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Abstract

In this work, we are interested in ATS-monoid protocol (proposed by P. J. Abisha, D. G. Thomas G. and K. Subramanian, the idea of
this protocol is to transform a system of Thue S1 = (Σ,R) for which the word problem is undecidable a system of Thue S2 = (∆,Rθ ) or
θ ⊆ ∆×∆ for which the word problem is decidable in linear time. Specifically, it gives attacks against ATS monoid in spésifiques case and
thenme examples of these cases.
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1. Preliminaries

A monoid is a set M together with an associative product x,y 7−→
xy and a unit 1. If X ⊂ M, we write X∗ for the submonoid of
M generated by X , that is the set of finite products x1x2...xn with
x1,x2, ...,xn ∈ X , including the empty product 1. It is the smallest
submonoid of M containing X .
An alphabet is a finite nonempty set. The elements of an alphabet
Σ are called letters or symbols. Aword over an alphabet Σ is a finite
string consisting of zero or more letters of Σ, whereby the same letter
may occur several times. The string consisting of zero letters is called
the empty word, written ε . Thus, ε,0,1,011,1111 are words over the
alphabet {0,1}. The set of all words over an alphabet Σ is denoted
by Σ∗. the set Σ∗ is infinite for any Σ. Algebraically, Σ∗ is the free
monoid generated by Σ. If u and v are words over an alphabet Σ, then
so is their catenation uv. Catenation is an associative operation, and
the empty word is an identity with respect to catenation: uε = εu = u
holds for all words u. For a word u and a natural number i, the
notation ui means the word obtained by catenating i copies of the
word u. By definition, u0 is the empty word ε . The length of a word
u, in symbols |u|, is the number of letters in u when each letter is
counted as many times as it occurs. Again by definition, |ε|= 0. The
length function possesses some of the formal properties of logarithm:

|uv|= |u|+ |v| ,
∣∣ui
∣∣= i |u| ,

for any words u and v and integers i≥ 0. For example |011|= 3 and
|1111|= 4.
Let f : S−→U be a mapping of sets.
• We say that f is one-to-one if for every a,b ∈ S where f (a) =
f (b), we have a = b.
•We say that f is onto if for every y ∈U , there exists a ∈ S such
that f (a) = y.

A mapping h : Σ∗ −→ ∆∗, where Σ and ∆ are alphabets, satisfying
the condition

h(uv) = h(u)h(v), for all words u and v,

is called a morphism, define a morphism h, it suffices to list all the
words h(σ), where a ranges over all the (finitely many) letters of Σ.
If M is a monoid, then any mapping f : Σ−→M extends to a unique
morphism f̃ : Σ∗ −→M. For instance, if M is the additive monoid
N, and f is defined by f (σ) = 1 for each σ ∈ Σ, then f̃ (u) is the
length |u| of the word u.
Let h : Σ∗ −→ ∆∗ be a morphism of monoids. if h is one-to-one
and onto, then h is an isomorphism and the monoids Σ∗ and ∆∗ are
isomorphic. we denote Hom(Σ∗,∆∗) the set of morphisms from Σ∗

to ∆∗ and Isom(Σ∗,∆∗) the set of isomorphisms from Σ∗ to ∆∗. We
say that h ∈ Hom(Σ∗,∆∗) is non trivial if there exists σ ∈ Σ such
that h(σ) 6= ε .
A binary reation on Σ∗ is a subset R⊆ Σ∗×Σ∗. If (x,y) ∈ R, we say
that x is related to y by R, denoted xRy. The inverse relation of R is
the binary reation R−1 ⊆ Σ∗×Σ∗ defined by yR−1x⇐⇒ (x,y) ∈ R.
The relation IΣ∗ = {(x,x) ,x ∈ Σ∗} is called the identity relation. The
relation (Σ∗)2 is called the complete relation.
Let R⊆ Σ∗×Σ∗ and S⊆ Σ∗×Σ∗ binary relations. The composition
of R and S is a binary relation S◦R⊆ Σ∗×Σ∗ defined by

x(S◦R)z⇐⇒∃y ∈ Σ∗ such that xRy and ySz.

A binary relation R on a set Σ∗ is said to be

• reflexive if xRx for all x in Σ∗;
• symmetric if xRy implies yRx;

• transitive if xRy and yRz imply xRz.

