

 

We suppose that   0h x  , and we obtain:  

 

 
 

   
     

1
,

b

a

f x
u x k x t u x u t dt

h x h x
                                                                         (39) 
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(39) is an integral equation of second king in relation to  .u x
 

 

4 Application’s examples 

Example1: 

 

Let’s consider the following nonlinear Volterra integral equation of second kind  

 

     2

0

1 1 1
sin sin 2

8 4 2

x

u x x x x u t dt                                                                            (40) 

 

Let’s use the Adomian method. We suppose that the solution of (40) has the following form:  

 

   
0

n

n

u x u x




                                                                                                    (41) 

 

And  

 

   2

0

n

n

Nu u t A t




                                                                                                  (42) 

 

From (41) and (42) we have:  

 

   
0 0

1 1 1
sin sin 2

8 4 2

b

n n

n na

u x x x A t dt
 

 

                                                                           (43) 

According to the standard Adomian algorithm (24), we need to choose     0

1 1
sin sin 2 .

8 4
u x x x x    Here we 

choose  0 sinu x x , so we have the following Adomian algorithm:  

 

 

     

   

0

1 0

0

1

0

sin

1 1 1
sin 2

8 4 2

1
; 2

2

x

x

n n

u x x

u x x x A t dt

u x A t dt n








  


   






                                                                        (44) 

 

We obtain: 
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2

0 0

1 0 1

2

2 0 2 1

3 0 3 1 2

2

4 0 4 1 3 2

5 0 5 1 4 2 3

2

6 0 6 1 5 2 4 3

7 0 7 1 6 2 5 3 4

2

2

2 2

2 2

2 2 2

2 2 2

2 2 2 2

...

A u

A u u

A u u u

A u u u u

A u u u u u

A u u u u u u

A u u u u u u u

A u u u u u u u u

 



  


 


  
   

    


   



                                                                               (45) 

 

     

0

2

1

0

sin

1 1 1
sin 2 sin 0

8 4 2

0, 1 0, 1n n

u x x

u x x x t dt

A n u n





   

       

                                                                            (46) 

 

So the solution of (40) is:  

 

   
0

sinn

n

u x u x x




                                                                                                     (47) 

 

Remark-7: The ADM gives us the exact solution, but we need to make a good choice of the first term of series 

solution. 

 

Example2: 

 

Let’s consider the following nonlinear Fredholm integral of second kind:  

 

   
1

2 2

0

1 1

12 2
u x x tu t dt                                                                                              (48) 

 

Let’s use the ADM. We suppose that:   

 

   
0

n

n

u x u x




                                                                                                        (49) 

 

and  

 

   2

0

n

n

Nu u t A t




                                                                                               (50) 

 

(48) - (50) give us:  

 

   2

0 00

1 1

12 2

x

n n

n n

u x x t A t dt
 

 

                                                                            (51) 

 

According to the standard Adomian algorithm (24), we have:  
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2

0

1

1

0

1

12

1
; 1

2
n n

u x x

u x tA t dt n


 



  




                                                                 (52) 

 

Which yields 

 

 

 

 

 

 

2

0

1

2

3

4

1

12

37

576

185

13824

5069

1327104

39035

31850496

...

u x x

u x

u x

u x

u x


 


 


 











 

 

So the approached solution of (48) is:  

 

         0 1 2 3

2

2

...

21325
          ...

31850496

          0.00067 ...

Apu x u x u x u x u x

x

x

     



  

  


                                                                     (53) 

 

Let’s make another choice (a good choice) of the first term 0u of the series solution. We use the following Adomian 

algorithm: 

 

 

   

   

2

0

1

1 0

0

1

1

0

1 1

12 2

1
; 2

2
n n

u x x

u x tA t dt

u x tA t dt n








  


   






                                                                                  (54) 

 

We obtain: 

 

 

 

2

0

0; 1n

u x x

u x n

 


  

                                                                                                  (55) 

 

The solution of (48) is:  

 

     2

0

n exact

n

u x u x x u x




                                                                                  (56) 

 

Conclusion: We see that     0.00067 0.Ap exactu x u x  We remark that the standard Adomian decomposition 

method approaches enough well the exact solution. We remark too, the ADM gives us the exact solution, through a 

good choice of the first term of series solution. 
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Example 3;  

 

Let’s consider the following nonlinear Fredholm-Volterra integro-differential equation:  

 

 
           

 

1

3

0 0

2

0 1

xdu x
f x xu x x t u t dt x t u t dt

dx

u


     






 
                                                 (57) 

 

Where 

 

   32 1 4 8
2 1

3 9 3 9

x xf x x e x e e x
   

          
   

                                                          (58) 

 

Let’s use the ADM. 

