

International Journal of Applied Mathematical Research

Website: www.sciencepubco.com/index.php/IJAMR doi: 10.14419/ijamr.v5i4.6204 **Research paper**

Some attacks of an encryption system based on the word problem in a monoid

Nacer Ghadbane^{1*} and Douadi Mihoubi¹

¹Laboratory of Pure and Applied Mathematics, Department of Mathematics, University of M'sila, Algeria *Corresponding author E-mail: nacer.ghadbane@yahoo.com

Abstract

In this work, we are interested in **ATS-monoid** protocol (proposed by **P. J. Abisha, D. G. Thomas G. and K. Subramanian**, the idea of this protocol is to transform a system of **Thue** $S_1 = (\Sigma, R)$ for which the word problem is undecidable a system of **Thue** $S_2 = (\Delta, R_\theta)$ or $\theta \subseteq \Delta \times \Delta$ for which the word problem is decidable in linear time. Specifically, it gives attacks against ATS monoid in spésifiques case and thenme examples of these cases.

Keywords: Free monoid, Thue system, Morphism monoids, The closure of a binary relation, The word problem in a monoid, Public Key Cryptography.

1. Preliminaries

A monoid is a set *M* together with an associative product $x, y \mapsto xy$ and a unit 1. If $X \subset M$, we write X^* for the submonoid of *M* generated by *X*, that is the set of finite products $x_1x_2...x_n$ with $x_1, x_2, ..., x_n \in X$, including the empty product 1. It is the smallest submonoid of *M* containing *X*.

An alphabet is a finite nonempty set. The elements of an alphabet Σ are called letters or symbols. Aword over an alphabet Σ is a finite string consisting of zero or more letters of Σ , whereby the same letter may occur several times. The string consisting of zero letters is called the empty word, written ε . Thus, ε , 0, 1, 011, 1111 are words over the alphabet $\{0, 1\}$. The set of all words over an alphabet Σ is denoted by Σ^* . the set Σ^* is infinite for any Σ . Algebraically, Σ^* is the free monoid generated by Σ . If *u* and *v* are words over an alphabet Σ , then so is their catenation uv. Catenation is an associative operation, and the empty word is an identity with respect to catenation: $u\varepsilon = \varepsilon u = u$ holds for all words u. For a word u and a natural number i, the notation u^i means the word obtained by catenating *i* copies of the word u. By definition, u^0 is the empty word ε . The length of a word u, in symbols |u|, is the number of letters in u when each letter is counted as many times as it occurs. Again by definition, $|\varepsilon| = 0$. The length function possesses some of the formal properties of logarithm:

$$|uv| = |u| + |v|, |u^i| = i|u|,$$

for any words *u* and *v* and integers $i \ge 0$. For example |011| = 3 and |1111| = 4.

Let $f: S \longrightarrow U$ be a mapping of sets.

• We say that f is **one-to-one** if for every $a, b \in S$ where f(a) = f(b), we have a = b.

• We say that *f* is **onto** if for every $y \in U$, there exists $a \in S$ such that f(a) = y.

A mapping $h: \Sigma^* \longrightarrow \Delta^*$, where Σ and Δ are alphabets, satisfying the condition

$$h(uv) = h(u)h(v)$$
, for all words *u* and *v*,

is called a morphism, define a morphism *h*, it suffices to list all the words $h(\sigma)$, where a ranges over all the (finitely many) letters of Σ . If *M* is a monoid, then any mapping $f : \Sigma \longrightarrow M$ extends to a unique morphism $\tilde{f} : \Sigma^* \longrightarrow M$. For instance, if *M* is the additive monoid \mathbb{N} , and *f* is defined by $f(\sigma) = 1$ for each $\sigma \in \Sigma$, then $\tilde{f}(u)$ is the length |u| of the word *u*.

Let $h: \Sigma^* \longrightarrow \Delta^*$ be a morphism of monoids. if h is **one-to-one** and **onto**, then h is an **isomorphism** and the monoids Σ^* and Δ^* are **isomorphic**. we denote $Hom(\Sigma^*, \Delta^*)$ the set of morphisms from Σ^* to Δ^* and $Isom(\Sigma^*, \Delta^*)$ the set of isomorphisms from Σ^* to Δ^* . We say that $h \in Hom(\Sigma^*, \Delta^*)$ is non trivial if there exists $\sigma \in \Sigma$ such that $h(\sigma) \neq \varepsilon$.

