A modified Adomian decomposition method for singular initial value Emden-Fowler type equations

J. Biazar ${ }^{1}$, K. Hosseini ${ }^{1,2,3 *}$
${ }^{1}$ Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran
${ }^{2}$ Department of Mathematics, Guilan Science and Research Branch, Islamic Azad University, Rasht, Iran
${ }^{3}$ Department of Applied Mathematics, Ahrar Institute of Technology and Higher Education, Rasht, Iran
*Corresponding author E-mail: kamyar_hosseini@yahoo.com

Abstract

Traditional Adomian decomposition method (ADM) usually fails to solve singular initial value problems of Emden-Fowler type. To overcome this shortcoming, a new and effective modification of ADM that only requires calculation of the first Adomian polynomial is formally proposed in the present paper. Three singular initial value problems of Emden-Fowler type with $\alpha=1,2$, and >2, and have been selected to demonstrate the efficiency of the method.

Keywords: Singular Initial Value Problems; Emden-Fowler Type; Adomian Decomposition Method; New Modification.

1. Introduction

Singular initial value problems play a fundamental role in a wide range of scientific disciplines. In this article, a special type of singular initial value problems which can be expressed as the following form is investigated.

$$
u^{\prime \prime}+\frac{\alpha}{x} u^{\prime}+g(x) h(u)=k(x), \quad u(0)=a, \quad u^{\prime}(0)=b .
$$

Singularity behaviour that occurs at $\mathrm{x}=0$ is the main difficulty of this type of initial value problems. In recent years, a variety of methods have been adopted to handle this type of initial value problems. For example, Wazwaz employed a general approach for constructing the exact and series solution of this problem by means of the variational iteration method [1]. Parand et al. applied an approximation algorithm for the solution of this problem using Hermite functions, as basis functions, and collocation method [2]. Parand et al. also adopted a pseudospectral technique based on the rational Legendre functions and Gauss-Radau integration to handle this problem [3]. For further methods, the reader is referred to the references [4-19]. In the present article, ADM is modified effectively to solve presented singular initial value problem. The rest of this article is arranged as follows:
In Section 2, the basic ideas of the method are expressed with details. In Section 3, the proposed method is implemented to solve three singular initial value problems of Emden-Fowler type with $\alpha=1,2$, and >2. Finally, Section 4 is devoted to presenting conclusion.

2. Modified ADM

Let's consider the following nonlinear equation

$$
\begin{equation*}
\mathrm{u}^{\prime \prime}+\mathrm{R}(\mathrm{u})+\mathrm{N}(\mathrm{u})=\mathrm{f}(\mathrm{x}) \tag{1}
\end{equation*}
$$

with the following initial conditions
$u(0)=\xi_{1}, \quad u^{\prime}(0)=\xi_{2}$,
where R is a linear operator, N is a nonlinear operator, and $f(x)$ is a known function. It is assumed that the unknown function $u(x)$ can be presented by an infinite series, say
$\mathrm{u}(\mathrm{x})=\sum_{\mathrm{n}=0}^{+\infty} \mathrm{u}_{\mathrm{n}}(\mathrm{x})$,
and the nonlinear term $\mathrm{N}(\mathrm{u})$ can be expressed as an infinite series of polynomials given by

$$
\begin{equation*}
\mathrm{N}(\mathrm{u})=\sum_{\mathrm{n}=0}^{+\infty} \mathrm{A}_{\mathrm{n}}\left(\mathrm{u}_{0}, \mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}}\right) \tag{3}
\end{equation*}
$$

where $A_{n}, n=0,1, \ldots$ are called the Adomian polynomials and are defined by [20]
$A_{n}=\left\{\begin{array}{l}\mathrm{N}\left(\mathrm{u}_{0}\right) \quad \mathrm{n}=0, \\ \frac{1}{\mathrm{n}} \sum_{\mathrm{i}=0}^{\mathrm{n}-1}(\mathrm{i}+1) \mathrm{u}_{\mathrm{i}+1} \frac{\mathrm{dA}_{\mathrm{n}-1-\mathrm{i}}}{d u_{0}}, \quad \mathrm{n}=1,2, \ldots .\end{array}\right.$