From (57), we have:  

 

               
1

3

0 0 0 0 0 0

0 2

x x x s x

u x u f s ds su s ds s t u t dt ds s t u t dt ds
   

            
   

                                           (59) 

 

We suppose that the solution of equation (57) has the following form: 

 

   
0

n

n

u x u x




                                                                                                 (60) 

 

And 

 

   3

0

n

n

Nu u t A t




                                                                           (61) 

 

From (59)-(61) we have: 

 

   

     

   

3 2

0

0 00 0 0

1

0 0 0

2 1 2 1
2 1

9 9 3 2

8 17
2

9 9

x x

n

n

x x s

n n

n n

x

n

n

u x x e x e e x

x su s ds s t A t ds

s t u t ds





 

 





    
           
   

  
        
  


    
 





   

 

                                                   (62) 

 

According to the standard Adomian algorithm (24), we must take:  

 

 3 2

0

2 1 2 1 8 17
2 1

9 9 3 2 9 9

x xu x e x e e x x
   

           
   

                                                  (63) 

 

Here we make another choice of 0u  and use the following Adomian algorithm: 
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0

3 2

1

1

1 1 1

0 0 0 0 0

2 1 2 1 8 17
2 2

9 9 3 2 9 9

2 ; 2

x

x x

x x s x

n n n n

u x e

u x x e x e e x x

u x su s ds s t A t dt ds s t u t dt ds n  







   
            
   

    
                  

    

                                      (64) 

 

Where 

 
3

0 0

2

1 0 1

2 2

2 0 1 0 2

3 2

3 1 0 1 2 0 3

2 2 2

4 1 2 0 2 0 1 3 0 4

2 2 2

5 1 3 0 1 4 1 2 0 2 3 0 5

2 3 2 2

6 1 4 1 2 3 0 1 5 0 2 4 2 0 3 0 6

3

3 3

6 3

3 3 6 3

3 6 3 6 3

3 6 6 6 3 3

A u

A u u

A u u u u

A u u u u u u

A u u u u u u u u u

A u u u u u u u u u u u u

A u u u u u u u u u u u u u u u u

 





 


  


   
     

       

 

 

We obtain: 

 

   

         

3 2

1

0 0 0

0 0 0 0 0

2 1 2 1 8 17
2 2

9 9 3 2 9 9

2

x x

x x s x s

u x x e x e e x x

su s ds s t A t dt ds s t u t dt ds

    
             
   


             
   

    

  

 

So, we get: 

 

   

   

3 2

1

0

3

0 0 0 0

2 1 2 1
2 2 2

9 9 3 2

8 17

9 9

0

x

x x s

x s x s

t t

u x x e x e se ds e x

x s t e dt ds s t e dt ds

    
            
   

    
           

   






     

2

1 0 13 0A u u   

           
1

2 1 1 1

0 0 0 0 0

2 0

x x s x

u x su s ds s t A t dt ds s t u t dt ds
   

            
   

      

 

and we can easily get :  

 

 

 

0; 1

0; 1

n

n

A x n

u x n

   


  

                                                                                         (65) 

 

So the solution of (57) is: 

 

   
0

x

n

n

u x u x e




                                                                               (66) 
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5 Conclusion  

In this paper we showed that the Adomian decomposition method is useful so solve the integral equations. In some 

cases, this method gives us the exact solution. However, the choice of the first term in the algorithm of Adomian is not 

standard; this choice is sometimes determinant for the convergence of the approached solution to the exact solution. 
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