The relation R is called an equivalence relation if it is reflexive,
symmetric, and transitive. And in this case, if xRy, we say that x and
y are equivalent.
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Let R be a relation on a set Σ∗. The reflexive closure of R is the
smallest reflexive relation r (R) on Σ∗ that contains R; that is,
• R⊆ r (R)
• if R′ is a reflexive relation on Σ∗ and R⊆ R′, then r (R)⊆ R′.
The symmetric closure of R is the smallest symmetric relation s(R)
on Σ∗ that contains R; that is,
• R⊆ s(R)
• if R′ is a symmetric relation on Σ∗ and R⊆ R′, then s(R)⊆ R′.
The transitive closure of R is the smallest transitive relation t (R) on
Σ∗ that contains R; that is,
• R⊆ t (R)
• if R′ is a transitive relation on Σ∗ and R⊆ R′, then t (R)⊆ R′.
Let R be a relation on a set Σ∗. Then

• r (R) = R∪ IΣ∗ ,
• s(R) = R∪R−1

• t (R) =
k=+∞⋃
k=1

Rk.

A congruence on a monoid M is an equivalence relation ≡ on M
compatible with the operation of M, i.e, for all m,m′ ∈M,u,v ∈M

m≡ m′ =⇒ umv≡ um′v

A Thue system is a pair (Σ,R) where Σ is an alphabet and R is a non-
empty finite binary on Σ∗, we write urv→R ur′v whenever u,v ∈ Σ∗

and (r,r′) ∈ R. We write u→∗R v if there words u0,u1, ...,un ∈ Σ∗

such that,

u0 = u,
ui −→R ui+1,∀0≤ i≤ n−1
and un = v.

If n = o, we get u = v, and if n = 1, we get u→R v. →∗R is the
reflexive transitive closure of→R.
The congruence generated by R is defined as follows:

• urv←→R ur′v whenever u,v ∈ Σ∗, and rRr′ or r′Rr;
• u←→∗R v whenever u = u0←→R u1←→R ...←→R un = v.

←→∗R is the reflexive symmetric transitive closure of→R. Let πR :
Σ∗ −→ Σ∗/←→∗R be the canonical surjective monoid morphism
that maps a word w ∈ Σ∗ to its equivalence class with respect to
←→∗R. A monoid M is finitely generated if it is ithenmorphic to a
monoid of the form Σ∗/←→∗R. In this case, we also say that M is
finitely generated by Σ. If in addition to Σ also R is finite, then M is
a finitely presented monoid. The word problem of M ' Σ∗/←→∗R
with respect to R is the set {(u,v) ∈ Σ∗×Σ∗ : πR (u) = πR (v)} it is
undecidable in general [8,13]. In some cases, the word problem can
be much easier.
Indeed, for θ ⊆ Σ×Σ, we say that:

u,v ∈ Σ∗ are equivalence with respect to θ , if and only if, u←→∗Rθ
v,

where←→∗Rθ
is the reflexive symmetric transitive closure of −→Rθ

,
with Rθ = {(ab,ba) : (a,b) ∈ θ}.
In the Thue system S = (Σ,Rθ ), R. V. Book and H. N. Liu showed
[16] that the word problem is decidable in linear time. This is mainly
based on the following theorem R. Cori and D. Perrin[3].
Let u,v ∈ Σ∗,θ ⊆ Σ×Σ and a sub alphabet ∆ ⊆ Σ. we define, P∆ :
Σ∗ −→ ∆∗ by: {

P∆(σ) = σ , if σ ∈ ∆, and
P∆(σ) = ε , if σ /∈ ∆.

Then:

u←→∗Rθ
v⇐⇒{

P{σ}(u) = P{σ}(v), for everything σ of Σ and
P{σ ,µ}(u) = P{σ ,µ}(v), for everything (σ ,µ) /∈ θ

Public-Key cryptography, also called asymmetric cryptography,
was invented by Diffie And Hellman more than forty years ago.
In Public-Key cryptography, a user U has a pair of related keys
(pK,sK): the key pK is public and should be available to everyone,
while the key sK must be kept secret by U . The fact that sK is
kept secret by a single entity creates an asymmetry, hence the name
asymmetric cryptography.
A one-way function f is a function that maps a domain into range
sush that every function value has a unique inverse, with the condi-
tion that the calculation of the function is easy whereas the calcula-
tion of the inverse is infeasible:

y = f (x) easy
x = f−1 (y) infeasible

Trapdoor one-way functions are a family of invertible functions fk
such that y = fk (x) is easy if k and x known, and x = f−1

k (y) is
infeasible if y is known but k is not known. The devlopment of a
partical Public-Key scheme depends on the discovery of a suitable
trapdoor one-way function.