A binary reation on Σ^* is a subset $R \subseteq \Sigma^* \times \Sigma^*$. If $(x, y) \in R$, we say that *x* is related to *y* by *R*, denoted *xRy*. The inverse relation of *R* is the binary reation $R^{-1} \subseteq \Sigma^* \times \Sigma^*$ defined by $yR^{-1}x \iff (x, y) \in R$. The relation $I_{\Sigma^*} = \{(x, x), x \in \Sigma^*\}$ is called the identity relation. The relation $(\Sigma^*)^2$ is called the complete relation.

Let $R \subseteq \Sigma^* \times \Sigma^*$ and $S \subseteq \Sigma^* \times \Sigma^*$ binary relations. The composition of *R* and *S* is a binary relation $S \circ R \subseteq \Sigma^* \times \Sigma^*$ defined by

 $x(S \circ R) z \iff \exists y \in \Sigma^* \text{ such that } xRy \text{ and } ySz.$

A binary relation *R* on a set Σ^* is said to be

reflexive if xRx for all x in Σ*;
symmetric if xRy implies yRx;
transitive if xRy and yRz imply xRz.

The relation R is called an equivalence relation if it is reflexive, symmetric, and transitive. And in this case, if xRy, we say that x and y are equivalent.

Copyright © 2016 Author. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let *R* be a relation on a set Σ^* . The reflexive closure of *R* is the smallest reflexive relation r(R) on Σ^* that contains *R*; that is, • $R \subseteq r(R)$

• if R' is a reflexive relation on Σ^* and $R \subseteq R'$, then $r(R) \subseteq R'$. The symmetric closure of R is the smallest symmetric relation s(R) on Σ^* that contains R; that is,

• $R \subseteq s(R)$

• if R' is a symmetric relation on Σ^* and $R \subseteq R'$, then $s(R) \subseteq R'$. The transitive closure of R is the smallest transitive relation t(R) on Σ^* that contains R; that is,

• $R \subseteq t(R)$

• if R' is a transitive relation on Σ^* and $R \subseteq R'$, then $t(R) \subseteq R'$. Let R be a relation on a set Σ^* . Then

•
$$r(R) = R \cup I_{\Sigma^*},$$

• $s(R) = R \cup R^{-1}$
• $t(R) = \bigcup_{k=1}^{k=+\infty} R^k$

A congruence on a monoid *M* is an equivalence relation \equiv on *M* compatible with the operation of *M*, i.e, for all $m, m' \in M, u, v \in M$

$$m \equiv m' \Longrightarrow umv \equiv um'v$$

A **Thue** system is a pair (Σ, R) where Σ is an alphabet and R is a nonempty finite binary on Σ^* , we write $urv \rightarrow_R ur'v$ whenever $u, v \in \Sigma^*$ and $(r, r') \in R$. We write $u \rightarrow_R^* v$ if there words $u_0, u_1, ..., u_n \in \Sigma^*$ such that,

$$u_0 = u,$$

 $u_i \longrightarrow_R u_{i+1}, \forall 0 \le i \le n-1$
and $u_n = v.$

If n = o, we get u = v, and if n = 1, we get $u \to_R v$. \to_R^* is the reflexive transitive closure of \to_R .

The congruence generated by R is defined as follows:

•
$$urv \longleftrightarrow_R ur'v$$
 whenever $u, v \in \Sigma^*$, and rRr' or $r'Rr$;
• $u \longleftrightarrow_R^* v$ whenever $u = u_0 \longleftrightarrow_R u_1 \longleftrightarrow_R ... \longleftrightarrow_R u_n = v$.

