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Abstract 
 

A two-phase steady-state model for the percolation of aqueous humor through the trabecular meshwork (TM) in eye has been developed. 

The model treats the meshwork as an annular porous cylinder comprised of two concentric rings that represent the uveal-corneoscleral 

meshwork and juxtacanalicular meshwork. Both the rings are assumed to be made up of homogeneous, isotropic, viscoelastic material 

swollen with continuously flowing aqueous humor through the tissue with different structural properties. The model incorporates a 

strain-dependent permeability function. An analytical solution to the mathematical model has been obtained and the expressions for the 

displacement and fluid pressure distributions have been derived. The computational results for the displacement in solid phase, the fluid 

pressure distribution and the dilatation of the ocular tissue material have been presented through the graphs. The effects of structural 

model parameters on the displacement and the dilatation have also been investigated. 
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1. Introduction 

Vision loss in most forms of glaucoma is related to elevated intra-

ocular pressure (IOP) with subsequent injury to the optic nerve. In 

humans, 75% of the resistance to the aqueous humor outflow is 

localized in the TM. The major site of resistance within the TM 

structure has not yet been well characterized. It has been sug-

gested by some studies [6, 22] that it resides in the juxtacanalicu-

lar matrix. A basic concept that impairment in/obstruction to the 

aqueous humor outflow and its subsequent accumulation in the 

anterior chamber results in elevation of IOP which is a characteris-

tic of open-angle glaucoma, is a central tenet in glaucoma pathol-

ogy and treatment. The most of current therapeutic procedures to 

treat glaucoma seek to lower IOP by decreasing aqueous humor 

outflow resistance residing in the TM (conventional) pathway, and 

are, therefore, directed towards the increasing aqueous outflow by 

opening existing drainage pathways or by creating new flow 

pathways or by some mechanisms that are not completely clear. 

Thus, identifying the principle site of the outflow resistance in the 

trabecular meshwork pathway and understanding the complex 

mechanisms that regulate aqueous humor outflow resistances is 

essential for improved management of glaucoma. 

The TM is one of the main ocular structures related to aqueous 

humor dynamics and one of the principal locations of aqueous 

outflow. It is a triangular porous structure in cross-section that 

consists of connective tissue surrounded by endothelium. TM can 

be divided in three components: uveal meshwork (UM), corneos-

cleral meshwork (CSM) and juxtacanalicular meshwork (JCM). 

The UM forms the lateral border of the anterior chamber. It con-

sists of bands of connective tissue with irregular openings that 

measure between 25 to 75 m . The CSM is the most extensive 

portion of the TM. It is composed of perforated sheets that become 

progressively smaller nearing SC. It is organized into four concen-

tric layers viz. from within outwards connective tissue with colla-

gen fiber layer, elastic fiber layer, “glass membrane” layer and 

endothelial layer. The outermost part of the TM, composed of a 

layer of connective tissue lined on either side by endothelium, is 

called the JCM. JCM is believed to be the source of majority of 

the outflow resistance. The central connective tissue layer has 

variable thickness and is non-fenestrated and the outer endothelial 

layer comprises the inner wall of canal of Schlemm. The uveal and 

corneoscleral meshwork, that make up the trabecular meshwork, 

are highly porous structures with numerous openings that range in 

size from 25-75 m in the proximal regions of the uveal mesh-

work to 2-15 m  in the deeper layers of the corneoscleral mesh-

work. 

 

 
Fig.1: Structure of Trabecular Meshwork. 

 

In addition to the experimental investigations of the aqueous flow 

phenomenon, the modeling and simulation of the outflow of AH 

through the TM, may contribute to the elucidation of the mechan-
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ism of outflow resistance increase in normal and glaucomatous 

eyes. In view of this, there is a need to develop more realistic ma-

thematical models for the outflow of AH through the TM and 

simulate the outflow phenomenon. Poiseuille flow [15] models as 

well as various empirical models have been applied to describe 

aqueous flow through the trabecular meshwork. The concept of 

the convectional aqueous outflow pathway was modeled as tubes 

with leaky walls and a network of electrical resistances by Moses 

et al. [18]. Ethier et al. [6] developed a model based on the analy-

sis of the effect of gel-concentration on the JCM resistance to 

outflow, but they did not focus on the flow field and related IOP. 

