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Abstract

The flow of an unsteady incompressible electrically conducting fluid with uniform distribution of dust particles in a constricted channel has
been studied. The medium is assumed to be porous in nature. The governing equations of motion are treated analytically and the expressions
are obtained by using variable separable and Laplace transform techniques. The influence of the dust particles on the velocity distributions of
the fluid are investigated for various cases and the results are illustrated by varying parameters like Hartmann number, deposition thickness
on the walls of the cylinder and the permeability of the porous medium on the velocity of dust and fluid phase.
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1. Introduction

Advances in mathematical modelling of fluids with more than single
phase continue to be of crucial importance in many diversified prob-
lems like fluidization, purification of crude oil, centrifugal separation
of matter from fluid, petroleum industry, dust in gas cooling systems,
performance of solid fuel rocket nozzles and blood flow in capillaries
and other suspended particles in seas and oceans.

A number of studies associated with flow of fluids embedded with
particles have appeared in literature. Saffman [1] carried out pioneer-
ing work on the stability of a laminar flow of a dust gas in which
the dust particles are uniformly distributed. Michael and Miller [2]
have studied the motion of dusty gas with uniform distribution of the
dust particles which occupied in the semi-infinite space above a rigid
plane boundary. Sleep [3] discussed the modelling transient organic
vapour transport in porous media with the dusty gas model. P. Mitra
and P. Bhattacharyya [4] have studied the unsteady hydromagnetic
laminar flow of a conducting dusty fluid [5] between two parallel
plates started impulsively from rest. Chamkha [6, 7] has studied the
unsteady flow of electrically conducting dusty gas in a channel due
to an oscillating pressure gradient. Lokenath and Ghosh [8] have
studied the unsteady hydromagnetic flows of dusty fluid between
two oscillating plates. A magnetohydrodynamic convection flow of
an electrically conducting heat generating fluid past a semi-infinite
vertical porous plate with variable suction was studied by Nicholas et
al. [9]. Dusty fluid flow in Frenet frame field system was studied by
Bagewadi and Gireesha [10, 11] by applying differential geometry
techniques. Further, fluid flow in a constricted channel is encoun-
tered in many practical problems like narrowing of pipeline network
in drinking water distribution systems and sewage systems. Analysis
of fluid flow in systems with constriction helps one to understand
the mechanism of migration of suspended heavy organic particles

towards the walls in oil-producing wells and pipelines. The Mathe-
matical modelling of blood flow through constricted channels has
drawn serious attention of researchers because of recent advances in
understanding the effects of stenosis in blood flow and the optimal
design of artificial organs [12, 13]. Bio-mathematicians like Pralhad
et al. [14, 15], Ponalagusamy [16], Chaturani et al. [17, 18] and
Mishra [19, 20] have studied the blood flow through a stenosized
artery by using mathematical techniques. Recently, an analytical
solution for the fluid flow through a narrowing system was derived
[21, 22]. It is of interest in this paper to derive solutions for an
electrically conducting dusty fluid flowing in a channel which is con-
stricted due to the deposition thickness on the wall and thus analyze
the velocity distributions of the fluid and dust phase.

2. Equations of Motion

The Naviers - Stokes Equations for an incompressible conducting
dusty fluid flow through a porous medium are [1]:
For fluid phase

∇.~u = 0 (1)

∂~u
∂ t

=− 1
ρ

∇p+ν∇
2~u+

KN
ρ

(~v−~u)+ 1
ρ
(~J×~B)− µ~u

η
, (2)

For dust phase,

∇.~v = 0 (3)

∂~v
∂ t

=
K
m
(~u−~v). (4)
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Figure 1: Geometry of the flow : R0 = distance from the axis of the cylindri-
cal boundary, z = distance from z = 0 to the point of calculation P.

