
International Journal of Applied Mathematical Research, 5 (1) (2016) 24-28

International Journal of Applied Mathematical Research
Website: www.sciencepubco.com/index.php/IJAMR

doi: 10.14419/ijamr.v5i1.5759
Research paper

Approximate analytic solutions of fractional
Zakharov-Kuznetsov equations by fractional complex transform

R. Yulita1*, Belal Batiha2 and ”Mohd Taib” Shatnawi3

1Department of Mathematics, Faculty of Mathematics and Natural Science Universitas Negeri Medan, UNIMED 20221
2Higher Colleges of Technology (HCT), Abu Dhabi Men’s College, UAE

3Department of Basic Sciences, Al-Huson University College, Al-Balqa’ Applied University, Al-Huson 50, Jordan
*Corresponding author E-mail: belalbatiha2002@yahoo.com

Abstract

In this paper, fractional complex transform (FCT) with help of variational iteration method (VIM) is used to obtain numerical and
analytical solutions for the fractional Zakharov–Kuznetsov equations. Fractional complex transform (FCT) is proposed to convert fractional
Zakharov–Kuznetsov equations to its differential partner and then applied VIM to the new obtained equations. Several examples are given
and the results are compared to exact solutions. The results reveal that the method is very effective and simple.
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1. Introduction

Fractional models have been shown by many scientists to adequately
describe the operation of variety of physical and biological processes
and systems. Consequently, considerable attention has been given
to the solution of fractional ordinary differential equations, integral
equations and fractional partial differential equations of physical
interest. Since most fractional differential equations do not have
exact analytic solutions, approximation and numerical techniques,
therefore, are used extensively [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].
Numerical and analytical methods have included finite difference
method [12, 13, 14], Adomian decomposition method [15, 16, 17,
18, 19], variational iteration method [20, 21, 22, 23], homotopy
perturbation method [24, 25, 26, 27], and homotopy analysis method
[28, 29].
Transform is an important method to solve mathematical problems.
Many useful transforms for solving various problems were appeared
in open literature, such as the travelling wave transform [30] , the
Laplace transform [31], the Fourier transform [32], the Bücklund
transformation [33], the integral transform [34], and the local frac-
tional integral transforms [35]. Very recently the fractional complex
transform [36, 37, 38, 39] was suggested to convert fractional order
differential equations with modified Riemann-Liouville derivatives
into integer order differential equations, and the resultant equations
can be solved by advanced calculus.
In this paper, we consider the fractional version of the Zakharov–
Kuznetsov equations as studied in [40, 41]. The fractional Zakharov-
Kuznetsov equations (shortly called FZK(p,q,r)) are of the form:

Dα
t u+a(up)x +b(uq)xxx + c(ur)yyx = 0, (1)

where u = u(x,y, t), α is a parameter describing the order of the

fractional derivative (0 < α ≤ 1), a,b and c are arbitrary constants
and p,q, and r are integers and p,q,r 6= 0 governs the behavior
of weakly nonlinear ion acoustic waves in a plasma comprising
cold ions and hot isothermal electrons in the presence of a uniform
magnetic field [42, 43].
We aim in this paper to solve the fractional Zakharov–Kuznetsov
equations by FCT with help of VIM, and to determine the effective-
ness of FCT in solving these kinds of problems.

2. Fractional Complex Transform (FCT)

Consider the following general fractional differential equation

f
(

u,u(α)
t ,u(β )x ,u(γ)y ,u(λ )z ,u(2α)

t ,u(2β )
x ,u(2γ)

y ,u(2λ )
z , . . .

)
= 0, (2)

where u(α)
t = ∂ α u(x,y,z, t)/∂ α denotes the modified Riemann–

Liouville derivative. 0 < α ≤ 1, 0 < β ≤ 1, 0 < γ ≤ 1, 0 < λ ≤ 1.
Introducing the following transforms

T =
qtα

Γ(1+α)
, (3)

X =
pxβ

Γ(1+β )
, (4)

Y =
kyγ

Γ(1+ γ)
, (5)

Z =
lzλ

Γ(1+λ )
, (6)

where p, q, k and l are constants.
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Using the above transforms, we can convert fractional derivatives
into classical derivatives:

∂ α u
∂ tα

= q
∂u
∂T

, (7)

∂ β u
∂xβ

= p
∂u
∂X

, (8)

∂ γ u
∂yγ

= k
∂u
∂Y

, (9)

∂ λ u
∂ zλ

= l
∂u
∂Z

. (10)

Therefore, we can easily covert the fractional differential equations
into partial differential equations, so that everyone familiar with
advanced calculus can deal with fractional calculus without any
difficulty. For example, consider a fractional differential equation

∂ α u
∂ tα

+2u
∂ β u
∂xβ

+4
∂ γ u
∂yγ

+5
∂ λ u
∂ zλ

= 0. (11)

By using the above transformations we get:

q
∂u
∂T

+2pu
∂u
∂X

+4k
∂u
∂Y

+5l
∂u
∂Z

= 0, (12)

which can be solved by variational iteration method.

