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Abstract 
 

In this paper we investigate consistency and asymptotic normality of the posterior distribution of the parameters in the stochastic differ-

ential equations (SDE’s) with diffusion coefficients depending nonlinearly on a random variables ∅𝑖 and 𝜇𝑖 (the random effects).The 

distributions of the random effects ∅𝑖 and 𝜇𝑖 depends on unknown parameters which are to be estimated from the continuous observa-

tions of the independent processes (𝑋𝑖(𝑡), 𝑡 ∈ [0, 𝑇𝑖], 𝑖 = 1,… , 𝑛 ). We propose the Gaussian distribution for the random effect ∅𝑖 and the 

exponential distribution for the random effect  𝜇𝑖 , we obtained an explicit formula for the likelihood function and find the estimators of 

the unknown parameters in the random effects. 
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1. Introduction 

Stochastic differential equations play an important role in many 

areas of science fields as physics, engineering, chemistry, neuro-

science, biology, finance (Gugushvili and P. Spreij (2012)[8]). 

Statistical estimation of parameters in the diffusion processes has 

been studied for a long time. In the recent years, the stochastic 

differential equations with random effects have been the subject of 

diverse applications such as pharmacokinetic/pharmacodynamics, 

neuronal modeling (Delattre and Lavelle, 2013[4], Donnet and 

Samson, 2013[7], Picchini et al. 2010[13]).Maximum likelihood 

estimator of the parameters of the random effect, is generally not 

possible, because of the likelihood function is not available in 

most cases. Many references proposed approximations for the 

unknown likelihood function, for general mixed SDEs an approx-

imations of the likelihood have been proposed (Picchini and 

Ditlevsen, 2011[12]), linearization (Beal and Sheiner (1982)[3]), 

or approximating the conditional transition density of the diffusion 

process given the random effects by a Hermit expansion, (Aït-

Sahalia (2002)[1]).Maitra et al. (2015) [11]) studied consistency 

and asymptotic normality of the posterior distribution of the pa-

rameters in the SDE’s with one random effect in the drift term, 

Delattre et al. (2012) [6] and alkreemawi et al. (2015) [2] are stud-

ied the maximum likelihood estimator for random effects in more 

generally for fixed T and n tending to infinity (for non i.i.d. sam-

ple paths, see Maitra et al. (2014) [10]) and they found an explicit 

expression for likelihood function and exact likelihood estimator 

by investigate the linear random effect in the drift (multiple and 

additive case respectively) together with a specific distribution for 

the random effect. Almost researcher studied the random effect in 

the drift not in diffusion except Delattre and Lavelle, 2013[4] who 

incorporate measurement error and propose an approximation of 

the likelihood with the extended Kalman filter, and Delattre et al. 

(2014) [5] who used one random effect in the diffusion coefficient 

with a specific distributions and focus on discretely observed 

SDEs. 

In the present work we focus on stochastic differential equation 

with two random effects in diffusion coefficient and suppose that 

the drift coefficient without random effect. We consider n real 

valued stochastic processes( 𝑋𝑖(𝑡), 𝑡 ∈ [0, 𝑇𝑖], 𝑖 = 1,… , 𝑛 ) , with 

dynamics ruled by the following SDEs: 

 

 𝑑𝑋𝑖(𝑡) = 𝑏(𝑋𝑖(𝑡))𝑑𝑡 + 𝜎(𝑋𝑖(𝑡), ∅𝑖 , 𝜇𝑖)𝑑𝑊𝑖(𝑡) ,   𝑋𝑖(0) = 𝑥
𝑖 ,

𝑖 = 1,… , 𝑛                                                                                    (1) 

 

Where  𝑊1, … ,𝑊𝑛  are  𝑛  independent wiener processes, 

 ∅1 , … , ∅𝑛  and  𝜇1 , … , 𝜇𝑛 are 𝑛  𝑖. 𝑖. 𝑑.  random variables taking 

values in ( ℝ  and ℝ+ ) respectively, ∅1 , … , ∅𝑛  ,  𝜇1 , … , 𝜇𝑛  and 

𝑊1, … ,𝑊𝑛  are independent and 𝑥𝑖 , 𝑖 = 1,… , 𝑛  are known real 

values. The functions 𝑏(𝑥)(drift term) and 𝜎(𝑥)(diffusion term) 

are known real valued functions. Each process 𝑋𝑖(𝑡) represents an 

individual, the variables ∅𝑖 and 𝜇𝑖 represents the random effects of 

individual  𝑖  , the random variables  ∅1 , … , ∅𝑛  have a common 

distribution 𝑔(𝜑, 𝜃)𝑑𝜐(𝜑)  on  ℝ  and the random variables 

 𝜇1 , … , 𝜇𝑛  have a common distribution  ℎ(𝜇, 𝛽)𝑑𝑢(𝜇)  on 

ℝ+ where 𝜃 and  𝛽 are an unknown parameters belonging to a set 

 𝜣 ⊂  ℝ𝑝 where 𝜐 and 𝑢 are a dominating measures. 

  Our aim is to estimate 𝜓 = (𝜃, 𝛽) from the continuous observa-

tions ( 𝑋𝑖(𝑡), 𝑡 ∈ [0, 𝑇𝑖], 𝑖 = 1,… , 𝑛 )  and prove consistency and 

asymptotic normality of the Bayesian posterior distribution of 

𝜓 = (𝜃, 𝛽). We focus on a special case of nonlinear random effect 

in the diffusion coefficient in the model (1), i.e. σ(𝑥, ∅𝑖 , 𝜇𝑖) =

(∅𝑖 + 𝜇𝑖)
−1 𝜎(𝑥)  , where 𝜎 is a known real function and ∅𝑖 is a 

Gaussian and 𝜇𝑖 is an exponential, an explicit likelihood formula 

and the maximum likelihood estimator of  𝜓  are obtained.  

The rest of the paper is organized as follows. Section 2 contains 

the notation and assumptions. The general results of the estimation 

of the parameters are introduced in section 3. In section 4 

We study the consistency and asymptotic normality of the Bayesi-

an posterior distribution when the random effects are Gaussian 

and exponential distribution respectively. Conclusion is given in 

section 5.  
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2. Notations and assumptions 

Consider n real valued stochastic processes   (Xi(t), t ≥ 0),  i =
1,… , n with dynamics ruled by (1). The processes W1, … ,Wn and 

the random variables ∅1 , … , ∅n  and μ1 , … , μn  are defined on a 

common probability space (Ω,ℱ, ℙ) .Consider the filtration 

(ℱt, t ≥ 0)  defined by   ℱ
t
=  σ(∅i, μi,Wi(s), s ≤ t, i = 1,… , n) . 