 \longleftrightarrow_R^* is the reflexive symmetric transitive closure of \rightarrow_R . Let π_R : $\Sigma^* \longrightarrow \Sigma^* / \longleftrightarrow_R^*$ be the canonical surjective monoid morphism that maps a word $w \in \Sigma^*$ to its equivalence class with respect to \longleftrightarrow_R^* . A monoid *M* is finitely generated if it is ithenmorphic to a monoid of the form $\Sigma^* / \longleftrightarrow_R^*$. In this case, we also say that *M* is finitely generated by Σ . If in addition to Σ also *R* is finite, then *M* is a finitely presented monoid. The word problem of $M \simeq \Sigma^* / \longleftrightarrow_R^*$ with respect to *R* is the set $\{(u, v) \in \Sigma^* \times \Sigma^* : \pi_R(u) = \pi_R(v)\}$ it is undecidable in general [8, 13]. In some cases, the word problem can be much easier.

Indeed, for $\theta \subseteq \Sigma \times \Sigma$, we say that:

 $u, v \in \Sigma^*$ are equivalence with respect to θ , if and only if, $u \longleftrightarrow_{R_{\theta}}^* v$,

where $\longleftrightarrow_{R_{\theta}}^{*}$ is the reflexive symmetric transitive closure of $\longrightarrow_{R_{\theta}}$, with $R_{\theta} = \{(ab, ba) : (a, b) \in \theta\}.$

In the **Thue** system $S = (\Sigma, R_{\theta})$, **R. V. Book** and **H. N. Liu** showed [16] that the word problem is decidable in linear time. This is mainly based on the following theorem **R. Cori** and **D. Perrin**[3].

Let $u, v \in \Sigma^*, \theta \subseteq \Sigma \times \Sigma$ and a sub alphabet $\Delta \subseteq \Sigma$. we define, $P_{\Delta} : \Sigma^* \longrightarrow \Delta^*$ by:

$$\left\{\begin{array}{ll} P_{\Delta}(\sigma) = \sigma, & \text{if } \sigma \in \Delta, \text{ and} \\ P_{\Delta}(\sigma) = \varepsilon, & \text{if } \sigma \notin \Delta. \end{array}\right.$$

Then:

$$\begin{cases} u \longleftrightarrow_{R_{\theta}}^{*} v \Longleftrightarrow \\ P_{\{\sigma\}}(u) = P_{\{\sigma\}}(v), \text{ for everything } \sigma \text{ of } \Sigma \text{ and} \\ P_{\{\sigma,\mu\}}(u) = P_{\{\sigma,\mu\}}(v), \text{ for everything } (\sigma,\mu) \notin \theta \end{cases}$$

Public-Key cryptography, also called asymmetric cryptography, was invented by **Diffie** And **Hellman** more than forty years ago. In Public-Key cryptography, a user U has a pair of related keys (pK, sK): the key pK is public and should be available to everyone, while the key sK must be kept secret by U. The fact that sK is kept secret by a single entity creates an asymmetry, hence the name asymmetric cryptography.

A one-way function f is a function that maps a domain into range sush that every function value has a unique inverse, with the condition that the calculation of the function is easy whereas the calculation of the inverse is infeasible:

$$y = f(x)$$
 easy
 $x = f^{-1}(y)$ infeasible

Trapdoor one-way functions are a family of invertible functions f_k such that $y = f_k(x)$ is easy if k and x known, and $x = f_k^{-1}(y)$ is infeasible if y is known but k is not known. The devlopment of a partical Public-Key scheme depends on the discovery of a suitable trapdoor one-way function.

2. The ATS-monoid protocol

P. J. Abisha, D. G. Thomas and **K. G. Subramanian**, use the theorem of **R. Cori** and **D. Perrin**. To build the ATS-monoid protocol, the idea is transform a system of **Thue** $S_1 = (\Sigma, R)$ for which the word problem is undecidable in a **Thue** system $S_2 = (\Delta, R_{\theta})$ with $\theta \subseteq \Delta \times \Delta$ and $R_{\theta} = \{(ab, ba) : (a, b) \in \theta\}$ for which the word problem is decidable in linear time.

Public-Key (*pK*): A **Thue** system $S_1 = (\Sigma, R)$ and two words w_0, w_1 of Σ^* . (Σ, R, w_0, w_1) constitute a public-key.