3. Variational iteration method (VIM)

To illustrate the basic concepts of VIM [44], we consider the follow-
ing general nonlinear functional equation:

Lu(x,y, t)+Nu(x,y, t) = g(x,y, t), (13)

where L is a linear operator and N is a nonlinear operator, and
g(x,y, t) is an inhomogeneous term.
VIM is based on the general Lagrange multiplier method [45]. The
main feature of the method is that the solution of a mathematical
problem with linearization assumption is used as initial approxima-
tion or trial function. Then a more highly precise approximation at
some special point can be obtained. According to VIM , we can
construct a correction functional for Eq. (13) as follows:

uk+1(x,y, t) = uk(x,y, t)

+
∫ t

0
λ (ξ ) [Luk(x,y,s)+Nũk(x,y,s)−g(x,y,s)] ds,

(14)

where λ , a general Lagrange multiplier, can be identified optimally
via the variational theory. The subscript k indicates the kth approx-
imation and ũk is considered as a restricted variation [46, 47], i.e.
δ ũk = 0.

4. Applications

In this section, the applicability of FCT shall be demonstrated by
two test examples.

4.1. Example 1

First, we consider the time-fractional FZK(2,2,2) in the form:

Dα
t u+(u2)x +

1
8
(u2)xxx +

1
8
(u2)xyy = 0, (15)

where 0 < α ≤ 1 is a parameter describing the order of the fractional
time derivative. The exact solution to Eq. (15) when α = 1 and
subject to the initial condition

u(x,y,0) =
4
3

ρ sinh2 (x+ y), (16)

where ρ is an arbitrary constant, was derived in [48] and is given as:

u(x,y, t) =
4
3

ρ sinh2 (x+ y−ρt). (17)

To apply FCT to Eq.(15), we use the above transformations, so we
have the following partial differential equation:

q
∂u
∂T

+
∂u2

∂x
+

1
8

(
∂ 3u2

∂x3

)
+

1
8

(
∂ 3u2

∂y2x

)
. (18)

For simplicity we set q = 1, so we get

∂u
∂T

+
∂u2

∂x
+

1
8

(
∂ 3u2

∂x3

)
+

1
8

(
∂ 3u2

∂y2x

)
. (19)

Now, we solve Eq. (19) by means of VIM. To apply VIM to (19),
we construct the correction functional as follows:

uk+1 = uk +∫ T

0
λ (s)

[
∂uk

∂ s
+

(
∂ ũ2

k
∂x

)
+

1
8

(
∂ 3ũ2

k
∂x3

)
+

1
8

(
∂ 3ũ2

k
∂y2∂x

)]
ds.

(20)

For α = 1, we have

δuk+1 = δuk +δ

∫ T

0
λ (s)

(
∂uk

∂ s

)
ds. (21)

The general Lagrange multiplier can be identified as:

λ (s) =−1. (22)

Substituting (22) into the correction functional (20), we obtain the
following iteration formula:

uk+1 = uk−∫ T

0

[
∂uk

∂ s
+

(
∂u2

k
∂x

)
+

1
8

(
∂ 3u2

k
∂x3

)
+

1
8

(
∂ 3u2

k
∂y2∂x

)]
ds. (23)

The iteration starts with an initial approximation as given in (16).
The iteration formula (23) now yields

u1(x,y, t) =
4
3

ρ sinhw2− 224
9

ρ
2 sinhw3 coshwT

−32
3

ρ
2 sinhwcoshw3T (24)

u2(x,y, t) =
4
3

ρ sinhw2−2
(

4
3

ρ sinhw2− 224
9

ρ
2 sinhw3 coshwT

−32
3

ρ
2 sinhwcoshw3T

)(
8
3

ρ sinhwcoshw

−320
3

ρ
2 sinhw2 coshw2T

−224
9

ρ
2 sinhw4T − 32

3
ρ

2 coshw4T
)

T

−3
2

(
8
3

ρ sinhwcoshw− 320
3

ρ
2 sinhw2 coshw2T

−224
9

ρ
2 sinhw4T − 32

3
ρ

2 coshw4T
)

(
8
3

ρ coshw2 +
8
3

ρ sinhw2

−256ρ
2 sinhwcoshw3T − 2816

9
ρ

2 sinhw3 coshwT
)

T

−1
2

(
4
3

ρ sinhw2− 224
9

ρ
2 sinhw3 coshwT

−32
3

ρ
2 sinhwcoshw3T

)
(

32
3

ρ sinhwcoshw−256ρ
2 coshw4T

−5120
3

ρ
2 sinhw2 coshw2T − 2816

9
ρ

2 sinhw4T
)

T,(25)
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and so on, where w = x+ y. The remaining components of uk(x,y, t)
can be completely determined such that each term is determined by
using (23).
By the fractional complex transform

T =
tα

Γ(1+α)
, (26)

we have

u1(x,y, t) =
4
3

ρ sinhw2− 224
9

ρ2 sinhw3 coshwtα

Γ(1+α)

−32
3

ρ2 sinhwcoshw3tα

Γ(1+α)
, (27)

...

and so on, where w = x+ y.
Table 1 shows the approximate solutions of Eq. (15) for different
values of α: α = 0.67, α = 0.75 and α = 1.0 using only three
iterations of the VIM solution.