We have following nomenclature:
u−velocity of the fluid phase, v−velocity of dust phase, p− the fluid
pressure, m − mass of the particle, K = 6πµr− Stokes resistance
coefficient with µ being the viscosity of the fluid and r the radius
of the spherical particle, N − number density of the particle, t −
the time , ρ − mass density of the particle, ν = µ

ρ
− the kinematic

viscosity of the fluid, ~J and ~B are given by Maxwell’s equations

∇× ~H = 4π~J, ∇×~B = 0, ∇×~E = 0, ~J = σ [~E +~u×~B],

where ~H− magnetic field, ~B− magnetic flux, ~J− current density,
~E− electric field and σ− the electrical condcutivity of the field.
It is assumed that no external electric field is applied and the effect of
the induced magnetic fields produced by the electrically conducting
fluid is negligible. The magnetic field ~J × ~B simply reduces to
−σB2

0~u, where B0 is the intensity of the imposed transverse magnetic
field.

3. Formulation and Solution of the Problem

Consider an unsteady laminar flow of an incompressible conducting
dusty fluid with uniform distribution of dust particles through porous
medium in a long circular cylinder in which the fluid is at rest initially.
The flow is due to the influence of time dependent pressure gradients
imposed along the axis of the cylinder. It is assumed that the dust
particles are spherical in shape and uniform in size and number
density of the dust particles is taken to be constant throughout the
flow. Let z be the direction of the axis of cylinder along which the
flow takes place and let r be the radial direction outward from the
z axis. Assumption is made that the channel is narrow due to the
depositions of thickness δ on the wall of the cylinder. The elevation
of thickness due to deposition is given by [21]

R = R0−
δ

2

(
1+ cos

πz
z0

)
. (5)

The axis of the channel is along z axis and the velocity components
of both fluid and dust particles are respectively given by:

ur = 0; uθ = 0; uz =(r,θ , t) vr = 0; vθ = 0; vz =(r,θ , t). (6)

By virtue of 6 we can rewrite 2 and 4 as

∂uz

∂ t
=− 1

ρ

∂ p
∂ z

+ν

(
∂ 2uz

∂ r2 +
1
r

∂uz

∂ r
+

1
r2

∂ 2uz

∂θ 2

)
−

σB2
0uz

ρ

+
KN
ρ

(vz−uz)−
µuz

η
(7)

∂vz

∂ t
=

K
m
(uz− vz). (8)

The initial and the boundary conditions imposed on the system are

t < 0; u(r,θ , t) = 0, v(r,θ , t) = 0, (9)

t > 0; u(r,θ , t) = 0, v(r,θ , t) = 0; at r = R, θ =±α. (10)

By introducing the following nondimensional quantities

r∗ =
r

R0
, R∗ =

R
R0

, z∗ =
z

R0
, p∗ =

pR2
0

ρν2 , t∗ =
tν
R2

0
, u =

uzR0

ν
,

v =
vzR0

ν
, δ
∗ =

δ

R0
, z∗0 =

z0

R0
.

7 and 8 can be expressed as (after dropping the ∗),

∂u
∂ t

=−∂ p
∂ z

+

(
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2

)
+β (v−u)−M2u−Pru,

(11)

∂v
∂ t

= λ (u− v), (12)

where, β =
KNR2

0
ρν

, Pr =
µR2

0
ην

, M2 =
σB2

0R2
0

µ
, λ =

KR2
0

mν
.

Accordingly, 5, 9 and 10 assume a nondimensional form

R = 1− δ

2

(
1+ cos

πz
z0

)
,

t > 0; u(r,θ , t) = 0, v(r,θ , t) = 0 at r = R,

u(r,θ , t) = 0, v(r,θ , t) = 0 at θ =±α.

Let ℘(t) be the time dependent pressure gradient to be imposed on
the system. So we can write

−∂ p
∂ z

=℘(t).