Secret-key (*sK*): A **Thue** system $S_2 = (\Delta, R_\theta)$ where Δ alphabet of size smaller than Σ , a morphism *h* from Σ^* to Δ^* , such that for all $(r,s) \in R$:

$$\left\{\begin{array}{l} (h(r),h(s))\in\{(ab,ba)\,,(ba,ab)\}\,,\,\text{for a pair }(a,b)\in\theta,\,\text{or}\\ h(r)=h(s).\end{array}\right.$$

Therefore:

for all
$$u, v \in \Sigma^*, u \longleftrightarrow^*_R v \Longrightarrow h(u) \longleftrightarrow^*_{R_{\theta}} h(v).$$

thus if h(u) and h(v) are not equivalent with respect to $\longleftrightarrow_{R_{\theta}}^{*}$, then u and v are not equivalent with respect to $\longleftrightarrow_{R}^{*}$.

And, we also we have two words x_0, x_1 of Δ^* such that $x_0 \longleftrightarrow_{R_{\theta}}^* h(w_0), x_1 \longleftrightarrow_{R_{\theta}}^* h(w_1)$ with $h(w_0)$ and $h(w_1)$ are not equivalent with respect to $\longleftrightarrow_{R_{\theta}}^*$. $(\Delta, R_{\theta}, h \in Hom(\Sigma^*, \Delta^*))$ constitute a secret-key. **Encryption:** for encrypt a bit $b \in \{0, 1\}$, **Bob** chooses a word c of Σ^* in the equivalence class of w_b with respect to \longleftrightarrow_R^* , i. e, $c \in [w_b]_{\longleftrightarrow_R^*}$ where $[w_b]_{\longleftrightarrow_R^*}$ denotes the equivalence class of w_b with respect to \longleftrightarrow_R^* and then sent to **Alice**.

Decryption: Upon receipt of a word c of Σ^* , **Alice** calculated $h(c) \in \Delta^*$, since $c \longleftrightarrow^*_R w_b$ and according to the result for all $u, v \in \Sigma^*, u \longleftrightarrow^*_R v \Longrightarrow h(u) \longleftrightarrow^*_{R_\theta} h(v)$ we have $h(c) \longleftrightarrow^*_{R_\theta} h(w_b)$, for example if $h(c) \longleftrightarrow^*_{R_\theta} x_0$ the message is decrypted 0.

Example : Public-Key (*pK*):

 $\Sigma = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\},\$

 $R = \{(\sigma_2 \sigma_3, \sigma_3 \sigma_2), (\sigma_2 \sigma_4, \sigma_4 \sigma_2), (\sigma_1 \sigma_3, \sigma_3 \sigma_1)\},\$

 $w_0 = \sigma_1 \sigma_2 \sigma_4 \sigma_3 \sigma_1 \sigma_2 \sigma_3 \sigma_4,$

 $w_1 = \sigma_2 \sigma_4 \sigma_3 \sigma_4 \sigma_2 \sigma_1.$

Secret-key (*sK*):

$$\Delta = \{a, b, c\}, \theta = \{(a, b), (a, c)\} \text{ and } h : \Sigma^* \longrightarrow \Delta^* \text{ is defined by }:$$

$$h(\sigma_1) = \varepsilon, h(\sigma_2) = a, h(\sigma_3) = b, h(\sigma_4) = c$$

We have $R_{\theta} = \{(ab, ba), (ac, ca)\}, h(w_0) = x_0 = acbabc$ and $h(w_1) = x_1 = acbca$.

Now we verify the following conditions :

1. $h(w_0)$ et $h(w_0)$ are not equivalent with respect to $\longleftrightarrow_{R_0}^*$.

2. for all $(r,s) \in R$:

$$\begin{cases} (h(r),h(s)) \in \{(ab,ba),(ba,ab)\}, \text{ for a pair } (a,b) \in \theta, \text{ or } \\ h(r) = h(s). \end{cases}$$

For condition 1. Just use the theorem of **R. Cori** and **D. Perrin**, we have $P_{\{b\}}(h(w_0)) = P_{\{b\}}(acbabc) = bb$ and $P_{\{b\}}(h(w_1)) = P_{\{b\}}(acbca) = b$, then $h(w_0)$ and $h(w_1)$ are not equivalent with respect to $\longleftrightarrow_{R_a}^*$.