4.2. Example 2

Now, we consider FZK(3,3,3) in the form:

Dα
t u+(u3)x +2(u3)xxx +2(u3)xyy = 0, (28)

where 0 < α ≤ 1.
The exact solution to Eq. (28) when α = 1 and subject to the initial
condition

u(x,y,0) =
3
2

ρ sinh
[

1
6
(x+ y)

]
. (29)

where ρ is an arbitrary constant, was derived in [48] and is given by

u(x,y, t) =
3
2

ρ sinh
[

1
6
(x+ y−ρt)

]
. (30)

To apply FCT to Eq.(28), we use the above transformations, so we
have the following partial differential equation:

q
∂u
∂T

+
∂u3

∂x
+2

∂ 3u3

∂x3 +2
∂ 3u3

∂y2x
. (31)

For simplicity we set q = 1, so we get

∂u
∂T

+
∂u3

∂x
+2

∂ 3u3

∂x3 +2
∂ 3u3

∂y2x
. (32)

Now, we solve Eq. (32) by means of VIM.
To apply VIM, we construct the following correction functional for
Eq. (32):

uk+1 = uk

+
∫ T

0
λ (s)

∂uk

∂ s
+

(
∂ ũ3

k
∂x

)
+2
(

∂ 3ũ3
k

∂x3

)
+2
(

∂ 3ũ3
k

∂y2∂x

) ds.

(33)

The general Lagrange multiplier can be identified as:

λ (s) =−1. (34)

Hence we obtain the following iteration formula:

uk+1 = uk

−
∫ T

0

[
∂uk

∂ s
+

(
∂u3

k
∂x

)
+2
(

∂ 3u3
k

∂x3

)
+

(
∂ 3u3

k
∂y2∂x

)]
ds.

(35)

Using Eq. (29) as an initial condition yields the following:

u1(x,y, t) =
3
2

ρ sinhw−3ρ
3 sinhw2 coshwT − 3

8
ρ

3 coshw3T (36)

u2(x,y, t) =
3
2

ρ sinhw−3
(

3
2

ρ sinhw−3ρ
3 sinhw2 coshwT − 3

8
ρ

3 coshw3T
)2

(
1
4

ρ coshw− 19
16

ρ
3 sinhwcoshw2T − 1

2
ρ

3 sinhw3T
)

T

−24
(

1
4

ρ coshw− 19
16

ρ
3 sinhwcoshw2T − 1

2
ρ

3 sinhw3T
)3

T

−72
(

3
2

ρ sinhw−3ρ
3 sinhw2 coshwT − 3

8
ρ

3 coshw3T
)

(
1
4

ρ coshw− 19
16

ρ
3 sinhwcoshw2T − 1

2
ρ

3 sinhw3T
)

(
1
24

ρ sinhw− 19
96

ρ
3 coshw3T − 31

48
ρ

3 sinhw2 coshwT
)

T

−12
(

3
2

ρ sinhw−3ρ
3 sinhw2 coshwT − 3

8
ρ

3 coshw3T
)2

(
1

144
ρ coshw− 181

576
ρ

3 sinhwcoshw2T − 31
288

ρ
3 sinhw3T

)
T (37)

and so on, where w = 1
6 (x+ y).

By the fractional complex transform

T =
tα

Γ(1+α)
, (38)

we have

u1(x,y, t) =
3
2

ρ sinhw− 3ρ3 sinhw2 coshwtα

Γ(1+α)
− 3

8
ρ3 coshw3tα

Γ(1+α)
,

... (39)

and so on, where w = 1
6 (x+ y).

Table 2 show the solutions obtained using the three-iterates of VIM
for different values of α when ρ = 0.001.

5. Conclusion

In this paper, we have successfully developed FCT with help of
VIM to obtain approximate solution of the fractional Zakharov–
Kuznetsov equation. The fractional complex transform can easily
convert a fractional differential equation to its differential partner, so
that its variational iteration algorithm can be simply constructed. The
fractional complex transform is extremely simple but effective for
solving fractional differential equations. The method is accessible
to all with basic knowledge of Advanced Calculus and with little
Fractional Calculus. It may be concluded that FCT–VIM is very
powerful and efficient in finding analytical as well as numerical
solutions for wide classes of fractional differential equations.
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