Applying the inverse operator $L^{-1}=\int_{0}^{\mathrm{x}} \int_{0}^{\mathrm{x}}()$.dxdx , on both sides of Eq. (1) and considering (2) and (3), leads to

$$
\begin{align*}
& \sum_{n=0}^{+\infty} u_{n}=u(0)+u^{\prime}(0) x+L^{-1}[f(x)] \\
& -L^{-1}\left[R\left(\sum_{n=0}^{+\infty} u_{n}\right)+\sum_{n=0}^{+\infty} A_{n}\left(u_{0}, u_{1}, \ldots, u_{n}\right)\right] \tag{4}
\end{align*}
$$

We rewrite (4) as follows [21], [22]
$\sum_{n=0}^{+\infty} u_{n}=u(0)+u^{\prime}(0) x$
$+L^{-1}\left[\sum_{n=0}^{+\infty} \mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\right]-\mathrm{pL}^{-1}\left[\sum_{\mathrm{n}=0}^{+\infty} \mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\right]+\mathrm{L}^{-1}[\mathrm{f}(\mathrm{x})]$
$-L^{-1}\left[R\left(\sum_{n=0}^{+\infty} u_{n}\right)+\sum_{n=0}^{+\infty} A_{n}\left(u_{0}, u_{1}, \ldots, u_{n}\right)\right]$,
where p is an artificial parameter and $a_{i}, i=0,1, \ldots$ are unknown coefficients. We now define
$u_{0}=\xi_{1}+\xi_{2} x+L^{-1}\left[\sum_{n=0}^{+\infty} a_{n} x^{n}\right]$,
$\mathrm{u}_{1}=\mathrm{L}^{-1}[\mathrm{f}(\mathrm{x})]-\mathrm{pL} \mathrm{L}^{-1}\left[\sum_{\mathrm{n}=0}^{+\infty} \mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\right]-\mathrm{L}^{-1}\left[\mathrm{R}\left(\mathrm{u}_{0}\right)+\mathrm{A}_{0}\left(\mathrm{u}_{0}\right)\right]$,
$u_{2}=-L^{-1}\left[R\left(u_{1}\right)+A_{1}\left(u_{0}, u_{1}\right)\right]$,
$u_{3}=-L^{-1}\left[R\left(u_{2}\right)+A_{2}\left(u_{0}, u_{1}, u_{2}\right)\right]$,
\vdots
To avoid calculation of $A_{n}, n=1,2, \ldots$, let determine $a_{i}, i=0,1, \ldots$ such that $u_{1}=0$. This implies that
$u_{2}=u_{3}=\cdots=0$.
Setting $p=1$, yields the solution of Eq. (1) with the initial conditions as follows

$$
\mathrm{u}(\mathrm{x})=\xi_{1}+\xi_{2} \mathrm{x}+\mathrm{L}^{-1}\left[\sum_{\mathrm{n}=0}^{+\infty} \mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\right]
$$

3. Application

In this section, three singular initial value Emden-Fowler type equations, including a homogeneous nonlinear Emden-Fowler equation with $\alpha=1$, and two inhomogeneous Emden-Fowler equations, with $\alpha=2$ and $\alpha>2$ will be solved to illustrate the efficiency of the method. The computations associated with these examples have been performed by Maple package.
Example 3.1: Consider the homogeneous nonlinear Emden-Fowler equation with $\alpha=1$ [1]

$$
\mathrm{u}^{\prime \prime}+\frac{1}{\mathrm{x}} \mathrm{u}^{\prime}-\mathrm{u}^{3}+3 \mathrm{u}^{5}=0
$$