For condition 2. we have $R = \{(\sigma_2\sigma_3, \sigma_3\sigma_2), (\sigma_2\sigma_4, \sigma_4\sigma_2), (\sigma_1\sigma_3, \sigma_3\sigma_1)\}$ then $(h(\sigma_2\sigma_3), h(\sigma_3\sigma_2)) = (ab, ba) \in R_{\theta}, (h(\sigma_2\sigma_4), h(\sigma_4\sigma_2)) = (ac, ca) \in R_{\theta},$ $(h(\sigma_1\sigma_3), h(\sigma_3\sigma_1)) = (b, b)$ (we have $h(\sigma_1\sigma_3) = h(\sigma_3\sigma_1)$. Therefore:

for all $u, v \in \Sigma^*, u \longleftrightarrow^*_R v \Longrightarrow h(u) \longleftrightarrow^*_{R_a} h(v).$

Encryption: for example, for encrypt the 0, **Bob** chooses a word *c* of $\{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}^*$ in the equivalence class of w_0 with respect to \longleftrightarrow_R^* , i. e, $c \in [w_0]_{\longleftrightarrow_R^*}$ where $[w_0]_{\underset{R}{\longrightarrow_R^*}}$ denotes the equivalence class of w_0 with respect to \longleftrightarrow_R^* , and then sent to **Alice**.

we have $w_0 = \sigma_1 \sigma_2 \sigma_4 \sigma_3 \sigma_1 \sigma_2 \sigma_3 \sigma_4 \longleftrightarrow_R^* \sigma_1 \sigma_4 \sigma_2 \sigma_3 \sigma_1 \sigma_2 \sigma_3 \sigma_4 \longleftrightarrow_R^* \sigma_1 \sigma_4 \sigma_3 \sigma_2 \sigma_1 \sigma_2 \sigma_3 \sigma_4.$

We choose $c = \sigma_1 \sigma_4 \sigma_3 \sigma_2 \sigma_1 \sigma_2 \sigma_3 \sigma_4$.

Decryption: Upon receipt of a word *c* of $\{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}^*$,

Alice calculated $h(c) = h(\sigma_1 \sigma_4 \sigma_3 \sigma_2 \sigma_1 \sigma_2 \sigma_3 \sigma_4) = cbaabc \in \{a, b, c\}^*$, Now using the theorem of **R. Cori** and **D. Perrin**, such that $h(c) \longleftrightarrow_{R_{\theta}}^* h(w_0)$. we have

 $\begin{array}{l} P_{\{a\}}(h(c)) &= P_{\{a\}}(h(w_0)) \\ = aa, P_{\{b\}}(h(c)) \\ = P_{\{b\}}(h(w_0)) \\ = bb, P_{\{c\}}(h(c)) \\ = P_{\{c\}}(h(w_0)) \\ = cc. \end{array}$

then for all σ of $\{a,b,c\}$, $P_{\{\sigma\}}(h(c)) = P_{\{\sigma\}}(h(w_0))$. In addition it is verified that $P_{\{\sigma,\mu\}}(h(c)) = P_{\{\sigma,\mu\}}(h(w_0))$, for all $(\sigma,\mu) \notin \theta$, we have the complementary of θ is $C_{\Delta \times \Delta} \theta = \{(a,a), (b,a), (b,b), (b,c), (c,a), (c,b), (c,c)\}$,

then $P_{\{b,c\}}(h(c)) = P_{\{b,c\}}(h(w_0)) = cbbc$. Finally $h(c) \longleftrightarrow^*_{R_{\theta}} h(w_0) = x_0$ and the word is decrypted 0.

3. Security of ATS-monoid protocol

An attack against **ATS-monoid** does not allow to find exactly the **Secret-key**. We will get rather a key that is equivalent to it in the following direction:

We say that $(\Delta', R_{\theta'}, h' \in H(\Sigma^*, \Delta'^*))$ is an equivalent key to the **Secret-key** $(\Delta, R_{\theta}, h \in Hom(\Sigma^*, \Delta^*))$ if any message encrypted with the **Public-Key** (Σ, R, w_0, w_1) can be decrypted with $(\Delta', R_{\theta'}, h' \in Hom(\Sigma^*, \Delta'^*))$. This is the case for example if $(\Delta', R_{\theta'}, h' \in Hom(\Sigma^*, \Delta'^*))$ checks the following three conditions: 1. h' is non trivial and $|\Delta'| \leq |\Sigma|$.