2. The ATS-monoid protocol

P. J. Abisha, D. G. Thomas and K. G. Subramanian, use the the-
orem of R. Cori and D. Perrin. To build the ATS-monoid proto-
col,the idea is transform a system of Thue S1 = (Σ,R) for which
the word problem is undecidable in a Thue system S2 = (∆,Rθ )
with θ ⊆ ∆×∆ and Rθ = {(ab,ba) : (a,b) ∈ θ} for which the word
problem is decidable in linear time.
Public-Key (pK): A Thue system S1 = (Σ,R) and two words
w0,w1 of Σ∗. (Σ,R,w0,w1) constitute a public-key.
Secret-key (sK): A Thue system S2 = (∆,Rθ ) where ∆ alphabet of
size smaller than Σ, a morphism h from Σ∗ to ∆∗, such that for all
(r,s) ∈ R:{

(h(r),h(s)) ∈ {(ab,ba) ,(ba,ab)} , for a pair (a,b) ∈ θ , or
h(r) = h(s).

Therefore:

for all u,v ∈ Σ∗,u←→∗R v =⇒ h(u)←→∗Rθ
h(v).

thus if h(u) and h(v) are not equivalent with respect to←→∗Rθ
, then

u and v are not equivalent with respect to←→∗R.
And, we also we have two words x0,x1 of ∆∗ such that x0 ←→∗Rθ

h(w0),x1←→∗Rθ
h(w1) with h(w0) and h(w1) are not equivalent with

respect to←→∗Rθ
. (∆,Rθ ,h ∈ Hom(Σ∗,∆∗)) constitute a secret-key.

Encryption: for encrypt a bit b ∈ {0,1}, Bob chooses a word c
of Σ∗ in the equivalence class of wb with respect to←→∗R, i. e, c
∈ [wb]←→∗R where [wb]←→∗R denotes the equivalence class of wb with
respect to←→∗R and then sent to Alice.
Decryption: Upon receipt of a word c of Σ∗, Alice calculated
h(c) ∈ ∆∗, since c ←→∗R wb and according to the result for all
u,v∈Σ∗,u←→∗R v=⇒ h(u)←→∗Rθ

h(v) we have h(c)←→∗Rθ
h(wb),

for example if h(c)←→∗Rθ
x0 the message is decrypted 0.

Example :
Public-Key (pK):
Σ = {σ1,σ2,σ3,σ4} ,
R = {(σ2σ3,σ3σ2) ,(σ2σ4,σ4σ2) ,(σ1σ3,σ3σ1)} ,
w0 = σ1σ2σ4σ3σ1σ2σ3σ4,
w1 = σ2σ4σ3σ4σ2σ1.
Secret-key (sK):
∆ = {a,b,c} ,θ = {(a,b) ,(a,c)} and h : Σ∗ −→ ∆∗ is defined by :

h(σ1) = ε,h(σ2) = a,h(σ3) = b,h(σ4) = c.

We have Rθ = {(ab,ba) ,(ac,ca)}, h(w0) = x0 = acbabc and
h(w1) = x1 = acbca.
Now we verify the following conditions :
1. h(w0) et h(w0) are not equivalent with respect to←→∗Rθ

.
2. for all (r,s) ∈ R:
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{
(h(r),h(s)) ∈ {(ab,ba) ,(ba,ab)} , for a pair (a,b) ∈ θ , or

h(r) = h(s). .

For condition 1. Just use the theorem of R. Cori and D. Perrin,
we have P{b}(h(w0)) = P{b}(acbabc) = bb and P{b}(h(w1)) =
P{b}(acbca) = b, then h(w0) and h(w1) are not equivalent with re-
spect to←→∗Rθ

.
For condition 2. we have R =
{(σ2σ3,σ3σ2) ,(σ2σ4,σ4σ2) ,(σ1σ3,σ3σ1)} then
(h(σ2σ3),h(σ3σ2)) = (ab,ba) ∈ Rθ ,(h(σ2σ4),h(σ4σ2)) =
(ac,ca) ∈ Rθ ,
(h(σ1σ3),h(σ3σ1)) = (b,b) ( we have h(σ1σ3) = h(σ3σ1).
Therefore:

for all u,v ∈ Σ∗,u←→∗R v =⇒ h(u)←→∗Rθ
h(v).

