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Abstract 

 

Recently, there has been an increasing interest in the study of singular and perturbed systems. In this paper design 

fast feed forward neural network to present a method to solve two dimensions singularly perturbed integro-

differential and integral equations. Using a multi-layer having one hidden layer with 7 hidden units (neurons) and one 

linear output unit the sigmoid activation of each unit is radial basis function and Levenberg – Marquardt (trainlm) 

training algorithm. Finally the results of numerical experiments are compared with the exact solution in illustrative 

examples to confirm the accuracy and efficiency of the presented scheme.. 

 
Keywords: singularly perturbed problems; Volterra integral equations; Volterra integro-differential equations; feed forward neural network, 

Levenbrg- Marquardt training. 
 

 

1 Introduction 

As we know, much work has been done on developing and analyzing numerical methods for solving one-dimensional 

integro-differential equation of the second kind, but in two-dimensional cases a small amount of work has been done. 

In the present work, we consider the two-dimensional singularly perturbed Volterra integro-differential equations 

(SVIDE) 
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Where 

α is a constant and ε is a known perturbation parameter which 0 < ε ≤ 1. 

 Here, ε is small parameter that given rise to singularly perturbed nature of the problem, the kernel K and the data 

function g(x) are given smooth functions. Under appropriate condition on g and K, for every ε > 0, Eq. 1 has unique 

continuous solution on [0,x] x [0,y],[1]. 

Finding the solutions on one dimension of these problems has been widely studied by researchers in the last decade.  

Implicit Runge-Kutta methods were presented for singularly perturbed integro-differentialc equations in [2] and for 

singularly perturbed integro-differential systems in [3].  In [4], Orsi applied a Petrov-Galerkin method to singularly 

perturbed integro-differential-algebraic equations. El-Gendi [5] applied spectral methods to obtain solution of singularly 

perturbed differential, integral and integro-differential equations. Hu [6] and Horvat et al. [7] solved the SVIDEs by using 

the spline collocation methods. Recently, in [8] a numerical procedure based on finite difference was presented for 

solving a class of SVIDEs. More recently, Ramos [9] applied Piecewise-quasilinearization techniques to obtain 

solution of SVIDEs.  

Many methods have been developed so far solving integral and integro-differential equation. Some of them produce a 

solution in the form of an array that contains the value of the solution at a selected group of point, other use basis 

function to represent the solution in analytic form and transform the original problem usually to a system of algebraic 

equation. owadays there is a new way of computing denominated artificial intelligence which through 

different methods is capable of managing the imprecisions and uncertainties  that  appear  when  trying  to  solve    
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problems  related  to  the  real  world, offering  strong  solution  and of  easy implementation. One of those techniques is

 known as Artificial Neural Networks (ANN).  

Inspired,  in  their  origin,  in  the  functioning  of  the  human  brain,  and  entitled  with  some intelligence. These are th

e combination of a great amount of elements of process–artificial neurons interconnected that operating  in  a  parallel 

way  get to solve  problems   related to aspects  of  classification. the construction of any given ANN we can identify,  

depending  on the  location in  the  network, three kind of computational  neurons:   input,  output  and  hidden.  

In this paper is organized as follows: the next section definition the ANN, in section 3 describe the structure of neural 

network, in section 4 the Levenberg Algorithm derivation, description of method in section 5,in section 6 Illustration of 

the method, In section 7  report our numerical finding accuracy of method  . finally conclusions the last part of the paper. 

 

2 Artificial neural network  

There are different ways of defining what  the  ANN are, from  short  and generic definitions the ones that try to explain

 inadetailed  way  what     means neural  network  or  neural  computing.  For  this  situation,  the    definition  that  was  

 proposed  by  Haykin [10], appears below:  

 

Artificial  Neural  Networks  are  massively  interconnected network in  parallel  of  simple  elements   (usually adapt

able), with hierarchic organization, which  try to  interact  with  the objects  of the real  

world   in the same way that the biological nervous system does.   