2.
$$\forall (r,s) \in \mathbb{R}$$
, $\binom{h'(r),h'(s)}{b} \in \{(ab,ba),(ba,ab)\}$, for a pair $(a,b) \in h'(r) = h'(s)$.

3. $h'(w_0)$ et $h'(w_0)$ are not equivalent with respect to $\longleftrightarrow_{R_{\theta'}}^*$.

Now we recall some keys that are equivalent to the **Secret-key** $(\Delta, R_{\theta}, h \in Hom(\Sigma^*, \Delta^*)).$

1. if $h(\Sigma) = \{h(\sigma), \sigma \in \Sigma\}$ and $\theta' = \theta \cap h(\Sigma) \times h(\Sigma)$. then: $(h(\Sigma), R_{\theta'}, h \in Hom(\Sigma^*, \Delta^*))$ is an equivalent key to the **Secret-key** $(\Delta, R_{\theta}, h \in Hom(\Sigma^*, \Delta^*))$.

2. if
$$|\Delta'| = |\Delta|$$
, $i \in Iso(\Delta^*, \Delta'^*)$ and $i(\theta) = \{(i(a), i(b)), (a, b) \in \theta\}$.

then $(\Delta', R_{i(\theta)}, i \circ h \in Hom(\Sigma^*, \Delta'^*))$ is an equivalent key to the **Secret-key** $(\Delta, R_{\theta}, h \in Hom(\Sigma^*, \Delta^*)).$

Now describe a general attack against the **ATS-monoid** protocol. In the first time we notice that a key $(\Delta', R_{\theta'}, h' \in Hom(\Sigma^*, \Delta'^*))$ equivalent to the **Secret-key** $(\Delta, R_{\theta}, h \in Hom(\Sigma^*, \Delta^*))$ is independent of alphabet Δ , the only thing that matters is the size of Δ . On the other hand, we observe that the relation $R_{\theta'}$ is easily deduced from the knowledge of $h' \in Hom(\Sigma^*, \Delta'^*)$. Then for a **Public-Key** (Σ, R, w_0, w_1) there is a algorithm noted by **Algo-ATS-monoid** which returns an equivalent key to the **Secret-key** $(\Delta, R_{\theta}, h \in Hom(\Sigma^*, \Delta^*))$ to complexity $|R| \sum_{i=1}^{i=k} (i+1)^{|\Sigma|}$, with k =

 $|\Delta|$.

A lg orithm - ATS - monoid**Data** : (Σ, R, w_0, w_1) , **Public** – **Key** (pK) of **ATS** – **monoid** protocol. **Result** : $(\Delta_i, R_{\theta_i}, h_i \in Hom(\Sigma^*, \Delta_i^*))$, equivalent key to the Secret – key. While $i, 1 \le i \le |\Sigma|$ Do Δ_i is any alphabet of *i* lettres While $h_i \in Hom(\Sigma^*, \Delta_i^*)$ Do $\theta_i \leftarrow 0$ While $(r,s) \in R$ Do **Calculate** $h_i(r)$ and $h_i(s)$ If $h_i(r) \neq h_i(s)$ Then If $h_i(r) = ab$ and $h_i(s) = ba$, for $a, b \in \Delta_i$ Then If $(a,b) \notin \theta_i$ and $(b,a) \notin \theta_i$ then $\theta_i \longleftarrow \theta_i \cup \{(a,b)\}$ If no Choose another morphism, i.e. Return to the second loop While End If End while If $h_i(w_0)$ and $h_i(w_1)$ are not equivalent modulo $\longleftrightarrow_{R_{\theta}}^*$. Then **Return** $(\Delta_i, R_{\theta_i}, h_i \in H(\Sigma^*, \Delta_i^*))$ End While

End while

4. Some attacks against ATS-monoid

In this section we give some attacks against **ATS-monoid** that is to say in each case we return an equivalent key to the **secret-key** of this protocol.