Tandon and Avtar [23] presented a biphasic continuum model for 

aqueous flow through the meshwork and concluded that the IOP 

has a permeability-decreasing effect, whereas the elasticity of the 

meshwork shows a permeability-increasing effect. A simple ma-

thematical model of aqueous outflow through the trabecular 

meshwork to provide an estimate of effect of IOP on the flow 

characteristics of the aqueous humor proposed by Avtar and Sri-

vastava [3]. 

The work presented in this paper is concerned with the develop-

ment of a two-phase model for the aqueous humor outflow 

through the trabecular meshwork. The TM is modeled as an annu-

lar cylinder and is comprised of two concentric rings that represent 

uveal-corneoscleral meshwork and juxtacanalicular meshwork. 

Analytical solution to the mathematical model has been obtained 

and the expressions for flow-characteristics have been derived. 

The computational results have been presented through graphs. 

In the previous models, the TM has been represented as a single 

annular region of homogenous matrix and effects of the structural 

parameters have not been investigated. In our model, the TM is 

treated as an annular cylinder with two adjoining rings of different 

mechanical and hydraulic properties. 

2. Model development 

The TM is represented as an annular cylinder with a large central 

cavity which represents the anterior chamber (AC). The annular 

region is split into two adjoining rings. The outer annular region 

corresponds to the juxtacanalicular meshwork, the inner annular 

region to the uveal-corneoscleral meshwork. The two regions 

mechanically interact at their interface. The uveal-corneoscleral 

meshwork and juxtacanalicular meshwork of the TM are modeled 

as a two-phase medium composed of a porous elastic matrix satu-

rated with aqueous fluid. 

IOP is the loading force to which the outflow system normally 

responds under the action of an external load (IOP). The deforma-

tion of TM treated as porous solid filled with fluid is accompanied 

by fluid flow through porous medium. The model of TM is devel-

oped by incorporating the coupled dynamical viscous interaction 

between the fluid flow and the mechanical deformation of the TM 

tissue. 

 
 

Fig. 2: Proposed Schematic Model of Trabecular Meshwork. 

2.1. Assumptions 

The TM is comprised of two different isotropic, homogenous, 

porous, deformable matrices swollen with continuously flowing 

aqueous humor. The permeability of the meshwork is a function of 

the dilatation. Only the fluid mechanical aspects of aqueous flow 

phenomenon are considered. Both the constituents of the system 

are isothermal. The aqueous fluid and solid matrix are intrinsically 

incompressible. Inertial and body forces are neglected and diffu-

sional couples do not exist. The displacement of the tissue de-

pends only on radial position. Aqueous flow is steady, slow, lami-

nar, Newtonian, viscous and incompressible. The protein accumu-

lation, the mascular contraction, the nervous control and the cil-

liary muscle traction are neglected. Due to the fluid motion in the 

lumen, the axial wall shear stress is negligible in comparison to 

other stresses acting on the wall.  

2.2. Governing equations 

The balances of mass and linear momentum over a small volume 

element of a saturated porous material undergoing deformation 

due to fluid flow results in the following equations for each phase 

 ( s   for solid and f for fluid) [4, 11]. 
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where n ,  ,v   are volume fraction, intrinsic mass density, and 

velocity of phase  ,respectively.  and 
b  denote stress tensor 

and density of external body forces. m  and 
R  are rate of mass 

and linear momentum exchange between the two phases. Besides, 

for a closed mass system, the equations must satisfy the relations: 

 

0,s fm m                                                              (3) 

 

0.s f R R                                                             (4) 

 

In view of the assumptions: the steady-state flow behavior, the 

negligible inertial forces, no mass exchange allowed between 

phases, negligible/zero solid velocity and a constant intrinsic den-

sity of the fluid, the system of four balance eqns. (1) and (2) are 

simplified and rearranged using conditions (3) and (4) to the fol-

lowing steady-state form: 

 

. 0,q                                                                     (5) 

 

.( ) 0,s f                                                             (6) 

 

. 0,f fR                                                             (7) 

 

where f fq n v  is the rate of volumetric flow. 