As ℱ
t
= σ(∅i, μi,Wi(s), s ≤ t)⋁ℱt

i, with  ℱt
i =

σ(∅i, ∅j, μi, μj,Wj(s), s ≤ t , j ≠ i) independent of  Wi  , each pro-

cess Wi is a (ℱt, t ≥ 0)-Brownian motion. Moreover, the random 

variables  ∅i , μi are ℱ
0
 – measurable. We assume that:  

H1 

i) The function b(x) is C1 on ℝ , and such that: 

           ∃K > 0, ∀x ∈ ℝ, b2(x) ≤ K(1 + x2),  
 

ii) The function σ(x, φ, μ)  is C1  on ℝ×ℝd × ℝ+  and 

∀(x, φ, μ)  ∈ ℝ × ℝd × ℝ+ ,   σ2(x, φ, μ) ≤ K(1 + x2 +
|φ|2 + |μ|2). 

From H1, the process (Xi(t))  is well define and (∅i, μi, Xi(t)) 
adapted to filtration  (ℱt, t ≥ 0) . 
The n processes (∅i, μi, Xi(t), i = 1,… , n )  are independent. For 

all φ, μ and all  xi ∈ ℝ , the stochastic differential equation  

 

𝑑𝑋𝑖
𝜑,𝜇(𝑡) = 𝑏 (𝑋𝑖

𝜑,𝜇(𝑡)) 𝑑𝑡 + 𝜎(𝑋𝑖
𝜑,𝜇(𝑡), 𝜑, 𝜇)𝑑𝑊𝑖(𝑡)  ,    

 𝑋𝑖
𝜑,𝜇(0) =  𝑥𝑖     (2).    

Admits a unique strong solution process (Xi
φ,μ(t), t ≥ 0) adapted 

to filtration  (ℱt, t ≥ 0) . We deduce that the conditional distribu-

tion of Xi given ∅i = φ and μi = μ identical to the distribution of   

Xi
φ,μ

. 

3. A general results of estimation of the pa-

rameters 

3.1. Exact likelihood 

We introduce the distribution Qφ,μ
xi,Ti  of   (Xi

φ,μ(t), t ∈ [0, Ti]). 

Let Pψ
i = g(φ, θ)dv(φ)⨂ h(μ, β)du(μ)⨂Qφ

xi,Ti  denote the joint 

distribution of (∅i, μi, Xi(t)) and let Qψ
i  denote the marginal dis-

tribution of(Xi(t), t ∈ [0, Ti]). Let us consider the following as-

sumption: 

H2 For i = 1,… , n and for all φ, μ,φ′, μ′ , 
 

 Qφ,μ
xi,Ti (∫

b2(Xi
φ,μ(t))

σ2(Xi
φ,μ(t),φ′,μ′)

Ti
0

 dt < +∞) = 1  

 

Under H1-H2, the derivative of the distribution Qφ,μ
xi,Ti with respect 

to derivative of Qi = Qφ0,μ0
xi,Ti  has the density 

 

 
dQφ,μ

xi,Ti 

dQi 
(Xi) = LTi(Xi, φ, μ)  

 

= exp (∫
b(Xi(s))

σ2(Xi(s),φ,μ)

Ti
0

dXi(s)  −
1

2
 ∫

b2(Xi(s))

σ2(Xi(s),φ,μ)

Ti
0

 ds)                (3) 

 

(See Liptser and Shiryaev [9]). 

 

H3 for i = 1, … , n,  we assume that   Ui −
1

2
Vi < ∞ , where:   

 

Ui = ∫
b(Xi(s))

σ2(Xi(s))

Ti
0

 dXi(s) , Vi = ∫
b2(Xi(s))

σ2(Xi(s))

Ti
0

 ds .  

 

  By independent of individuals, 𝑃𝜓 = ⨂𝑖=1
𝑛 𝑃𝜓

𝑖  is the distri-

bution of   (∅𝑖 , 𝜇𝑖 , 𝑋𝑖(. )), 𝑖 = 1,… , 𝑛  and 𝑄𝜓 = ⨂𝑖=1
𝑛 𝑄𝜓

𝑖  is 

the distribution of the sample(𝑋𝑖(𝑡), 𝑡 ∈ [0, 𝑇𝑖], 𝑖 = 1,… , 𝑛 ). 

We can compute the density of  𝑄𝜓  w.r.t.  𝑄 = ⨂𝑖=1
𝑛 𝑄𝑖  as 

follow: 

γi(Xi, ψ) =  
dQψ

dQi 
(Xi) =

∫ ∫ LTi(Xi, φ, μ)g(φ, θ)h(μ, β)dv(φ)du(μ)ℝℝ+
   

 

And the exact likelihood of whole sample ( Xi(t), t ∈ [0, Ti], i =
1,… , n ) is  

 

ξn(ψ) = ∏ γi(Xi, ψ).
n
i=1   

3.2 The distributions of the random effects 

Consider model (1) with nonlinear random effects in the diffusion 

coefficient σ(𝑥, ∅𝑖 , 𝜇𝑖) = (∅𝑖 + 𝜇𝑖)
−1 𝜎(𝑥)where φ ∈ ℝ , μ ∈ ℝ+ 

and b(. ), σ(. ) are known functions. We assume that: 

 

∫
b2(Xi(s))

σ2(Xi(s))

Ti
0

 ds < ∞ , Qφ,μ
xi,Ti − a. s,  

 

for all 𝜑, 𝜇 and for 𝑖 = 1,… , 𝑛 ; 𝑇𝑖 = 𝑇, 𝑥
𝑖 = 𝑥, so that ( 𝑋𝑖(𝑡), 𝑡 ∈

[0, 𝑇], 𝑖 = 1,… , 𝑛 ) are 𝑖. 𝑖. 𝑑. We will use the define statistics as 

follow: 

 

 Ui = ∫
b(Xi(s))

σ2(Xi(s))

T

0
 dXi(s) , Vi = ∫

b2(Xi(s))

σ2(Xi(s))

T

0
 ds                               (4) 

 

So that the density γi(Xi, ψ) is given by: 

 

γi(Xi, ψ) =

∫ ∫ exp ((φ + μ)2 ( Ui −
1

2
Vi))ℝℝ+

 g(φ, θ)h(μ, β)dv(φ)du(μ)  (5) 

 

For a general distributions, 𝑔(𝜑, 𝜃)𝑑𝑣(𝜑)  for the random 

effect ∅𝑖 and ℎ(𝜇, 𝛽)𝑑𝑢(𝜇) for the random effect   𝜇, it is not 

possible find an explicit expression for 𝛾𝑖(𝑋𝑖 , 𝜓)  above, 

therefor we propose a specific distributions, Gaussian (𝜆, 𝜔2) 

for the random effect  𝜑  and an exponential (𝛽) for the ran-

dom effect   𝜇  , which will give an explicit likelihood and 

then find the maximum likelihood estimators of the unknown 

parameters. In the next proposition an evident expression for 

𝛾𝑖(𝑋𝑖 , 𝜓)is obtained when the above distributions of the ran-

dom effects is with unknown parameter  𝜓 = (𝜆,𝜔2, 𝛽) ∈

ℝ × ℝ+ × ℝ+ .The true value is denoted by  𝜓0 =

(𝜆0, 𝜔
2
0, 𝛽0). 