Encryption: for example, for encrypt the 0, Bob chooses a word c
of {σ1,σ2,σ3,σ4}∗ in the equivalence class of w0 with respect to
←→∗R, i. e, c ∈ [w0]←→∗R where [w0]←→∗R denotes the equivalence
class of w0 with respect to←→∗R, and then sent to Alice.
we have w0 = σ1σ2σ4σ3σ1σ2σ3σ4 ←→∗R
σ1σ4σ2σ3σ1σ2σ3σ4←→∗R σ1σ4σ3σ2σ1σ2σ3σ4.
We choose c = σ1σ4σ3σ2σ1σ2σ3σ4.
Decryption: Upon receipt of a word c of {σ1,σ2,σ3,σ4}∗,
Alice calculated h(c) = h(σ1σ4σ3σ2σ1σ2σ3σ4) = cbaabc ∈
{a,b,c}∗, Now using the theorem of R. Cori and D. Perrin, such
that h(c)←→∗Rθ

h(w0). we have
P{a}(h(c)) = P{a}(h(w0)) = aa,P{b}(h(c)) = P{b}(h(w0)) =
bb,P{c}(h(c)) = P{c}(h(w0)) = cc.
then for all σ of {a,b,c}, P{σ}(h(c)) = P{σ}(h(w0)). In ad-
dition it is verified that P{σ ,µ}(h(c)) = P{σ ,µ}(h(w0)), for all
(σ ,µ) /∈ θ , we have the complementary of θ is C∆×∆θ =
{(a,a) ,(b,a) ,(b,b) ,(b,c) ,(c,a) ,(c,b) ,(c,c)},
then P{b,c}(h(c)) = P{b,c}(h(w0)) = cbbc. Finally h(c) ←→∗Rθ

h(w0) = x0 and the word is decrypted 0.

3. Security of ATS-monoid protocol

An attack against ATS-monoid does not allow to find exactly the
Secret-key. We will get rather a key that is equivalent to it in the
following direction:
We say that (∆′,Rθ ′ ,h′ ∈ H (Σ∗,∆′∗)) is an equivalent key to
the Secret-key (∆,Rθ ,h ∈ Hom(Σ∗,∆∗)) if any message en-
crypted with the Public-Key (Σ,R,w0,w1) can be decrypted with
(∆′,Rθ ′ ,h′ ∈ Hom(Σ∗,∆′∗)). This is the case for example if
(∆′,Rθ ′ ,h′ ∈ Hom(Σ∗,∆′∗)) checks the following three conditions:
1. h′ is non trivial and |∆′| ≤ |Σ|.

2. ∀(r,s)∈R,
(h′(r),h′(s)) ∈ {(ab,ba) ,(ba,ab)} , for a pair (a,b) ∈ θ ′, or

h′(r) = h′(s).
3. h′(w0) et h′(w0) are not equivalent with respect to←→∗Rθ ′

.
Now we recall some keys that are equivalent to the Secret-key
(∆,Rθ ,h ∈ Hom(Σ∗,∆∗)).
1. if h(Σ) = {h(σ),σ ∈ Σ} and θ ′ = θ ∩ h(Σ) × h(Σ). then:
(h(Σ),Rθ ′ ,h ∈ Hom(Σ∗,∆∗)) is an equivalent key to the Secret-key
(∆,Rθ ,h ∈ Hom(Σ∗,∆∗)).
2. if |∆′|= |∆|, i ∈ Iso(∆∗,∆′∗) and i(θ) = {(i(a), i(b)) ,(a,b) ∈ θ}.
then

(
∆′,Ri(θ), i◦h ∈ Hom(Σ∗,∆′∗)

)
is an equivalent key to the

Secret-key (∆,Rθ ,h ∈ Hom(Σ∗,∆∗)).
Now describe a general attack against the ATS-monoid protocol.
In the first time we notice that a key (∆′,Rθ ′ ,h′ ∈ Hom(Σ∗,∆′∗))
equivalent to the Secret-key (∆,Rθ ,h ∈ Hom(Σ∗,∆∗)) is indepen-
dent of alphabet ∆,the only thing that matters is the size of ∆.
On the other hand, we observe that the relation Rθ ′ is easily
deduced from the knowledge of h′ ∈ Hom(Σ∗,∆′∗). Then for
a Public-Key (Σ,R,w0,w1) there is a algorithm noted by Algo-
ATS-monoid which returns an equivalent key to the Secret-key

(∆,Rθ ,h ∈ Hom(Σ∗,∆∗)) to complexity |R|
i=k
∑

i=1
(i+ 1)|Σ|, with k =

|∆| .
A lgorithm−ATS−monoid
Data : (Σ,R,w0,w1) , Public−Key(pK) o f ATS−monoid protocol.
Result :

(
∆i,Rθi ,hi ∈ Hom

(
Σ∗,∆∗i

))
, equivalent key to the Secret−key.