 

as a simple element we understand the artificial equivalent of  a neuron that is known as 

computational  neuron  or  node.  These  are   organized  hierarchically  by  layers  and  are interconnected between  the

m  just as in  the  biological  nervous  systems. Upon  the presence of  an    external  stimulus  the  artificial  neural  net 

work  generates an  answer,  which  is confronted with the reality to  determine  the  degree of adjustment that is 

required in the  internal  network  parameters.this adjustment is known as learning network  

or  training, after which the network  is ready to answer to the external  stimulus  in an optimum way. 

 

 ANN is characterized by [11] 

1-Architecture: its pattern of connections between the neurons. 

2-training Algorithm: its method of determining the weight on the connections. 

3- Activations function. 

 

3 Structure of a neural network (Topology)[10] 

in  an  artificial  neural  network  expressions structure, architecture or topology, express  the way in 

which   computational neurons are  organized  in  the  network. Particularly,  these terms  are focused in the description  

of how the nodes are connected and in how the information is transmitted through the 

network. As it  has  been  mentioned, the   distribution  of  computational  in the following: 

Number  of  levels  or  layers: neurons  in  the  neural network is done  forming levels or  layers  of  a determined  num

ber of nodes  each  one.  As  there  are  input,  output  and  hidden  neurons,  we  can  talk  about  an  input  layer,  an 

output  layer  and  single layer or multilayer hidden layers. By the peculiarity of the behavior of the input nodes some 

authors consider just two kinds of layers  in  the ANN, the hidden and the output.  

Connection patterns: Depending on  the  links between the  elements of    the  different   layers. the  ANN can be class

ified as: totally connected, when all  the outputs  from  a level get  to  all and  each  one  of  the   

nodes in the following level,  if some of the links in the network are lost, then we  say that the network  is partially 

connected.   

Information flow: Another classification of the ANN is obtained by considering the direction of the flow of 

the  through the layers, When any  output  of  the  neurons  is  input of neurons of  the same  level  or preceding 

levels, the network is described as feedforward.  In counter  position  if  there  is  at  least one connected exit as   

entrance   of  neurons of  previous  levels  or  of  the  same  level,  including   themselves,  the  network  is  denominated

  of  feedback. 
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4 Levenberg-Marquardt algorithm (LM) [ 12] 

For LM algorithm, the performance index to be optimized is defined   

 

                 
  

     
                                                                                                           (2) 

 

Where               
  consists of all weights of the network, dkp is the desired value of the kth output and the pth 

pattern, okp is the actual value of the kth output and the pth pattern, N is the number of the weights, P is the number of 

pattern, and K is the number of the network output. 

Equation (2) can be written its  
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Where E is the cumulative error vector ( for all pattern) 

from equation (3) the jacobian matrix is define as 

 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

   
   

    

   
       

    

   
 

    

   
   

    

   
       

    

   
 

                       

    

   
   

    

   
       

    

   
 

                       
    

   
   

    

   
       

    

   

    

   
   

    

   
       

    

   
                       

    

   
   

    

   
       

    

    
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                      (4) 

 

And the weights are calculated using the following equation 

 

           
        

    
                                                                                                                (5) 

 

Where I is identity unit matrix,   is the learing parameter and    is jacobian of m output error with respect to n weights 

of the neural network. The   parameter is automatically  adjusted at each iteration in order to secure convergence, the 

LM algorithm requires computation of the jacobian    matrix at each iteration step and the inversion of     square 

matrix, the dimension of which is N*N. 

 

5 Description of the method  

In this section   illustrate how our approach can be used to the approximation solution of the singularly perturbed 

integro-differential equation 

 

 
 

  
                                                       

  

 

  

 

 

 

Where  a subject to certain IC . x,y ϵ  I ϵ R2, denoted the domain and y(x) is the solution to be computed. 