Proposition 3.1 suppose that 𝑔(𝜑, 𝜃)𝑑𝑣(𝜑) = 𝒩(𝜆,𝜔2) , and 

ℎ(𝜇, 𝛽)𝑑𝑢(𝜇) = 𝑒𝑥𝑝(𝛽) then:   

 

γi(Xi, ψ) =
√πβ

√Mi
 exp (−

1

4

(β(1−2Miω
2)−2λMi)

2

Mi(1−2ω
2Mi)

+
λ2−λ(1−2Miω

2)

2ω2(1−2Miω
2)
) ,  

 

Where    𝑀𝑖 =  𝑈𝑖 −
1

2
𝑉𝑖   . 

 

Proof: from (5) we compute the joint density of(∅𝑖 , 𝜇𝑖 , 𝑋𝑖): 
 

𝑒𝑥𝑝 ((𝜑 + 𝜇)2 ( 𝑈𝑖 −
1

2
𝑉𝑖))

1

√2𝜋𝜔2
× 𝑒𝑥𝑝 (−

1

2𝜔2
(𝜑 − 𝜆)2) ×

𝛽𝑒𝑥𝑝(−𝛽𝜇).  
 

Let  𝑀𝑖 =  𝑈𝑖 −
1

2
𝑉𝑖 , then the exponent become: 
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𝐷𝑖 = 𝜑

2𝑀𝑖 −
1

2𝜔2
(𝜑 − 𝜆)2 + 2𝜑𝜇𝑀𝑖 + 𝜇

2𝑀𝑖 − 𝛽𝜇.                   (6) 

 

We will compute the first part 

(𝜑2𝑀𝑖 −
1

2𝜔2
(𝜑 − 𝜆)2 + 2𝜑𝜇𝑀𝑖)  of the exponent as follow: 

 

𝜑2𝑀𝑖 −
1

2𝜔2
(𝜑 − 𝜆)2 + 2𝜑𝜇𝑀𝑖  

 

= (𝑀𝑖 −
1

2𝜔2
)𝜑2 + (

𝜆

𝜔2
+ 2𝜇𝑀𝑖)𝜑 −

𝜆2

2𝜔2
  

 

=
−1

2
 (

1

𝜔2
− 2𝑀𝑖) (𝜑

2 − 2
𝜆+2𝜔2𝑀𝑖𝜇

1−2𝜔2𝑀𝑖
𝜑) −

𝜆2

2𝜔2
  

 

=
−1

2
 (

1

𝜔2
− 2𝑀𝑖) [(𝜑

2 −
𝜆+2𝜔2𝑀𝑖𝜇

1−2𝜔2𝑀𝑖
)
2

− (
𝜆+2𝜔2𝑀𝑖𝜇

1−2𝜔2𝑀𝑖
)
2

] −
𝜆2

2𝜔2
  

 

=
−1

2
 (
1−2𝜔2𝑀𝑖

𝜔2
) (𝜑 −

𝜆+2𝜔2𝑀𝑖𝜇

1−2𝜔2𝑀𝑖
)
2

  

 

+
(𝜆+2𝜔2𝑀𝑖𝜇)

2

2𝜔2(1−2𝜔2𝑀𝑖)
−

𝜆2

2𝜔2
 .  

 

Now, by split the result into two parts that are independent and 

dependent on the random effect 𝜑 respectively, we find that the 

integral of the dependent part is the integral of a Gaussian density. 

Then the first integral in (5) with respect to 𝜑 yields the following 

result: 

 

 
1

√1−2𝜔2𝑀𝑖

𝑒𝑥𝑝 (
(𝜆+2𝜔2𝑀𝑖𝜇)

2

2𝜔2(1−2𝜔2𝑀𝑖)
−

𝜆2

2𝜔2)  

 

By substituting in (5), the second part of the exponent is become: 

 

𝐸𝑖 = 
(𝜆+2𝜔2𝑀𝑖𝜇)

2

2𝜔2(1−2𝜔2𝑀𝑖)
+ 𝜇2𝑀𝑖 − 𝛽𝜇 −

𝜆2

2𝜔2
   

 

= (
2𝜔2𝑀𝑖

2

1−2𝜔2𝑀𝑖
+𝑀𝑖) 𝜇

2 − (𝛽 −
2𝜆𝑀𝑖

1−2𝜔2𝑀𝑖
) 𝜇  

 

+ 
𝜆2−𝜆(1−2𝜔2𝑀𝑖)

2𝜔2(1−2𝜔2𝑀𝑖)
   

= 
𝑀𝑖

1−2𝜔2𝑀𝑖
(𝜇2 − (

𝛽(1−2𝜔2𝑀𝑖)−2𝜆𝑀𝑖

𝑀𝑖
) 𝜇)  

 

+ 
𝜆2−𝜆(1−2𝜔2𝑀𝑖)

2𝜔2(1−2𝜔2𝑀𝑖)
  

 

= 
𝑀𝑖

1−2𝜔2𝑀𝑖
[(𝜇 −

1

2

𝛽(1−2𝜔2𝑀𝑖)−2𝜆𝑀𝑖

𝑀𝑖
)
2

− (
1

2

𝛽(1−2𝜔2𝑀𝑖)−2𝜆𝑀𝑖

𝑀𝑖
)
2

]  

 

+ 
𝜆2−𝜆(1−2𝜔2𝑀𝑖)

2𝜔2(1−2𝜔2𝑀𝑖)
  

 

= −
1

2

𝑀𝑖

𝜔2𝑀𝑖−
1

2

(𝜇 −
1

2

𝛽(1−2𝜔2𝑀𝑖)−2𝜆𝑀𝑖

𝑀𝑖
)
2

  

 

−
1

4

(𝛽(1−2𝜔2𝑀𝑖)−2𝜆𝑀𝑖)
2

𝑀𝑖(1−2𝜔
2𝑀𝑖)

+ 
𝜆2−𝜆(1−2𝜔2𝑀𝑖)

2𝜔2(1−2𝜔2𝑀𝑖)
  

 

Now, by rearrange the second integral we see that the first part is 

normal depend on the random effect 𝜇 with mean is  

 

𝑚𝑖 =
1

2
 
𝛽(1−2𝜔2𝑀𝑖)−2𝜆𝑀𝑖

𝑀𝑖
 ,  

 

And variance, 

 

𝜎𝑖
2 =

𝜔2𝑀𝑖−
1

2

𝑀𝑖
 ,  

 

Then, the conditional distribution of (∅𝑖 , 𝜇𝑖)  given 𝑋𝑖  is   

𝒩(𝑚𝑖 , 𝜎𝑖
2). 