The stress state, for small deformations of an isotropic material, is 

described by the equations [1]. 

 
f np   I,                                                                (8) 

 
' 2 ,s f
v p tr        I e e I                                      (9) 

where ( )fn n  is the porosity of the material, p the pore fluid 

pressure, '
v is called the effective stress,  and  are the Lame 

constants of the meshwork, and the small strain tensor e is related 

to the displacement of the solid matrix, u by 
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The interaction force, f
R  for the steady flow of fluid through 

porous material [4] is given by 

 

,
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R q
                                                 

(11) 

 

where f  is the dynamic viscosity of the fluid, and k, the intrin-

sic permeability of the solid. In R.H.S., the first term represents 

viscous interaction of fluid with solid matrix, and the second term 

the buoyancy force due to the variable volume fraction of phases. 

Following studies [13] we utilize the following relationship be-

tween the permeability of the meshwork material and strain 

 

 1 1
0 1 ,k k M tr   e

                                                 
(12) 

 

where 0k  is the permeability and M is the material constant of the 

trabecular meshwork and tr e is the dilatation which, in cylindrical 

coordinates, is given by  

 

.
du u

tr
dr r

 e

                                                           
(13) 

 

This expression is a small-strain approximation to 

0 exp( )k k M tr e proposed by Lai and Mow [13] for cartilage. 

Using the constitutive functions defined by relations (8)-(13) and 

assuming the dependence of the fluid velocity, fluid pressure and 

solid displacement on the radial coordinates only, equations (5)-

(7) are reduced to the following system of equations:
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2.3. Boundary and matching conditions 

The effective stress at the inner (anterior chamber) surface of the 

ring is prescribed equal to zero and the displacement of the solid 

and the fluid pressure at the outer boundary is assumed equal to 

zero and discharge velocity of the fluid is prescribed as a constant 

Q. 
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iii) 1 20 , 0 , .u p q Q for r R H H     
              (19)

 

 

Matching conditions in eq. (18) represent continuity requirements 

for the displacement of the solid matrix, the mass flux of fluid, 

pore pressure and the effective stress at the interface between the 

two rings. 

 

The conditions prescribed in eq. (17) and (19) serve as the boun-

dary conditions at the inner and outer boundaries for a single ring 

model of the trabecular meshwork.  

 

2.4. Dimensionless scheme 

The governing eqns. (14)-(16) and boundary conditions (17)-(19) 

are converted into the normalized form using the following non-

dimensional variables. 
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The non-dimensional equations and boundary conditions are as 

given below (dropping bars for convenience). 
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Using eq. (10) and (13) in eq. (9) the resulting relation in dimen-

sionless form is given below: 
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2.5. Solution to the model 

Integrating eq. (20) we have, 
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where 1C  is an integration constant. Now substitution of eqns. 

(22) and (27) into eq. (21) leads to the following non-

homogeneous differential equation with variable coefficients: 
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where the group parameters, 
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The solution of eq. (28) can be found as the sum of the general 

solution of the homogeneous equation (of the Cauchy-Euler type), 

hu , and of a particular solution of the non-homogeneous equa-

tion, nu  (see, e.g., [19]). The solution is given by 
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where 2C  and 3C  are integration constants, and 1v and 2v  are the 

roots of the algebraic equation 2 ( 1) 0v B v C    . 