with the following initial conditions

$$
\mathrm{u}(0)=1, \quad \mathrm{u}^{\prime}(0)=0
$$

Traditional ADM. As we know in the traditional ADM, we will reach the following expression
$\sum_{n=0}^{+\infty} u_{n}=u(0)+u^{\prime}(0) x$
$-L^{-1}\left[R\left(\sum_{n=0}^{+\infty} u_{n}\right)+\sum_{n=0}^{+\infty} A_{n}\left(u_{0}, u_{1}, \ldots, u_{n}\right)\right]$,
where $L^{-1}=\int_{0}^{X} \int_{0}^{x}() d x d x,. R(u)=(1 / x) u^{\prime}$, and $A_{n}, n=0,1, \ldots$ are as the following
$\mathrm{A}_{0}=-\mathrm{u}_{0}^{3}+3 \mathrm{u}_{0}^{5}$,
$\mathrm{A}_{1}=-3 \mathrm{u}_{0}^{2} \mathrm{u}_{1}(\mathrm{x})+15 \mathrm{u}_{0}^{4} \mathrm{u}_{1}(\mathrm{x})$,
:
We can define
$\mathrm{u}_{0}=\mathrm{u}(0)+\mathrm{u}^{\prime}(0) \mathrm{x}$,
$u_{n}=-L^{-1}\left[R\left(u_{n-1}\right)+A_{n-1}\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)\right], \quad n=1,2, \ldots$.
Therefore
$u_{0}(x)=1, \quad u_{1}(x)=-x^{2}$,
$u_{2}(x)=x^{2}+x^{4}, u_{3}(x)=-x^{2}-\frac{4}{3} x^{4}-\frac{13}{10} x^{6}$,

Now, the series solution derived by the traditional ADM can be written as follows
$u(x)=1-x^{2}-\frac{1}{3} x^{4}-\frac{13}{10} x^{6}+\cdots$.

Modified ADM. To solve the problem by the modified ADM, let us rewrite (5) as follows

$$
\sum_{\mathrm{n}=0}^{+\infty} \mathrm{u}_{\mathrm{n}}=\mathrm{u}(0)+\mathrm{u}^{\prime}(0) \mathrm{x}
$$

$+L^{-1}\left[\sum_{n=0}^{+\infty} a_{n} x^{n}\right]-\mathrm{pL}^{-1}\left[\Sigma_{\mathrm{n}=0}^{+\infty} \mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\right]$
$-L^{-1}\left[R\left(\sum_{n=0}^{+\infty} u_{n}\right)+\sum_{n=0}^{+\infty} A_{n}\left(u_{0}, u_{1}, \ldots, u_{n}\right)\right]$,
where p is an artificial parameter and $a_{i}, i=0,1, \ldots$ are unknown coefficients. We now define
$u_{0}=u(0)+u^{\prime}(0) x+L^{-1}\left[\sum_{n=0}^{+\infty} a_{n} x^{n}\right]=1+\frac{1}{2} a_{0} x^{2}$
$+\frac{1}{6} a_{1} x^{3}+\frac{1}{12} a_{2} x^{4}+\frac{1}{20} a_{3} x^{5}+\cdots$,
$\mathrm{u}_{1}=-\mathrm{pL}^{-1}\left[\sum_{\mathrm{n}=0}^{+\infty} \mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\right]-\mathrm{L}^{-1}\left[\mathrm{R}\left(\mathrm{u}_{0}\right)+\mathrm{A}_{0}\left(\mathrm{u}_{0}\right)\right]$,
$u_{2}=-L^{-1}\left[R\left(u_{1}\right)+A_{1}\left(u_{0}, u_{1}\right)\right]$,

To avoid calculation of $A_{n}, n=1,2, \ldots$, let determine $a_{i}, i=0,1, \ldots$ such that $u_{1}=0$. Thus
$\left(-1-\frac{1}{2} \mathrm{a}_{0}-\frac{1}{2} \mathrm{pa}_{0}\right) \mathrm{x}^{2}+\left(-\frac{1}{12} \mathrm{a}_{1}-\frac{1}{6} p \mathrm{a}_{1}\right) \mathrm{x}^{3}$
$+\left(-\frac{1}{2} \mathrm{a}_{0}-\frac{1}{36} \mathrm{a}_{2}-\frac{1}{12} \mathrm{pa}_{2}\right) \mathrm{x}^{4}+\cdots=0$.