And hence, 

 

𝛾𝑖(𝑋𝑖 , 𝜓) =
√𝜋𝛽

√𝑀𝑖
 𝑒𝑥𝑝 (−

1

4

(𝛽(1−2𝑀𝑖𝜔
2)−2𝜆𝑀𝑖)

2

𝑀𝑖(1−2𝜔
2𝑀𝑖)

+
𝜆2−𝜆(1−2𝑀𝑖𝜔

2)

2𝜔2(1−2𝑀𝑖𝜔
2)
).  

 

3.2 The estimators of the parameters of the random ef-

fects 

A natural approach to estimate 𝜓 = (𝜆, 𝜔2, 𝛽)  is the maximum 

likelihood estimation, so, the likelihood function is written as: 

 

𝜉𝑛(𝜓)  =

∏  𝑛
𝑖=1

√𝜋𝛽

√𝑀𝑖
 𝑒𝑥𝑝 (−

1

4

(𝛽(1−2𝑀𝑖𝜔
2)−2𝜆𝑀𝑖)

2

𝑀𝑖(1−2𝜔
2𝑀𝑖)

+
(𝜆2−𝜆(1−2𝑀𝑖𝜔

2))

2𝜔2(1−2𝑀𝑖𝜔
2)
).  

 

And hence, the logarithm of likelihood function is, 

 

ℒ𝑛(𝜓) = 𝑙𝑜𝑔𝜉𝑛(𝜓)  
 

 = 𝑙𝑜𝑔𝜋
𝑛

2𝛽𝑛 −
1

2
∑ 𝑙𝑜𝑔(𝑀𝑖)
𝑛
𝑖=1    

 

 −∑ [
1

4

(𝛽(1−2𝑀𝑖𝜔
2)−2𝜆𝑀𝑖)

2

𝑀𝑖(1−2𝜔
2𝑀𝑖)

−
(𝜆2−𝜆(1−2𝑀𝑖𝜔

2))

2𝜔2(1−2𝑀𝑖𝜔
2)
] .𝑛

𝑖=1                         (7) 

 

We will study the following score function  

 

𝐺𝑛(𝜓) = (
𝜕

𝜕𝜆
ℒ𝑛(𝜓) 

𝜕

𝜕𝛽
ℒ𝑁(𝜓) 

𝜕

𝜕𝜔2
ℒ𝑛(𝜓))

′

  

 

Where 𝑥′ denotes the transpose of 𝑥, such that: 

 
𝜕

𝜕𝜆
ℒ𝑛(𝜓) = ∑ [

𝛽(1−2𝑀𝑖𝜔
2)−2𝜆𝑀𝑖

1−2𝜔2𝑀𝑖
+
2𝜆−(1−2𝑀𝑖𝜔

2)

2𝜔2(1−2𝑀𝑖𝜔
2)
]𝑛

𝑖=1  ,  

 

= ∑ [𝛽 +
2𝜆(1−2𝑀𝑖𝜔

2)

2𝜔2(1−2𝑀𝑖𝜔
2)
−

1

2𝜔2
] .𝑛

𝑖=1    

 

= ∑ [𝛽 +
2𝜆−1

2𝜔2
]𝑛

𝑖=1 .
𝜕

𝜕𝜔2
ℒ𝑛(𝜓) = ∑ [

(𝛽(1−2𝑀𝑖𝜔
2)−2𝜆𝑀𝑖)𝛽

1−2𝑀𝑖𝜔
2 −𝑛

𝑖=1

1

2

(𝛽(1−2𝑀𝑖𝜔
2)−2𝜆𝑀𝑖)

2

(1−2𝜔2𝑀𝑖)
2

−
𝜆2(2−8𝑀𝑖𝜔

2)

(2𝜔2(1−2𝑀𝑖𝜔
2))

2 +
𝜆

2(𝜔2)2
] .  

 

= ∑ [
1

2
𝛽2 −

2𝜆2𝑀𝑖
2

(1−2𝑀𝑖𝜔
2)2
−

2𝜆2−8𝜆𝑀𝑖𝜔
2

(2𝜔2(1−2𝑀𝑖𝜔
2))

2 +
𝜆

2(𝜔2)2
] 𝑛

𝑖=1   

 

= ∑ [
1

2
𝛽2 −

2𝜆2𝑀𝑖
2

(1−2𝑀𝑖𝜔
2)2
−
2𝜆2(1−2𝑀𝑖𝜔

2−2𝑀𝑖𝜔
2)

(2𝜔2)2(1−2𝑀𝑖𝜔
2)2

+
𝜆

2(𝜔2)2
] 𝑛

𝑖=1   

 

=

∑ [
1

2
𝛽2 −

2𝜆2𝑀𝑖
2

(1−2𝑀𝑖𝜔
2)2
−

2𝜆2(1−2𝑀𝑖𝜔
2)

(2𝜔2)2(1−2𝑀𝑖𝜔
2)2
+

4𝑀𝑖𝜔
2𝜆2

(2𝜔2)2(1−2𝑀𝑖ω
2)2
+𝑛

𝑖=1

𝜆

2(𝜔2)2
]   

 

= ∑ [
1

2
𝛽2 −

2𝜆2𝑀𝑖
2

(1−2𝑀𝑖𝜔
2)2
−

𝜆2𝑀𝑖

𝜔2(1−2𝑀𝑖𝜔
2)2
−

2𝜆2

(2𝜔2)2(1−2𝑀𝑖𝜔
2)2
+𝑛

𝑖=1

𝜆

2(𝜔2)2
]   

 

= ∑ [
1

2
𝛽2 +

𝜆2𝑀𝑖(1−2𝑀𝑖𝜔
2)