Using solutions (27) and (30) in eq. (22) and then integrating the 

resulting equation, we finally obtain the expression for the radial 

distribution of the fluid pressure: 
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where 4C  is the fourth integration constant of the boundary value 

problem.  

Subjecting the expressions of q, u and p in eqns. (27), (30) and 

(31), respectively, to the boundary and matching conditions, the 

integration constants are determined and are given below: 
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2.5.2. For double ring model 
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   

  

, 

 

 

18

U U

U
A

M

 
 

,                         

    1 1
19 1 12

JvJ J J JA v R  
   

  
,  

    2 1
20 2 12

JvJ J J JA v R  
   

  
,                          

21

J J

J
A

M

 
 

 , 

 

 22 12 U U U UA v     
  

, 

 

 23 22 U U U UA v     
  

 

3. Results and discussion 

The small-strain solutions given by eqns. (27), (30), and (31) may 

be used to quantify the hydro mechanical behavior of the TM.  
The elastic properties of the material are specified by the Young’s 

modulus, E, and Poisson’s ratio,  . The lame constants  and  , 

defining the elastic properties of the meshwork, are related to the 

parameters by: 

 

                   
 2 1

E



  

,        
  

.
1 1 2

E
 


   

 
Computational results have been obtained for the proposed model 

by introducing estimated values of the physiological parameters 

listed in Table 1.  

 

Table 1:  

 

Control    Description         Typical  

Parameters                 physiological value* 

 

R Radius of the anterior chamber          35.62 10 m  

Q Characteristic velocity of   6 13.03 10 ms 

 
aqueous fluid  

E Elastic modulus of the meshwork       5 24.5 10 Nm 
 

  Poisson’s ratio   0.35  

M Material constant   - 4.5 

H Thickness of the trabecular   30.01 10 m  

meshwork  
 

1H  Thickness of the uveal-  
57.868 10 m  

corneoscleral meshwork  

2H  Thickness of the juxtacanalicular  
52.248 10 m  

meshwork  
 

f  Dynamic viscosity of aqueous             31.0 10 Pas  

humor   
 

0k  Permeability of the trabecular             12 21.99 10 m  

meshwork   

0
J

k  Permeability of the JCM  13 21.99 10 m

    

0
U

k  Permeability of the UCM  11 21.99 10 m

    
 

*Estimated and used by Tandon and Avtar [23]. 

 

The distribution of solid displacement in the trabecular meshwork 

has been displayed in Fig.3. It is observed from the graph that the 

displacement decreases along radial distance. The decrease in the 

displacement in the UCM is insignificant whereas the displace-

ment decrease sharply in the JCM. The outflow of aqueous humor 

through the trabecular meshwork occurs under the pressure diffe-

rential across the meshwork. The interaction between the flowing 

aqueous humor and the solid matrix of the porous meshwork gives 

rise deformation in the matrix. The juxtacanalicular meshwork is 

structurally stiffer than the uveal-corneoscleral meshwork. The 

displacements in solid matrix near the AC surface are higher than 

that away the AC surface. The above observation is supported by 

this fact. The change in solid displacement for a single ring model 

is relatively very small as compared to the same for a double ring 

model. 

 
 

 
 

Fig. 3: Radial Displacement vs. Distance for Single and Double Ring 

Model on Displacement  

 

The effects of two structural parameters in the model: the Pois-

son’s ratio and elastic modulus on the solid displacement have 

been depicted in Fig.4(A) and Fig.4(B), respectively. As is evident 

from the curves in these figures, an increase in both the Poisson’s 

ratio and elastic modulus reduces the solid displacement. An in-

crease in the Poisson’s ratio is caused by an increase in lateral 

contraction or a decrease in elongation in the direction of the ap-

plied strain or by both. Therefore, an increase in the Poisson’s 

ratio reduces the displacement. 

 

 

 
 

Fig. 4(A): Radial Displacement vs. Distance from AC Surface for Differ-
ent Poisson's Ratios. 