Applying Laplace transform to 11 and 12 one arrives at

d2u
dr2 +

1
r

du
dr

+
1
r2

d2u
dθ 2 −Q2u =−φ(s), (13)

where Q2 =
(

s+M2 + β s
s+λ

+Pr

)
.

where u and v are the Laplace transforms defined by

u =

∞∫
0

e−studt and v =
∞∫

0

e−stvdt,

and φ(s) is the Laplace Transform of ℘(t).
After Laplace transform, the boundary conditions become

u(r,θ , t) = 0, v(r,θ , t) = 0 at r = R, θ =±α.

Let the solution of 13 be of the form

u(r,θ) = w1(r,θ)+w2(r). (14)

Then, 13 becomes

∂ 2w2

∂ r2 +
1
r

∂w2

∂ r
−Q2w2 +φ(s) = 0, (15)

∂ 2w1

∂ r2 +
1
r

∂w1

∂ r
+

1
r2

∂ 2w1

∂θ 2 −Q2w1 = 0. (16)

The solutions of 15 are

w2(r) =
φ(s)
Q2

[
1− I0(Qr)

I0(QR)

]
, (17)

with I0(Qr) being the modified Bessel function of the first kind.
The solution for 16 is assumed to be

w1(r,θ) = X(r)Y (θ), (18)
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with the conditions

w1(0,θ) = f inite, w1(r,α) =−w2(r),

w1(r,θ) = 0, w1(r,−α) =−w2(r). (19)

One arrives at,

w1(r,θ) =−w2(r)
cosnθ

cosnα
, (20)

Thus,

u =
φ(s)
Q2

[
1− I0(Qr)

I0(QR)

][
cosnα− cosnθ

cosnα

]
, (21)

v =
λφ(s)

(s+λ )Q2

[
1− I0(Qr)

I0(QR)

][
cosnα− cosnθ

cosnα

]
. (22)

4. Particular Cases

4.1. Case-1: Impulsive motion

In the case of impulsive motion, the pressure gradient is given by
℘(t) = p0δ (t), where δ (t) is Dirac delta function and p0 is a con-
stant.
The equations 21 and 22 become

u =
p0

Q2

(
I0(QR)− I0(Qr)

I0(QR)

)[
cosnα− cosnθ

cosnα

]
,

v =
p0λ

(s+λ )Q2

(
I0(QR)− I0(Qr)

I0(QR)

)[
cosnα− cosnθ

cosnα

]
.

Laplace inverse of the of u and v give the velocity profiles

u =
∞

∑
km=1

2Rp0

km

(
I0(km)− I0(

kmr
R )

I1(km)

)[
cosnα− cosnθ

cosnα

]

×

{
ey1t(y1 +λ )2

[(y1 +λ )2 +λβ ]
+

ey2t(y2 +λ )2

[(y2 +λ )2 +λβ ]

}
,

v =
∞

∑
km=1

2Rp0λ

km

(
I0(km)− I0(

kmr
R )

I1(km)

)[
cosnα− cosnθ

cosnα

]

×

{
ey1t(y1 +λ )

[(y1 +λ )2 +λβ ]
+

ey2t(y2 +λ )

[(y2 +λ )2 +λβ ]

}
,

where (m = 1,2,3, ...) are the positive roots of I0(k) = 0.

Shear stress (Skin friction) The shear stress at the bound-
ary at r = R and θ =±α for impulsive motion is given by

Dr,R =−2p0

{
ey1t(y1 +λ )2

[(y1 +λ )2 +λβ ]
+

ey2t(y2 +λ )2

[(y2 +λ )2 +λβ ]

}
[

cosnα− cosnθ

cosnα

]
Dθ ,α =

∞

∑
km=1

2Rp0

km

{
ey1t(y1 +λ )2

[(y1 +λ )2 +λβ ]
+

ey2t(y2 +λ )2

[(y2 +λ )2 +λβ ]

}
(

I0(km)− I0(
kmr
R )

I1(km)