𝜔2(1−2𝑀𝑖𝜔
2)2

−
𝜆2

2(𝜔2)2(1−2𝑀𝑖𝜔
2)
+

𝜆

2(𝜔2)2
] 𝑛

𝑖=1   

 

= ∑ [
1

2
𝛽2 −

𝜆2(1−2𝑀𝑖𝜔
2)

2(𝜔2)2(1−2𝑀𝑖𝜔
2)
+

𝜆

2(𝜔2)2
] 𝑛

𝑖=1   

 

= ∑ [
1

2
𝛽2 −

𝜆2−𝜆

2(𝜔2)2
] 𝑛

𝑖=1 ,  

 
𝜕

𝜕𝛽
ℒ𝑛(𝜓) = ∑ [

1

𝛽
−
𝛽(1−2𝑀𝑖𝜔

2)

2𝑀𝑖
+ 𝜆] .𝑛

𝑖=1   

 

 = ∑ [
1

𝛽
−

𝛽

2𝑀𝑖
+ 𝛽𝜔2 + 𝜆] .𝑛

𝑖=1    

 



100 International Journal of Applied Mathematical Research 

 
When 𝜔0

2, 𝛽0 are known, the explicit estimator for  𝜆0: 

 

𝜆̂𝑛 =
2𝛽0𝜔0

2−1

2
 ,  

 

And when 𝜔0
2, 𝜆0 are known, the explicit estimator for  𝛽0 : 

 

𝛽̂𝑛 =

{
 
 

 
 2𝑛𝜆0+√4𝑛

2𝜆0
2+8𝑛𝐾𝑖

2𝐾𝑖

2𝑛𝜆0−√4𝑛
2𝜆0

2+8𝑛𝐾𝑖

2𝐾𝑖

  

 

Where 𝐾𝑖 = ∑
1−2𝑀𝑖𝜔0

2

𝑀𝑖

𝑛
𝑖=1  . 

When 𝜆0, 𝛽0 are known, the explicit estimator for  𝜔0
2: 

 

𝜔𝑛
2̂ = √

𝜆0
2−𝜆0

2𝛽0
2  ,   

 

Such that,   
𝜆0
2−𝜆0

2𝛽0
2 > 0. 

 

If all the parameters are unknown, the MLEs of 𝜓0 = (𝜆0, 𝜔0
2, 𝛽0) 

are given by the system: 

 

𝜆̂𝑛 =
2𝛽̂𝑛𝜔𝑛

2−1

2
 ,  

 

𝛽̂𝑛 =

{
 
 

 
 2𝑛𝜆̂𝑛+√4𝑛

2𝜆̂𝑛
2+8𝑛𝐾𝑖

2𝐾𝑖

2𝑛𝜆̂𝑛−√4𝑛
2𝜆̂𝑛

2+8𝑛𝐾𝑖

2𝐾𝑖

 ,  

 

𝜔𝑛
2̂ = √

𝜆̂𝑛
2−𝜆̂𝑛

2𝛽𝑛̂
2 .  

 

Such that 
𝜆̂𝑛
2−𝜆̂𝑛

2𝛽𝑛̂
2 > 0 

 

And 𝛽̂𝑛 is a maximum likelihood estimator defined as any solution 

of   ℒ𝑛(𝛽̂𝑛) = 𝑠𝑢𝑝
𝜓∈𝛩

ℒ𝑁(𝜓).  

The second derivatives of   ℒ𝑁(𝜓)  with respect to the paramters 

is as follow: 

 
𝜕2

𝜕𝜆2
ℒ𝑛(𝜓) = ∑ [

−2𝑀𝑖

1−2𝜔2𝑀𝑖
+

1

𝜔2(1−2𝑀𝑖𝜔
2)
] 𝑛

𝑖=1   

 

= ∑ [
1−2𝑀𝑖𝜔

2

𝜔2(1−2𝑀𝑖𝜔
2)
] 𝑛

𝑖=1   

 

 =
𝑛

𝜔2
 ,                                                                                           (8) 

 
𝜕2

𝜕𝜔2𝜕𝜔2
ℒ𝑛(𝜓) = ∑

𝜆2−𝜆

(𝜔2)3
𝑛
𝑖=1  ,                                                        (9) 

 
𝜕2

𝜕𝛽2
ℒ𝑛(𝜓) = ∑ [2𝜔2 −

1

𝑀𝑖
]𝑛

𝑖=1                                                     (10) 

 
𝜕2

𝜕𝜆𝜕𝜔2
ℒ𝑛(𝜓) =

𝑛(1−2𝜆)

2(𝜔2)2
 =

𝜕2

𝜕𝜔2𝜕𝜆
ℒ𝑁(𝜓)                                    (11)      

 
𝜕2

𝜕𝜆𝜕𝛽
ℒ𝑁(𝜓) =

𝜕2

𝜕𝛽𝜕𝜆
ℒ𝑁(𝜓) = 𝑛 ,  

 

 
𝜕2

𝜕𝜔2𝜕𝛽
ℒ𝑛(𝜓) =

𝜕2

𝜕𝛽𝜕𝜔2
ℒ𝑛(𝜓) = 𝑛𝛽 .                                        (12) 

 

And the information matrix 

𝐼(𝜓) =

−

(

 
 
 
 
𝐸𝜓 (

𝜕2

𝜕𝜆2
ℒ𝑛(𝜓)) 𝐸𝜓 (

𝜕2

𝜕𝜆𝜕𝜔2
ℒ𝑛(𝜓)) 𝐸𝜓 (

𝜕2

𝜕𝜆𝜕𝛽
ℒ𝑛(𝜓))

𝐸𝜓 (
𝜕2

𝜕𝜔2𝜕𝜆
ℒ𝑛(𝜓)) 𝐸𝜓 (

𝜕2

𝜕𝜔2𝜕𝜔2
ℒ𝑛(𝜓)) 𝐸𝜓 (

𝜕2

𝜕𝜔2𝜕𝛽
ℒ𝑛(𝜓))

𝐸𝜓 (
𝜕2

𝜕𝛽𝜕𝜆
ℒ𝑛(𝜓)) 𝐸𝜓 (

𝜕2

𝜕𝛽𝜕𝜔2
ℒ𝑛(𝜓)) 𝐸𝜓 (

𝜕2

𝜕𝛽2
ℒ𝑛(𝜓))

)

 
 
 
 

,  (13) 

 

Is the covariance matrix of the vector 

 

(

 
 

𝜕

𝜕𝜆
ℒ𝑛(𝜓)

𝜕

𝜕𝜔2
ℒ𝑛(𝜓)

𝜕

𝜕𝛽
ℒ𝑛(𝜓) )

 
 
.  