It can be easily shown that
$\mathrm{a}_{0}=-\frac{2}{1+\mathrm{p}}, \quad \mathrm{a}_{1}=0, \quad \mathrm{a}_{2}=\frac{36}{(1+\mathrm{p})(1+3 \mathrm{p})}, \quad \mathrm{a}_{3}=0, \quad \cdots$.
Setting $p=1$, results in
$u(x)=1-\frac{1}{2} x^{2}+\frac{3}{8} x^{4}-\frac{5}{16} x^{6}+\cdots=\frac{1}{\sqrt{1+x^{2}}}$,
which is the exact solution of the problem.
Example 3.2: Consider the inhomogeneous Emden-Fowler equation with $\alpha=2$ [1]
$\mathrm{u}^{\prime \prime}+\frac{2}{\mathrm{x}} \mathrm{u}^{\prime}-\left(6+4 \mathrm{x}^{2}\right) \mathrm{u}=6-6 \mathrm{x}^{2}-4 \mathrm{x}^{4}$,
subject to the following initial conditions
$\mathrm{u}(0)=1, \quad \mathrm{u}^{\prime}(0)=0$.
Traditional ADM. Applying the traditional ADM yields
$u_{0}(x)=1+3 x^{2}-\frac{1}{2} x^{4}-\frac{2}{15} x^{6}$,
$u_{1}(x)=-3 x^{2}+\frac{13}{6} x^{4}+\frac{53}{150} x^{6}-\frac{1}{20} x^{8}-\frac{4}{675} x^{10}$,
$u_{2}(x)=6 x^{2}-\frac{53}{18} x^{4}-\frac{27}{250} x^{6}+\frac{869}{4200} x^{8}+\frac{1663}{121500} x^{10}$
$-\frac{53}{29700} x^{12}-\frac{8}{61425} x^{14}$,
!
Consequently, the series solution obtained by the traditional ADM is as follows
$u(x)=1+6 x^{2}-\frac{23}{18} x^{4}+\frac{14}{125} x^{6}+\frac{659}{4200} x^{8}$
$+\frac{943}{121500} x^{10}-\frac{53}{29700} x^{12}-\frac{8}{61425} x^{14}+\cdots$.

Modified ADM. A similar procedure, described in previous example, leads to
$u_{0}=u(0)+u^{\prime}(0) x+L^{-1}\left[\sum_{n=0}^{+\infty} a_{n} x^{n}\right]=1+\frac{1}{2} a_{0} x^{2}$
$+\frac{1}{6} a_{1} x^{3}+\frac{1}{12} a_{2} x^{4}+\frac{1}{20} a_{3} x^{5}+\cdots$,
$u_{1}=L^{-1}\left[6-6 x^{2}-4 x^{4}\right]-\mathrm{pL}^{-1}\left[\Sigma_{n=0}^{+\infty} a_{n} x^{n}\right]-L^{-1}\left[R\left(u_{0}\right)\right]$,
where $L^{-1}=\int_{0}^{x} \int_{0}^{x}() d x d$.$x and R(u)=(2 / x) u^{\prime}-\left(6+4 x^{2}\right) u$. Now, by setting $u_{1}(x)=0$, we find
$\left(6-\mathrm{a}_{0}-\frac{1}{2} \mathrm{pa} \mathrm{a}_{0}\right) \mathrm{x}^{2}+\left(-\frac{1}{6} \mathrm{a}_{1}-\frac{1}{6} \mathrm{pa}_{1}\right) \mathrm{x}^{3}$
$+\left(-\frac{1}{6}+\frac{1}{4} \mathrm{a}_{0}-\frac{1}{18} \mathrm{a}_{2}-\frac{1}{12} \mathrm{pa}_{2}\right) \mathrm{x}^{4}+\cdots=0$.