If yt(x,y,p) denoted a trial solution with adjustable parameters p, the problem is transformed to a discretize from: 
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Subject to the constraints imposed by the IC’s. 

In the our proposed approach, the trial solution yt  employs a FFNN and the parameters  p  correspond to the  weight 

and biases of the neural architecture, we choose a form for the  trial function yt(x,y) such that it satisfies the IC’s. this is 

achieved by writing it as a sum of two terms : 

 

                                                                                                                           (7) 

 

Where  N(x,y,p) is a single-output FFNN with parameters  p and  n  input unit fed with the input vector x. the term 

A(x,y) contain  no adjustable parameters and satisfies the  IC’s. the second term G is constructed so as not to contribute 

to the IC’s, since yt(x,y) satisfy them. This term can be formed by using a Ann whose weight and biases are to be 

adjusted in order to deal with the minimization problem. 

 

6 Illustration of the method 

In this section we described solution of singularly perturbed integro-differential equation using FFNN. 

To illustrate the method, we consider the integro-differential equation 

 

 
 

  
                                                         

  

 

  

 

 

 

Where x,y ϵ [0, 1] and the IC: y(0,y) = A, a trial solution can be written as: 

 

                                                                                                                           (8) 

 

Where N(x,y,p) is the output of a FFNN with one input unite for x,y and  weights p. 

Note that yt(x,y) satisfies the IC by construction the error quantity to be minimized is given by : 
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where the xi , yi ϵ [0, 1]x[0,1].  

Since: 
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It is straight forward to compute the gradient of the error with respect to the parameters p. 

 

7 Numerical result 

In this section we report some numerical result and the solution of number of model problem. In all cases we used a 

multi-layer FFNN having one hidden layer with 7 hidden units (neurons) and one linear out output unit. The sigmoid 

activation of each hidden is radbas( radial basis function ). For each test problem the exact analytic solution ya(x,y) were 

known in advance. Therefore we test the accuracy of obtained solutions computing the mean square error (MSE).  

 

Example 1: In this problem, consider the following singularly perturbed Volterra integral equation 
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which has the following exact solution: 
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Applied present method and solved eq. (11) for different value of   . Table ( 1 ) given mean square error of the designer 

network, 

 
Table 1: men square error of the network for example 1 

Mse 

€→ 2-0 2-1 2-2 2-3 2-4 2-5 

mse 3.6445e-6 7.6575e-6 6.5214e-6 3.1470e-5 2.7238e-5 1.9632e-5 

 
Example 2: In this problem, consider the following nonlinear singularly perturbed Volterra integral equation  
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which has the following exact solution: 

 

          

 

applied present method and solved eq.(12) for different value of   .Table (2 ) given mean square error of the designer 

network, 

 
Table 2: mean square error of the network for example 2 

Mse 

€→ 2-0 2-1 2-2 2-3 2-4 2-5 

mse 5.9502e-9 1.0062e-8 4.2834e-7 2.5434e-9 6.3642e-10 1.7149e-8 

 

Example 3: In this problem, consider the following integro-differentioal singularly perturbed Volterra integral equation  
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This has the following exact solution: 

 

            ,             with IC :         . 

 

Applied present method and solved eq.(13) for different value of   . Table (3) given mean square error of the designer 

network, 

 
Table 3: mean square error of the network for example 3 

Mse 

€→ 2-0 2-1 2-2 2-3 2-4 2-5 

mse 7.2729e-9 6.9423e-8 1.5463e-8 3.8254e_8 5.5524e-8 6.8538e-8 

 

8 Conclusion 

In this paper, we design fast feed forward neural network to solve some of two dimension integro-differential and 

integral equation which have the singularly perturbed. A fast and efficient algorithm (LM) for FFNN with one hidden 

layer has been presented and tested on several examples. Through the comparison with exact solutions show that the 

ANN method has good accuracy and efficiency and results obtained using the ANN method is with low error. 

Moreover, our method is quite general and can be used in a wide class of integral and integro-differential equation. 
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