 

We need the following additional assumptions to prove the as-

ymptotic properties: 

H4 The parameter set 𝛩 is a compact subset of   ℝ×ℝ ×ℝ+. 

H5 The true value 𝜓0 belongs to   𝛩𝑜. 

H6 The matrix 𝐼(𝜓0) is invertible. 

4. Asymptotic properties of the Bayesian pos-

terior distribution 

4.1. Consistency of the Bayesian posterior  

We consider the theorem 7.80 of schervish (1995) [14] and verify 

the regularity conditions in this theorem for our purpose with sup-

pose that 𝛺 is compact. 

 

Theorem 1: [14]: Let {𝑥𝑛}𝑛=1
∞  be conditionally 𝑖. 𝑖. 𝑑 given 𝜃 with 

density 𝑓1(𝑥|𝜃) with respect to a measure 𝑣 on a space(𝜒1, ℬ1). 
Fix 𝜃𝜊 ∈ 𝛺 , and define, for each 𝑀 ⊆  𝛺 and 𝑥 ∈ 𝜒1, 

 

𝑍(𝑀, 𝑥) = 𝑖𝑛𝑓
𝛼∈𝑀

𝑙𝑜𝑔
𝑓1(𝑥|𝜃𝜊)

𝑓1(𝑥|𝛼)
.  

 

Assume that for each 𝜃 ≠ 𝜃𝜊 , there is an open set 𝑁𝜃  such that 

𝜃 ∈ 𝑁𝜃 and that 𝐸𝜃𝜊𝑍(𝑁𝜃 , 𝑋𝑖) > −∞ . 

Also assume that  𝑓1(𝑥|.)  is continuous at 𝜃  for every  𝜃 , a.s. 

[𝑃𝜃𝜊].For∈> 0, defin𝐶∈ = {𝜃:𝐾1(𝜃𝜊, 𝜃)  <∈}, where 

 

𝐾1(𝜃𝜊, 𝜃) = 𝐸𝜃𝜊 (𝑙𝑜𝑔
𝑓1(𝑋1|𝜃𝜊)

𝑓1(𝑋1|𝜃)
),  

 

Is the kullback-leibler divergence measure associated with obser-

vation 𝑋1.let 𝜋 be a prior distribution such that   𝜋(𝐶∈) > 0, for 

every ∈> 0.Then for every ∈> 0 and open set 𝑁0 containing  𝐶∈ , 

the posterior satisfies  

 

𝑙𝑖𝑚
𝑛→∞

𝜋(𝑁0|𝑋1, … , 𝑋𝑛) = 1 , a.s. [𝑃𝜃𝜊].                                          (14) 

 

In our purpose we investigate the conditions in the theorem above 

as follow:  

We note that for any, 𝑓1(𝑥|𝜓) = 𝛾1(𝑥, 𝜓) = 𝛾(𝑥, 𝜓) , Which is 

clearly continuous in 𝜓, so for every 𝜓 ≠ 𝜓𝜊 we get: 

 

𝑙𝑜𝑔
𝑓1(𝑥|𝜓𝜊)

𝑓1(𝑥|𝜓)
= 𝑙𝑜𝑔

𝛽0

𝛽
−
1

4

(𝛽0(1−2𝜔0
2𝑀𝑖)−2𝜆0𝑀𝑖)

2

𝑀𝑖(1−2𝜔0
2𝑀𝑖)

  

 

+
𝜆0−
2 𝜆0(1−2𝜔0

2𝑀𝑖)

2𝜔0
2(1−2𝜔0

2𝑀𝑖)
+
1

4

(𝛽(1−2𝜔2𝑀𝑖)−2𝜆𝑀𝑖)
2

𝑀𝑖(1−2𝜔
2𝑀𝑖)

  

 

+
𝜆2−𝜆(1−2𝜔2𝑀𝑖)

2𝜔2(1−2𝜔2𝑀𝑖)
  

 

= 𝑙𝑜𝑔
𝛽0

𝛽
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−
1

4
(
𝛽0
2(1−2𝜔0

2𝑀𝑖)
2
−4𝛽0𝜆0𝑀𝑖(1−2𝜔0

2𝑀𝑖)+4𝜆0
2𝑀𝑖

2

𝑀𝑖(1−2𝜔0
2𝑀𝑖)

)  

 

+
𝜆0
2

2𝜔0
2(1−2𝜔0

2𝑀𝑖)
−

𝜆0

2𝜔0
2  

 

+
1

4
(
(𝛽2(1−2𝜔2𝑀𝑖)

2−4𝛽𝜆𝑀𝑖(1−2𝜔
2𝑀𝑖)+4𝜆

2𝑀𝑖
2)
2

𝑀𝑖(1−2𝜔
2𝑀𝑖)

)  

 

+
𝜆2

2𝜔2(1−2𝜔2𝑀𝑖)
−

𝜆

2𝜔2
.  

= 𝑙𝑜𝑔
𝛽0

𝛽
−
1

4

𝛽0
2(1−2𝜔0

2𝑀𝑖)

𝑀𝑖
+ 𝛽0𝜆0 −

𝜆0
2𝑀𝑖

1−2𝜔0
2𝑀𝑖

  

 

+
𝜆0
2

2𝜔0
2(1−2𝜔0

2𝑀𝑖)
−

𝜆0

2𝜔0
2 +

1

4

𝛽2(1−2𝜔2𝑀𝑖)

𝑀𝑖
− 𝛽𝜆  

 

+
𝜆2𝑀𝑖

1−2𝜔2𝑀𝑖
+

𝜆2

2𝜔2(1−2𝜔2𝑀𝑖)
−

𝜆

2𝜔2
  

 

= 𝑙𝑜𝑔
𝛽0

𝛽
−
1

4
(
𝛽0
2(1−2𝜔0

2𝑀𝑖)

𝑀𝑖
−
𝛽2(1−2𝜔2𝑀𝑖)

𝑀𝑖
)  

 

−(
𝜆0
2𝑀𝑖

1−2𝜔0
2𝑀𝑖

−
𝜆2𝑀𝑖

1−2𝜔2𝑀𝑖
)  

 

+(
𝜆0
2

2𝜔0
2(1−2𝜔0

2𝑀𝑖)
+

𝜆2

2𝜔2(1−2𝜔2𝑀𝑖)
)  

 

−(𝛽𝜆−𝛽0𝜆0) − (
𝜆0

2𝜔0
2 −

𝜆

2𝜔2
).  