It can be shown that
$a_{0}=\frac{12}{2+p}, a_{1}=0, \quad a_{2}=-\frac{6(p-16)}{(2+p)(2+3 p)}, \quad a_{3}=0, \quad \cdots$.

Setting $\mathrm{p}=1$, yields
$u(x)=1+2 x^{2}+\frac{1}{2} x^{4}+\frac{1}{6} x^{6}+\cdots=x^{2}$
$+\left(1+\mathrm{x}^{2}+\frac{1}{2} \mathrm{x}^{4}+\frac{1}{6} \mathrm{x}^{6}+\cdots\right)$,
which converges to the exact solution
$u(x)=x^{2}+e^{x^{2}}$.

Example 3.3: Consider the inhomogeneous Emden-Fowler equation with $\alpha>2$ [1]
$u^{\prime \prime}+\frac{4}{x} u^{\prime}-\left(18 x+9 x^{4}\right) u=20-36 x^{3}-18 x^{6}$,
with the following initial conditions
$\mathrm{u}(0)=1, \quad \mathrm{u}^{\prime}(0)=0$.
Traditional ADM. Using the traditional ADM leads to
$u_{0}(x)=1+10 x^{2}-\frac{9}{5} x^{5}-\frac{9}{28} x^{8}$,
$u_{1}(x)=-40 x^{2}+3 x^{3}+\frac{54}{5} x^{5}+\frac{3}{10} x^{6}$
$+\frac{297}{245} x^{8}-\frac{1539}{7700} x^{11}-\frac{81}{5096} x^{14}$,
$u_{2}(x)=160 x^{2}-6 x^{3}-\frac{234}{5} x^{5}+\frac{39}{25} x^{6}$
$-\frac{12519}{3430} x^{8}+\frac{9}{20} x^{9}+\frac{156573}{134750} x^{11}+\frac{9}{440} x^{12}$
$+\frac{2873799}{63763700} x^{14}-\frac{365229}{47647600} x^{17}-\frac{729}{1936480} x^{20}$,

Therefore, the series solution resulted from the traditional ADM is as follows
$u(x)=1+130 x^{2}-3 x^{3}-\frac{189}{5} x^{5}+\frac{93}{50} x^{6}$
$-\frac{18927}{6860} x^{8}+\frac{9}{20} x^{9}+\frac{23571}{24500} x^{11}+\frac{9}{440} x^{12}$
$+\frac{3720573}{127527400} x^{14}-\frac{365229}{47647600} x^{17}-\frac{729}{1936480} x^{20}+\cdots$.
Modified ADM. In a manner similar to that described in previous examples, we can define
$\mathrm{u}_{0}=\mathrm{u}(0)+\mathrm{u}^{\prime}(0) \mathrm{x}+\mathrm{L}^{-1}\left[\sum_{\mathrm{n}=0}^{+\infty} \mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\right]=1+\frac{1}{2} \mathrm{a}_{0} \mathrm{x}^{2}$
$+\frac{1}{6} a_{1} x^{3}+\frac{1}{12} a_{2} x^{4}+\frac{1}{20} a_{3} x^{5}+\cdots$,
$u_{1}=L^{-1}\left[20-36 x^{3}-18 x^{6}\right]-\mathrm{LL}^{-1}\left[\sum_{n=0}^{+\infty} \mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}\right]-\mathrm{L}^{-1}\left[\mathrm{R}\left(\mathrm{u}_{0}\right)\right]$,
where $L^{-1}=\int_{0}^{x} \int_{0}^{x}() d x d$.$x and R(u)=(4 / x) u^{\prime}-\left(18 x+9 x^{4}\right) u$. Now, if we set $u_{1}(x)$ equal to zero, then we obtain
$\left(10-2 \mathrm{a}_{0}-\frac{1}{2} \mathrm{pa}_{0}\right) \mathrm{x}^{2}+\left(3-\frac{1}{3} \mathrm{a}_{1}-\frac{1}{6} \mathrm{pa}_{1}\right) \mathrm{x}^{3}$
$+\left(-\frac{1}{9} \mathrm{a}_{2}-\frac{1}{12} \mathrm{pa}_{2}\right) \mathrm{x}^{4}+\cdots=0$.