)
ζ

Dθ ,−α =−Dθ ,α

4.2. Case-2 : Transition motion

We have, ℘(t) = p0H(t)e−wt where H(t) is Heaviside step function.
The solutions take the form

u =
∞

∑
km=1

2Rp0

km

(
I0(km)− I0(

kmr
R )

I1(km)

)[
cosnα− cosnθ

cosnα

]

×

{
ey1t(y1 +λ )2

[(y1 +λ )2 +λβ ](y1 +w)
+

ey2t(y2 +λ )2

[(y2 +λ )2 +λβ ](y2 +w)

}

+
p0e−wt

Q2
1

[
I0(Q1R)− I0(Q1r)

I0(Q1R)

][
cosnα− cosnθ

cosnα

]
,

v =
∞

∑
km=1

2λRp0

km

(
I0(km)− I0(

kmr
R )

I1(km)

)[
cosnα− cosnθ

cosnα

]

×

{
ey1t(y1 +λ )

[(y1 +λ )2 +λβ ](y1 +w)
+

ey2t(y2 +λ )

[(y2 +λ )2 +λβ ](y2 +w)

}

+
p0λe−wt

Q2
1(λ −w)

[
I0(Q1R)− I0(Q1r)

I0(Q1R)

][
cosnα− cosnθ

cosnα

]
.

Shear stress (Skin friction) The shear stress at the boundary at
r = R and θ =±α

Dr,R =− p0e−wt

Q1

I1(Q1R)
I0(Q1R)

[
cosnα− cosnθ

cosnα

]
−2p0

[
cosnα− cosnθ

cosnα

]
×
{

ey1t(y1 +λ )2

[(y1 +λ )2 +λβ ](y1 +w)
+

ey2t(y2 +λ )2

[(y2 +λ )2 +λβ ](y2 +w)

}
Dθ ,α =

∞

∑
km=1

2Rp0

km

(
I0(km)− I0(

kmr
R )

I1(km)

)
ζ − p0e−wt

Q1

(
I0(km)− I0(

kmr
R )

I1(km)

)
ζ

×

{
ey1t(y1 +λ )2

[(y1 +λ )2 +λβ ](y1 +w)
+

ey2t(y2 +λ )2

[(y2 +λ )2 +λβ ](y2 +w)

}
Dθ ,−α =−Dθ ,α

4.3. Case-3 : Motion for a finite time

In this case, we consider ℘(t) = p0[H(t)−H(t−T )]. The solutions
obtained in this case are

u =
∞

∑
km=1

2Rp0

km

(
I0(km)− I0(

kmr
R )

I1(km)

)[
cosnα− cosnθ

cosnα

]

×

{
ey1t(y1 +λ )2(1− e−y1T )

y1[(y1 +λ )2 +λβ ]
+

ey2t(y2 +λ )2(1− e−y2T )

y2[(y2 +λ )2 +λβ ]

}
,

v =
∞

∑
km=1

2Rp0λ

km

(
I0(km)− I0(

kmr
R )

I1(km)

)[
cosnα− cosnθ

cosnα

]

×

{
ey1t(y1 +λ )(1− e−y1T )

y1[(y1 +λ )2 +λβ ]
+

ey2t(y2 +λ )(1− e−y2T )

y2[(y2 +λ )2 +λβ ]

}
.

Shear stress (Skin friction) The shear stress at the boundary at
r = R and θ =±α

Dr,R =−2p0

{
ey1t(y1 +λ )2(1− e−y1T )

[(y1 +λ )2 +λβ ]y1
+

ey2t(y2 +λ )2(1− e−y2T )

[(y2 +λ )2 +λβ ]y2

}
[

cosnα− cosnθ

cosnα

]
Dθ ,α =

∞

∑
km=1

2Rp0

km

{
ey1t(y1 +λ )2(1− e−y1T )

[(y1 +λ )2 +λβ ]y1
+

ey2t(y2 +λ )2(1− e−y2T )

[(y2 +λ )2 +λβ ]y2

}

×

(
I0(km)− I0(

kmr
R )