 



International Journal of Applied Mathematical Research 115 

 
As is observed from the curves in Fig.4(B), the displacement is 

reduced with an increase in the elastic modulus of the meshwork. 

Due to a higher elastic modulus, the matrix offers a higher resis-

tance to being it deformed which results in a decreased displace-

ment in the solid phase. 

 

 

 
 

 

Fig. 4(B): Radial Displacement vs. Distance from AC Surface for Differ-
ent Elastic Moduli. 

 

 

It is evident from the curves in Fig.4(C) that the solid displace-

ment in the trabecular tissue is reduced with a reduction in the 

value of material constant M. A decrease in the values of material 

constant M increases the permeability of the meshwork which 

facilitates the outflow in the meshwork. This results in reduced 

displacement. 

 

 

 
 

 

Fig. 4(C): Radial Displacement vs. Distance from AC Surface for Differ-

ent Values of Material Constant. 

 

 

The distribution of dilatation which represents aqueous humor 

fluid content in the trabecular meshwork has been shown in Fig.5. 

It is evident from the curves in Fig.5 that dilatation of the ocular 

tissue decrease sharply along radial displacement from the anterior 

chamber towards the canal of Schlemm. The UCM is highly por-

ous structure and the JCM is less porous. The content of aqueous 

humor in the UCM is more than that in the JCM. The dilatation 

decreases with decrease in the porosity along the radial distance. 

The change in dilatation for the single ring model is insignificant 

as compared to the same for the double ring model. 

 

 
 

Fig. 5:  Dilatation vs. Distance for Single and Double Ring Model. 

 

The effects of Poisson’s ratio and elastic modulus of the mesh-

work on the dilatation have been shown in Figs.6(A) and 6(B) 

respectively. An increase in both the Poisson’s ratio and elastic 

modulus cause decrease in the radial displacement which result 

decrease in the dilatation i.e. the change in the fluid content. 

 

 

 
 

Fig. 6(A): Dilatation vs. Distance from AC Surface for Different Poisson's 
Ratios. 

 

 

 
 

Fig. 6(B): Dilatation vs. Distance from AC Surface for Different Elastic 

Moduli. 

 

It is obvious from the curves in Fig.6(C) that the decrease in the 

material constant decreases the dilatation in the tissue. A decrease 

with value of material constant enhances the matrix permeability 

which facilitates the aqueous outflow. This reduces deforma-

tion/displacement in the solid phase causing a decrease in the dila-

tation. 
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Fig. 6(C): Dilatation vs. Distance from AC Surface for Different Values of 
Material Constant. 

4. Conclusion 

The prime objective of the present work was to develop a simple 

mathematical model for describing the outflow of aqueous humor 

in the porous trabecular meshwork of eye and to conduct a theo-

retical analysis of the sensitivity of the outflow characteristics of 

aqueous humor in the trabecular meshwork to its structural proper-

ties. As an advantage of the analytic approach of the present work, 

the explicit mathematical expressions were derived to represent 

and to predict physical results of the fluid dynamics aspects of 

aqueous humor outflow. The computational results obtained by 

using simplified geometry and rough estimates of material proper-

ties illustrate that the salient biomechanical features of the 

aqueous humor outflow result from the response of the trabecular 

meshwork to well understood mechanical forces. The model in-

corporates the interaction between the aqueous humor outflow and 

the solid matrix of the porous medium. The interaction, 

representing the mechanical loading on the matrix gives rise to the 

deformations. 

An examination of the analytic results, presented through the 

graphs reveal that the radial displacement (i.e. deformation) and 

dilatation in the TM matrix are maximum in the inlet region (the 

vicinity of anterior chamber) and continuously decreases to reach 

zero at the outlet boundary. The displacement and dilatation are 

decreased with an increase in both the structural parameters: the 

Poison’s ratio and elastic modulus, whereas an increase in the 

material constant increases both the deformation and the dilata-

tion. 
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