Corollary 4.1

Let (Σ, R, w_0, w_1) be a **Public-Key** of **ATS-monoid** protocol. If $\forall (r, s) \in R, |r| = |s|$, then $(\Delta_1 = \{a\}, R_\theta = \emptyset, h_1 \in Hom(\Sigma^*, \Delta_1^*))$ where for all $\sigma \in \Sigma, h_1(\sigma) = a$, is an equivalent key to the **Secret-key**.

Proof

The key $(\Delta_1 = \{a\}, R_{\theta} = \emptyset, h_1 \in Hom(\Sigma^*, \Delta_1^*))$ where for all $\sigma \in \Sigma, h_1(\sigma) = a$, checked the following three conditions:

1. the morphism h_1 is not trivial because for all $\sigma \in \Sigma$, $h_1(\sigma) = a \neq \varepsilon$.

2. $\forall (r,s) \in R, h_1(r) = h_1(s) = (a)^{|r|} = (a)^{|s|}.$

3. if $R_{\theta} = \emptyset$, then $\longleftrightarrow_{R_{\theta}}^{*} = I_{\Sigma^{*}}$ consequently $h_{1}(w_{0})$ and $h_{1}(w_{1})$ are not equivalent modulo $\longleftrightarrow_{R_{\theta}}^{*}$ since $h_{1}(w_{0}) \neq h_{1}(w_{1})$. then $(\Delta_{1} = \{a\}, R_{\theta} = \emptyset, h_{1} \in Hom(\Sigma^{*}, \Delta_{1}^{*}))$ is an equivalent key to the **Secret-key**.

Corollary 4.2

Let (Σ, R, w_0, w_1) be a **Public-Key** of **ATS-monoid** protocol.

S'il existe
$$(r,s) \in R, |r| \neq |s|$$
, then
 $\theta \begin{pmatrix} \Delta_1 = \{a\}, R_{\theta} = \emptyset, h_1 \in Hom(\Sigma^*, \Delta_1^*) \end{pmatrix}$ where $h_1(\Sigma) = \{a, \varepsilon\}$
 θ is an equivalent key to the **Secret-key**.

Example 4.3

Public-Key:

 $\Sigma = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5\},\$

 $R = \{(\sigma_1 \sigma_3, \sigma_3 \sigma_1), (\sigma_1 \sigma_4, \sigma_4 \sigma_1), (\sigma_2 \sigma_3, \sigma_3 \sigma_2), (\sigma_2 \sigma_4, \sigma_4 \sigma_2), (\sigma_5 \sigma_3 \sigma_1, \sigma_3 \sigma_5 \sigma_4 \sigma_2 \sigma_4 \sigma_3 \sigma_4 \sigma_2 \sigma_3 \sigma_4 \sigma_2 \sigma_3 \sigma_4, w_1 = \sigma_2 \sigma_4 \sigma_3 \sigma_4 \sigma_2 \sigma_1.$

The key $(\Delta_1 = \{a\}, R_\theta = \emptyset, h_1 \in Hom(\Sigma^*, \Delta_1^*))$ or $h_1(\sigma_1) = h_1(\sigma_3) = \varepsilon, h_1(\sigma_2) = h_1(\sigma_4) = h_1(\sigma_5) = a$ is verified the following conditions:

1. the morphism h_1 is non trivial.

2. $\forall (r,s) \in R, h_1(r) = h_1(s).$

3. we have $h_1(w_0) = a^6$ et $h_1(w_1) = a^4$ and like $\longleftrightarrow_{R_{\theta}}^* = I_{\Sigma^*}$, then $h_1(w_0)$ and $h_1(w_1)$ are not equivalent with respect to $\longleftrightarrow_{R_{\theta}}^*$.

. then $(\Delta_1 = \{a\}, R_\theta = \emptyset, h_1 \in Hom(\Sigma^*, \Delta_1^*))$ is an equivalent key to the **Secret-key**.