It can be easily shown that
$\mathrm{a}_{0}=\frac{20}{4+\mathrm{p}}, \quad \mathrm{a}_{1}=\frac{18}{2+\mathrm{p}}, \quad \mathrm{a}_{2}=0, \quad \mathrm{a}_{3}=-\frac{36(\mathrm{p}-1)}{(1+\mathrm{p})(4+\mathrm{p})}, \cdots$.

Setting $\mathrm{p}=1$, results in
$u(x)=1+2 x^{2}+x^{3}+\frac{1}{2} x^{6}+\cdots=2 x^{2}$
$+\left(1+\mathrm{x}^{3}+\frac{1}{2} \mathrm{x}^{6}+\cdots\right)=2 \mathrm{x}^{2}+\mathrm{e}^{\mathrm{x}^{3}}$,
which is the exact solution of the problem.

4. Conclusion

In this article, a new and effective modification of Adomian decomposition method was proposed to solve singular, EmdenFowler type, initial value problems with $\alpha=1,2$, and >2. As it was observed

- The method only requires the calculation of the first Adomian polynomial.
- The method provides the solution of the problems in the form of a convergent series, whereas the traditional ADM fails.
- The method overcomes the singularity at $\mathrm{x}=0$.

It is worth mentioning that the proposed method can be extended for solving systems of ordinary differential equations of EmdenFowler type as follows [23]
$\mathrm{u}_{1}^{\prime \prime}+\frac{\alpha_{1}}{\mathrm{x}} \mathrm{u}_{1}^{\prime}+\mathrm{f}_{1}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\mathrm{g}_{1}(\mathrm{x}), \mathrm{u}_{1}(0)=\mathrm{a}_{1}, \quad \mathrm{u}_{1}^{\prime}(0)=0$,
$u_{2}^{\prime \prime}+\frac{\alpha_{2}}{x} u_{2}^{\prime}+f_{2}\left(u_{1}, u_{2}\right)=g_{2}(x), u_{2}(0)=a_{2}, u_{2}^{\prime}(0)=0$.

References

[1] A.M. Wazwaz, A reliable treatment of singular Emden-Fowler initial value problems and boundary value problems, Applied Mathematics and Computation, 217 (2011), 10387-10395. http://dx.doi.org/10.1016/j.amc.2011.04.084.
[2] K. Parand, M. Dehghan, A.R. Rezaei, S.M. Ghaderi, An approximation algorithm for the solution of the nonlinear LaneEmden type equations arising in astrophysics using Hermite functions collocation method, Computer Physics Communications, 181
(2010),