 

= 𝑙𝑜𝑔
𝛽0

𝛽
−
1

4

𝛽0
2

𝑀𝑖
+
1

2
 𝜔0

2𝛽0
2 −

𝛽2

𝑀𝑖
+ 2𝛽2𝜔2  

 

+
𝜆0
2(1−2𝜔0

2𝑀𝑖)

2𝜔0
2(1−2𝜔0

2𝑀𝑖)
+

𝜆2(1−2𝜔2𝑀𝑖)

2𝜔2(1−2𝜔2𝑀𝑖)
− (𝛽𝜆−𝛽0𝜆0)  

 

− (
𝜆0

2𝜔0
2 −

𝜆

2𝜔2
)  

 

= 𝑙𝑜𝑔
𝛽0

𝛽
−
1

4

𝛽0
2

𝑀𝑖
+
1

2
 𝜔0

2𝛽0
2 −

𝛽2

𝑀𝑖
+ 2𝛽2𝜔2  

 

−(𝛽𝜆−𝛽0𝜆0).  
 

We note that  𝐸𝜓𝜊𝑙𝑜𝑔
𝛽0

𝛽
 , 𝐸𝜓𝜊 (

1

2
 𝜔0

2𝛽0
2) ,  𝐸𝜓𝜊(2𝛽

2𝜔2)  and 

𝐸𝜓𝜊(𝛽𝜆−𝛽0𝜆0) are finite. Under H3,  𝐸𝜓𝜊 (
1

4

𝛽0
2

𝑀𝑖
) and 𝐸𝜓𝜊(

𝛽2

𝑀𝑖
) are 

also finite, and by assume that  𝑁𝜓 = (𝜆, 𝜆) × (𝜔
2, 𝜔2) × (𝛽, 𝛽) , 

follows that   𝐸𝜓𝜊𝑍(𝑁𝜓, 𝑋𝑖) > −∞. 

Now we must prove there exists a prior 𝜋 such that it's gives posi-

tive probability to 𝐶∈ for every   ∈> 0 . 

As we know, the kullback equal zero if and only if   𝜓 = 𝜓𝜊 , then 

for any   ∈> 0 , the set 𝐶∈ is non-empty provided that 𝛺\{𝜓𝜊} is 

non-empty. From the above we see that  𝐾1(𝜓𝜊, 𝜓) is continuous 

in 𝜓 (see [6]), and since the parameter space 𝛺 is compact , then 

from the properties of real analyses it is clear that 𝐾1(𝜓𝜊, 𝜓) is 

uniformly continuous on 𝛺, that is mean , for any ∈> 0 , there 

exist 𝛿𝜖 such that 

 
‖𝜓 − 𝜓𝜊‖ ≤ 𝛿𝜖 Implies 

 

|𝐸𝜓𝜊(𝑙𝑜𝑔𝑓1(𝑋1|𝜓𝜊)) − 𝐸𝜓𝜊(𝑙𝑜𝑔𝑓1(𝑋1|𝜓))| <∈, 

 

Then,    𝐾1(𝜓𝜊, 𝜓) <∈.  

 

Hence, 

 

 𝜋(𝐶∈) ≥ 𝜋({𝜓: ‖𝜓 − 𝜓𝜊‖ ≤ 𝛿𝜖}) 

 ≥ [𝑖𝑛𝑓{𝜓:‖𝜓−𝜓𝜊‖≤𝛿𝜖} 𝑔(𝜓)] × 𝑣({𝜓: ‖𝜓 − 𝜓𝜊‖ ≤ 𝛿𝜖})  

 > 0.  

 

So, we obtain that (14) holds with any prior with continuous den-

sity with respect to the Lebesgue measure. 

4.2. Asymptotic normality of the Bayesian posterior 

To verify Asymptotic normality of the posterior distribution, we 

investigate the conditions in the next theorem provided in ([14], 

Theorem 7.102).We use the notations: 

𝑙𝑛(𝜃) = 𝑙𝑜𝑔𝑓𝑛(𝑋𝑛|𝜃) , 𝑙𝑛
′′(𝑡) = ((

𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
𝑙𝑛(𝜃)|

𝜃=𝑡

))               (15) 

 

And let  

 

𝛴𝑛 = {
−𝑙𝑛

′′−1(𝜃𝑛) 𝑖𝑓 𝑡ℎ𝑒 𝑖𝑛𝑣𝑒𝑟𝑠 𝑎𝑛𝑑 𝜃𝑛 𝑒𝑥𝑖𝑠𝑡 

𝕝𝑑  𝑖𝑓 𝑛𝑜𝑡,
                        (16) 

 

And 𝕝𝑑 is the identity matrix of order   𝑑. Notice that 𝛴𝑛
−1 is the 

observed fisher information matrix. We need to investigate the 

following regularity conditions: 

1) The parameter space is 𝛺 ⊆ ℝ𝑑 for some finite   𝑑. 

2) 𝜃0 Is a point interior to   𝛺 . 

3) The prior distribution of 𝛩  has a density with respect to 

Lebesgue measure that is positive and continuous at 𝜃0. 

4) There exists a neighborhood 𝑁0 ⊆ 𝛺  of 𝜃0  on which 

 𝑙𝑛(𝜃) = 𝑙𝑜𝑔𝑓(𝑋1, … , 𝑋𝑛|𝜃) is twice continuously differen-

tiable with respect to all coordinates of, a.s. [𝑃𝜃0]. 

 

Theorem 2: [15]: Let {𝑋𝑛}𝑛=1
∞  be conditionally 𝑖. 𝑖. 𝑑 given   𝜃. 

Assume the above regularity conditions; and suppose that there 

exist 𝐻𝑟(𝑥, 𝜃) such that, for each 𝜃0 ∈ 𝑖𝑛𝑡(𝛺) and each  𝑗 ,  
 

𝑠𝑢𝑝
‖𝜃−𝜃0‖≤𝑟

 |
𝜕2

𝜕𝜃𝑘𝜕𝜃𝑗
𝑙𝑜𝑔 𝑓𝑋1|𝛩 (𝑥|𝜃0) −

𝜕2

𝜕𝜃𝑘𝜕𝜃𝑗
𝑙𝑜𝑔 𝑓𝑋1|𝛩 (𝑥|𝜃)| ≤ 

                                                                                   𝐻𝑟(𝑥, 𝜃0)   (17) 

 

With, 

 

𝑙𝑖𝑚
𝑟→0

𝐸𝜃0𝐻𝑟(𝑋, 𝜃0) = 0.                                                                 (18) 

 

And suppose that the conditions of theorem 1 hold, and that the 

fisher information matrix 𝐼(𝜃0) is positive definite. Define 𝑙𝑛
′′ as in 

(15), and 𝛴𝑛 be defined by (16). 