Corollary 4.4

Let (Σ, R, w_0, w_1) be a **Public-Key** of **ATS-monoid** protocol.

if there exists σ_k of the alphabet Σ such that for all $(r,s) \in R$, $|r|_{\sigma_k} = |s|_{\sigma_k} = 0$, then

 $(\Delta_1 = \{a\}, R_{\theta} = \emptyset, h_1 \in Hom(\Sigma^*, \Delta_1^*))$ or for all $\sigma \in \Sigma$ with $\sigma \neq \Delta_1$ $\sigma_k, h_1(\sigma) = \varepsilon$ and $h_1(\sigma_k) = a$, is an equivalent key to the Secretkey.

Proof

The key $(\Delta_1 = \{a\}, R_{\theta} = \emptyset, h_1 \in Hom(\Sigma^*, \Delta_1^*))$ is checked three conditions:

1. the morphism h_1 is non trivial. because $h_1(\sigma_k) = a \neq \varepsilon$.

2. $\forall (r,s) \in \mathbb{R}, h_1(r) = h_1(s) = \varepsilon$.

3. if $R_{\theta} = \emptyset$, then $\longleftrightarrow_{R_{\theta}}^* = I_{\Sigma^*}$, so it must verify that $h_1(w_0) \neq 0$ $h_1(w_1)$.

References

- [1] A. Ali, P et N. Hadj. S, "La Cryptographie et ses Principaux Systèmes
- A. Ali, P et N. Hadj. S. La Cyptographic et ses Frincipaux Systemes de Références," RIST, nº 4, (2002).
 M. Benois, "Application de l'étude de certaines congruences à un problème de décidabilité," Séminaire Dubreil, nº 7, (1972).
 R. Cori et D. Perrin, "Automates et Commutations Partielles," RAIRO-Informatique théorique, tome19, nº 1, p.21-32, (1985).
 W. Diffe M. F. Hellman, "New Direction in Cryptography," IEEE
- [4] W. Diffie, M. E. Hellman, "New Direction in Cryptography," IEEE Trans, on Inform Theory, 22(6), P. 644-665, (1976).
- [5] M. Eytan, G. TH, "Guilbaud. Présentation de quelques monoïdes finis. Mathématiques et sciences humaines," tome 7, p. 3-10, (1964). [6] R. Floyd, R. Beigel, "Traduction de D. Krob. Le langage des machines,"
- International Thomthenn France, Paris, (1995). Y. Lafont, "Réécritue et problème du mot," Gazette des
- [7] Mathématiciens, Laboratoire de Mathématiques Discrètes de Luminy, Marseille, France, (2009).
- [8] A. Markov, "On the impossibility of certain algorithme in the theory of asthenciative systems,", Doklady Akademi Nauk SSSR,55, 58:587-590, 53-356, (1947).
- Y. Metiver, "Calcul de longueurs de chaines de réécriture dans un [9] monoïde libre," U.E.R. de Mathématiques et informatique, Université de Bordeaux 1, France (1983). M. Nivat, "Sur le noyau d'un morphisme du monoïde libre," Séminaire
- [10] Schutzenberger, tom 1, n° 4, p, 1-6, (1970). [11] L. Perret, "Etude d'outils algébriques et combinatoires pour la cryp-
- tographie à clef publique," thèse de doctorat, Universit e de Marne-la-
- Vallée, (2005).
 [12] H. Phan, P. Guillot," Preuves de sécurité des schémas cryptographiques," université Paris 8, (2013).
- [13] E. Post, "Recursive unthenlyability of a problem of Thue,", Journal of
- [15] E. Post, Recursive uninenvalinty of a problem of 1 nue, Journal of Symbolic Logic, 12(1):1-11, (1947).
 [14] S. Qiao, W. Han, Y. Li and L. Jiao, "Construction of Extended Multivariante Public Key Cryptosystems," International Journal of Network Security, Vol. 18, No.1, pp. 60-67, (2016).
 [15] H. Rosen, "Cryptography Theory and Practice," Third Edition, Chapman and Hall/CRC, (2006).
 [16] B. V. Back, U. N. Li, "Praviding Systems and Word Problems in a
- [16] R. V. Book, H. N. Liu, "Rewriting Systems and Word Problems in a Free Partially Commutative Monoid," Information Processing Letters nº 26, p. 29-32, (1987).