1096-1108. http://dx.doi.org/10.1016/j.cpc.2010.02.018.
[3] K. Parand, M. Shahini, M. Dehghan, Rational Legendre pseudospectral approach for solving nonlinear differential equations of Lane-Emden type, Journal of Computational Physics, 228 (2009), 8830-8840. http://dx.doi.org/10.1016/j.jcp.2009.08.029.
[4] A.M. Wazwaz, A new algorithm for solving differential equations of Lane-Emden type, Applied Mathematics and Computation, 118 (2001), 287-310. http://dx.doi.org/10.1016/S0096-3003(99)00223$\frac{4}{S}$.
[5] S.J. Liao, A new analytic algorithm of Lane-Emden type equations, Applied Mathematics and Computation, 142 (2003), 1-16. http://dx.doi.org/10.1016/S0096-3003(02)00943-8.
[6] O.P. Singh, R.K. Pandey, V.K. Singh, An analytic algorithm of Lane-Emden type equations arising in astrophysics using modified homotopy analysis method, Computer Physics Communications, 180 (2009),
http://dx.doi.org/10.1016/j.cpc.2009.01.012.
[7] J.I. Ramos, Linearization techniques for singular initial-value problems of ordinary differential equations, Applied Mathematics and Computation, 161 (2005), 525-542. http://dx.doi.org/10.1016/j.amc.2003.12.047.
[8] A. Yildirim, T. Ozis, Solutions of singular IVPs of Lane-Emden type by homotopy perturbation method, Physics Letters A, 369 (2007), 70-76. http://dx.doi.org/10.1016/j.physleta.2007.04.072.
[9] X. Shang, P. Wu, X. Shao, An efficient method for solving EmdenFowler equations, Journal of the Franklin Institute, 346 (2009), 889-897. http://dx.doi.org/10.1016/j.jfranklin.2009.07.005.
[10] J.H. He, Variational approach to the Lane-Emden equation, Applied Mathematics and Computation, 143 (2003), 539-541. http://dx.doi.org/10.1016/S0096-3003(02)00382-X.
[11] J.I. Ramos, Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method, Chaos, Solitons \& Fractals, 38 (2008), 400-408. http://dx.doi.org/10.1016/j.chaos.2006.11.018.
[12] S.A. Yousefi, Legendre wavelets method for solving differential equations of Lane-Emden type, Applied Mathematics and $\begin{array}{llll}\text { Computation, } & 181 & \text { (2006), } & \text { 1417-1422. }\end{array}$ http://dx.doi.org/10.1016/j.amc.2006.02.031.
[13] N.T. Shawagfeh, Nonperturbative approximate solution for LaneEmden equation, Journal of Mathematical Physics, 34 (1993), 4364-4369. http://dx.doi.org/10.1063/1.530005.
[14] A.S. Bataineh, M.S.M. Noorani, I. Hashim, Homotopy analysis method for singular IVPs of Emden-Fowler type, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 11211131. http://dx.doi.org/10.1016/j.cnsns.2008.02.004.
[15] M.S.H. Chowdhury, I. Hashim, Solutions of Emden-Fowler equations by homotopy perturbation method, Nonlinear Analysis: Real World Applications, 10 (2009), 104-115. http://dx.doi.org/10.1016/j.nonrwa.2007.08.017.
[16] H.R. Marzban, H.R. Tabrizidooz, M. Razzaghi, Hybrid functions for nonlinear initial-value problems with applications to LaneEmden type equations, Physics Letters A, 372 (2008), 5883-5886. http://dx.doi.org/10.1016/j.physleta.2008.07.055.
[17] M. Dehghan, F. Shakeri, Approximate solution of a differential equation arising in astrophysics using the variational iteration method, New Astronomy, 13 (2008), 53-59. http://dx.doi.org/10.1016/j.newast.2007.06.012.
[18] R.K. Pandey, N. Kumar, Solution of Lane-Emden type equations using Bernstein matrix of differentiation, New Astronomy, 17 (2012), 303-308. http://dx.doi.org/10.1016/j.newast.2011.09.005.
[19] B. Muatjetjeja, C.M. Khalique, Exact solutions of the generalized Lane-Emden equations of the first and second kind, Pramana Journal of Physics, 77 (2011), 545-554. http://dx.doi.org/10.1007/s12043-011-0174-4.
[20] J.S. Duan, Convenient analytic recurrence algorithms for the Adomian polynomials, Applied Mathematics and Computation, 217 (2011), 6337-6348. http://dx.doi.org/10.1016/j.amc.2011.01.007.
[21] H. Aminikhah, J. Biazar, A new HPM for ordinary differential equations, Numerical Methods for Partial Differential Equations, 26 (2009), 480-489. http://dx.doi.org/10.1002/num.20413.
[22] K. Hosseini, J. Biazar, R. Ansari, P. Gholamin, A new algorithm for solving differential equations, Mathematical Methods in the Applied Sciences, 35 (2012), 993-999. http://dx.doi.org/10.1002/mma. 1601 .
[23] B. Muatjetjeja, C.M. Khalique, Lagrangian approach to a generalized coupled Lane-Emden system: Symmetries and first integrals, Communications in Nonlinear Science and Numerical Simulation, 15 (2010), 1166-1171. http://dx.doi.org/10.1016/j.cnsns.2009.06.002.