I1(km)

)
ζ

Dθ ,−α =−Dθ ,α
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4.4. Case-4 : Periodic motion

Here, the pressure gradient is ℘(t) = p0 sinwt. The solutions are

u =
∞

∑
km=1

2Rp0w
km

(
I0(km)− I0(

kmr
R )

I1(km)

)[
cosnα− cosnθ

cosnα

]

×

{
ey1t(y1 +λ )2

[(y1 +λ )2 +λβ ](y2
1 +w2)

+
ey2t(y2 +λ )2

[(y2 +λ )2 +λβ ](y2
2 +w2)

}

+

{
eiwt

Q2
2

(
I0(Q2R)− I0(Q2r)

I0(Q2R)

)
− e−iwt

Q2
3

(
I0(Q3R)− I0(Q3r)

I0(Q3R)

)}

×
[

po(cosnα− cosnθ)

2icosnα

]
,

v =
∞

∑
km=1

2Rp0wλ

km

(
I0(km)− I0(

kmr
R )

I1(km)

)[
cosnα− cosnθ

cosnα

]

×

{
ey1t(y1 +λ )

[(y1 +λ )2 +λβ ](y2
1 +w2)

+
ey2t(y2 +λ )

[(y2 +λ )2 +λβ ](y2
2 +w2)

}

+

{
eiwt

Q2
2(λ + iw)

(
I0(Q2R)− I0(Q2r)

I0(Q2R)

)}[
poλ (cosnα− cosnθ)

2icosnα

]

−

{
e−iwt

Q2
3(λ − iw)

(
I0(Q3R)− I0(Q3r)

I0(Q3R)

)}[
poλ (cosnα− cosnθ)

2icosnα

]

Shear stress (Skin friction) The shear stress at the boundary at
r = R and θ =±α

Dr,R =−2p0w
[

cosnα− cosnθ

cosnα

]
{

ey1t(y1 +λ )2

[(y1 +λ )2 +λβ ](y2
1 +w2)

+
ey2t(y2 +λ )2

[(y2 +λ )2 +λβ ](y2
2 +w2)

}

−
{

eiwt

Q2

[
I1(Q2R)
I0(Q2R)

]
+

e−iwt

Q3

[
I1(Q3R)
I0(Q3R)

]}[
po(cosnα− cosnθ)

2icosnα

]
Dθ ,α =

∞

∑
km=1

2Rwp0

km

(
I0(km)− I0(

kmr
R )

I1(km)

)
ζ{

ey1t(y1 +λ )

[(y1 +λ )2 +λβ ](y2
1 +w2)

+
ey2t(y2 +λ )

[(y2 +λ )2 +λβ ](y2
2 +w2)

}
+ζ{

poeiwt

2iQ2
2

(
I0(Q2R)− I0(Q2r)

I0(Q2R)

)
− p0e−iwt

2iQ2
3

(
I0(Q3R)− I0(Q3r)

I0(Q3R)

)}
Dθ ,−α =−Dθ ,α

5. Conclusion

Considering that the flow takes place in a porous medium, an ana-
lytical solution for the velocity distributions for both fluid and dust
in a constricted channel has been derived. Based on the solutions
obtained in the form of modified Bessel functions, various plots are
depicted below for different values of Hartmann number M, depo-
sition thickness δ and porosity number η . It is evident from the
graphs that the velocity distributions are paraboloid in nature and
the flow of fluid is parallel to that of dust. It is observed that in all
the four cases, the velocities of both the fluid and dust decrease as
the Hartmann number increases. The increase in the porosity of the
fluid however, seems have no effect on velocities of the fluid and
the dust expect in the case of impulsive motion where the velocities
increased with the increase in porosity factor. As expected, when the
deposition thickness increases, the fluid and dust velocities increase
in accord with the principle of continuity.
Further, it is observed that if the dust is very fine , i.e., mass of the
dust particles is negligibly small then the relaxation time τ = m