Let  𝛤𝑛 = 𝛴𝑛
−
1

2(𝜃 − 𝜃𝑛) . Then for each compact subset E of ℝ𝑑 

and each  ∈> 0 , the posterior density of 𝛤𝑛 given 𝑋𝑛 converges in 

probability to the standard normal distribution with density  𝜙(. ) , 
which is mean: 

 

𝑙𝑖𝑚 𝑃𝜃0
𝑛→∞ 

( 𝑠𝑢𝑝
𝛤∈𝐸

|𝜋(𝛤|𝑋1, … , 𝑋𝑛) − 𝜙(𝛤) | >∈) = 0                      (19) 

 

Now we want to investigate the regularity conditions and the con-

ditions of the above theorem in our case: 

It easy to see that the first condition in the regularity conditions is 

trivial. From assumption H5, the second condtion holds, and from 

the conditions of theorem 1 above, the third condition holds. The 

differentiation can be passed under the integral sign (see [7], proof 

of proposition 5).from(8),(9),(10),(11) and (12),we deduce that 
𝜕2

𝜕𝜓𝑘𝜕𝜓𝑗
𝑙𝑜𝑔 𝑓𝑋1|𝛩 (𝑥|𝜓) is differentiable in 𝜓 = (𝜆,𝜔2, 𝛽) , that is 

means the fourth condition holds. From remark (3.1)   , the deriva-

tives has finite expectation, Hence (17) and (18) holds, we obtain 

that the information matrix 𝐼(𝜓) is finite, and from H6, 𝐼(𝜓) is 

invertible, hence (19) holds. 
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5. Conclusion 

 

We depend on SDE with random effects model framework and 

consider the nonlinearity assumption in the diffusion function 

given by σ(𝑥, ∅𝑖 , 𝜇𝑖) = (∅𝑖 + 𝜇𝑖)
−1 𝜎(𝑥)  where ∅𝑖  are supposed 

to be Gaussian random variables with mean 𝜆 and variance  𝜔2 , 

and 𝜇𝑖  to be exponential random variables with parameter𝛽 . A 

closed form expression of the likelihood of the parameters of the 

𝑖. 𝑖. 𝑑 random effects and the maximum likelihood estimator are 

obtained. We proved posterior consistency and asymptotic poste-

rior normality of the estimators by using the classical asymptotic 

theory of the Bayesian framework. 

References 

[1] Y. Aït‐Sahalia, Maximum Likelihood Estimation of Discretely 

Sampled Diffusions: A Closed‐form Approximation Ap-

proach, Econometrica 70, no. 1 (2002), 223-262. 
http://dx.doi.org/10.1111/1468-0262.00274. 

[2] W.K, Alkreemawi, M. S. Alsukaini, and X.J. Wang, On Parameters 

Estimation in Stochastic Differential Equations with Additive Ran-
dom Effects, journal of advances in mathematics, 11, no.3 (2015), 

5018-5028.  

[3] S. Beal and L. Shiner, Estimating population kinetics, Critical Re-
views in Biomedical Engineering, 8 (1982), 195 - 222. 

[4] M. Delattre and M. Lavielle, Coupling the SAEM algorithm and the 

extended Kalman filter for maximum likelihood estimation in 
mixed-effects diffusion models, Statistics and Its Interface, 6 

(2013), 519 - 532. http://dx.doi.org/10.4310/SII.2013.v6.n4.a10. 

[5] M. Delattre, V. Genon-Catalot, and A. Samson, Estimation of 
population parameters in stochastic differential equations with ran-

dom effects in the diffusion coefficient, Preprint MAP, 5 (2014), 

2014 - 07. 
[6] M. Delattre, V. Genon-Catalot, and A. Samson, Maximum likeli-

hood estimation for stochastic differential equations with random 

effects, Scandinavian Journal of Statistics, 40 (2012), 322 - 343. 
http://dx.doi.org/10.1111/j.1467-9469.2012.00813.x. 

[7] S. Donnet and A. Samson, A review on estimation of stochastic dif-
ferential equations for pharmacokinetic-pharmacodynamics models, 

Advanced Drug Delivery Reviews, 65 (2013), 929 - 939. 
http://dx.doi.org/10.1016/j.addr.2013.03.005. 

[8] S. Gugushvili and P. Spreij, Parametric inference for stochastic dif-

ferential equations: a smooth and match approach, ALEA, Lat. Am. 

J. Probab. Math. Stat. 9 (2), (2012), 609–635. 
[9] R. S. Liptser, and A. N. Shiryaev, Statistics of Random Prcesses I. 

General Theory, 2nd edition. Springer-Verlag, Berlin, Heidelberg, 

(2001). 
[10] T. Maitra and S. Bhattacharya, On asymptotic related to clasical 

inference in stochastic differential equations with random effects, 

ArXiv: 1407.3968v1, (2014), 1 - 12.  

[11] T. Maitra and S. Bhattacharya. On Bayesian Asymptoics in Sto-

chastic Differential Equations with Random Effects. Statistics and 

Probability Letters. (2015). to appear. Avaible at 
“http://arxiv.org/abs/1407.3971”. 

[12] U. Picchini and S. Ditlevsen, Practical estimation of high dimen-

sional stochastic differential mixed-effects models, Computational 
Statistics & Data Analysis, 55 (2011), 1426 - 1444. 
http://dx.doi.org/10.1016/j.csda.2010.10.003. 

[13] U. Picchini, A. De Gaetano, and S. Ditlevsen, Stochastic differen-
tial mixed-effects models, Scand. J. Statist., 37 (2010), 67 – 90. 

http://dx.doi.org/10.1111/j.1467-9469.2009.00665.x. 

[14] M. J. Schervish, Theory of Statistics, Springer-Verlag, New York. 
(1995). http://dx.doi.org/10.1007/978-1-4612-4250-5. 

http://dx.doi.org/10.1111/1468-0262.00274
http://dx.doi.org/10.4310/SII.2013.v6.n4.a10
http://dx.doi.org/10.1111/j.1467-9469.2012.00813.x
http://dx.doi.org/10.1016/j.addr.2013.03.005
http://dx.doi.org/10.1016/j.csda.2010.10.003
http://dx.doi.org/10.1111/j.1467-9469.2009.00665.x
http://dx.doi.org/10.1007/978-1-4612-4250-5