While i,1≤ i≤ |Σ| Do
∆i is any al phabet o f i lettres

While hi ∈ Hom
(
Σ∗,∆∗i

)
Do

θi←− /0
While (r,s) ∈ R Do

Calculate hi(r) and hi(s)
If hi(r) 6= hi(s) Then

If hi(r) = ab and hi(s) = ba, f or a,b ∈ ∆i Then
If (a,b) /∈ θi and (b,a) /∈ θi then θi←− θi∪{(a,b)}

If no Choose another morphism, i.e. Return to the second loop While
End If

End while
If hi(w0) and hi(w1) are not equivalent modulo←→∗Rθi

Then
Return

(
∆i,Rθi ,hi ∈ H

(
Σ∗,∆∗i

))
End While

End while

4. Some attacks against ATS-monoid

In this section we give some attacks against ATS-monoid that is to
say in each case we return an equivalent key to the secret-key of this
protocol.
Corollary 4.1
Let (Σ,R,w0,w1) be a Public-Key of ATS-monoid protocol.
If ∀(r,s)∈ R, |r|= |s|, then

(
∆1 = {a} ,Rθ = /0,h1 ∈ Hom

(
Σ∗,∆∗1

))
where for all σ ∈ Σ,h1 (σ) = a, is an equivalent key to the Secret-
key.
Proof
The key

(
∆1 = {a} ,Rθ = /0,h1 ∈ Hom

(
Σ∗,∆∗1

))
where for all σ ∈

Σ,h1 (σ) = a, checked the following three conditions:
1. the morphism h1 is not trivial because for all σ ∈ Σ,h1 (σ) = a 6=
ε .
2. ∀(r,s) ∈ R,h1 (r) = h1 (s) = (a)|r| = (a)|s|.
3. if Rθ = /0, then ←→∗Rθ

= IΣ∗ consequently h1(w0) and h1(w1)
are not equivalent modulo ←→∗Rθ

since h1 (w0) 6= h1 (w1). then(
∆1 = {a} ,Rθ = /0,h1 ∈ Hom

(
Σ∗,∆∗1

))
is an equivalent key to the

Secret-key.
Corollary 4.2
Let (Σ,R,w0,w1) be a Public-Key of ATS-monoid protocol.
S’il existe (r,s) ∈ R, |r| 6= |s|, then(
∆1 = {a} ,Rθ = /0,h1 ∈ Hom

(
Σ∗,∆∗1

))
where h1 (Σ) = {a,ε}

is an equivalent key to the Secret-key.
Example 4.3
Public-Key:
Σ = {σ1,σ2,σ3,σ4,σ5} ,
R= {(σ1σ3,σ3σ1) ,(σ1σ4,σ4σ1) ,(σ2σ3,σ3σ2) ,(σ2σ4,σ4σ2) ,(σ5σ3σ1,σ3σ5)} ,
w0 = σ4σ2σ4σ3σ4σ2σ3σ4,w1 = σ2σ4σ3σ4σ2σ1.
The key

(
∆1 = {a} ,Rθ = /0,h1 ∈ Hom

(
Σ∗,∆∗1

))
or h1 (σ1) =

h1 (σ3) = ε,h1 (σ2) = h1 (σ4) = h1 (σ5) = a is verified the following
conditions:
1. the morphism h1 is non trivial.
2. ∀(r,s) ∈ R,h1 (r) = h1 (s).
3. we have h1(w0) = a6 et h1(w1) = a4 and like←→∗Rθ

= IΣ∗ , then
h1(w0) and h1(w1) are not equivalent with respect to←→∗Rθ

.
. then

(
∆1 = {a} ,Rθ = /0,h1 ∈ Hom

(
Σ∗,∆∗1

))
is an equivalent key

to the Secret-key.
Corollary 4.4
Let (Σ,R,w0,w1) be a Public-Key of ATS-monoid protocol.
if there exists σk of the alphabet Σ such that for all (r,s) ∈ R, |r|σk

=
|s|σk

= 0, then
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(
∆1 = {a} ,Rθ = /0,h1 ∈ Hom

(
Σ∗,∆∗1

))
or for all σ ∈ Σ with σ 6=

σk,h1 (σ) = ε and h1 (σk) = a, is an equivalent key to the Secret-
key.
Proof
The key

(
∆1 = {a} ,Rθ = /0,h1 ∈ Hom

(
Σ∗,∆∗1

))
is checked three

conditions:
1. the morphism h1 is non trivial. because h1 (σk) = a 6= ε .
2. ∀(r,s) ∈ R,h1 (r) = h1 (s) = ε .
3. if Rθ = /0, then ←→∗Rθ

= IΣ∗ , so it must verify that h1 (w0) 6=
h1 (w1).
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