K of

the dust particles decreases and as τ → 0, fluid and dust velocities
will be same. Also, the fluid particles reaches the steady state earlier
than the dust particles. This difference is due to the fact that the
time dependent pressure gradient is directly exerted on the fluid.
The notations used during the above discussion are given by the
following expressions

y1 =
−x1 + x2

2
, y2 =

−x1− x2

2
, x1 = λR2 +βR2 +λ1R2− k2

m,

x2 =
√

x2
1−4R2(λ1λR2 +λk2

m), Q2
1 = Re(−w− β s

λ −w
+λ1),

ζ = n tannα.

References

[1] P. G. Saffman, On the stability of laminar flow of a dusty gas, Journal
of Fluid Mechanics, 13 (1962), 120-128.

[2] D. H. Michael and D. A. Miller, Plane parallel flow of a dusty gas,
Mathematika, 13 (1966), 97-109.

[3] Brent E. Sleep, Modelling transient organic vapor transport in porous
media with the dusty gas model, Advances in Water Resources, 22, 3,
(1998), 247-256.

[4] P. Mitra and P. Bhattacharyya, Unsteady hydromagnetic laminar flow of
a conducting dusty fluid between two parallel plates started impulsively
from rest, Acta Mechanica, 39 (1981), 171-182.

[5] K. R. Madhura and M. S. Uma, Flow of An Unsteady Conducting Dusty
Fluid Through A Channel of Triangular Cross-section, International
Journal of Pure and Applied Mathematical Sciences, 6 (2013), 273-
298.

[6] A. J. Chamka, Unsteady flow of an electrically conducting dusty gas in
a channel due to an oscillating pressure gradient, Applied Mathematical
Modelling, 21 (1997), 287-292.

[7] A. J. Chamka, The Stokes Problem for a Dusty Fluid in the Presence
of Magnetic Field, Heat Generation and Wall Suction Effects, Inter-
national Journal of Numerical Methods for Heat and Fluid Flow, 10
(2000), 116-133.

[8] Lokenath Debnath and A. K. Ghosh, On unsteady hydromagnetic flows
of a dusty Fluid between Two Oscillating Plates, Journal of Appllied
Scientific Research, 45 (1988), 353-365.

[9] Nicholas Mutua, Ishmail Musyoka, Mathew Kinyanjui and Jackson
Kioko, Magnetohydrodynamic Free Convention Flow of a Heat Gen-
erating Fluid past a Semi-Infinite Vertical Porous Plate with Variable
Suction, International Journal of Applied Mathematical Research, 2
(2013), 345-351.

[10] C. S. Bagewadi and B. J. Gireesha, A study of two dimensional un-
steady dusty fluid flow under varying pressure gradient, Tensor, N.S.,
64 (2003), 232-240.

[11] K. R. Madhura, B. J. Gireesha and C. S. Bagewadi, Exact solutions of
unsteady dusty fluid flow through porous media in an open rectangular
channel, Advances in Theoretical and Applied Mechanics, 2 (2009),
1-7.

[12] D. F. Young, Effect of a time-dependent stenosis on flow through a
tube, Journal of Engineering and Industrial Transactions, 90 (1968),
248-254.

[13] B. E. Morgan, and D. F. Young, An integral method for the analysis of
flow in arterial stenosis. Bulletin of Mathematical Biology, 36 (1974),
39-53.

[14] R. N. Pralhad and D. H. Schultz, Two-layered poiseuille flow model
for blood flow through arteries of small diameter and arterioles, Biore-
hology, 25, 5, (1988), 715-726.

[15] R. N. Pralhad and D.H. Schultz, Modeling of arterial stenosis and its
applications to blood diseases, Mathematical Biosciences, 190 (2004),
203-220.

[16] R. Ponalagusamy, Blood flow through an artery with mild stenosis: A
two layered model, different shapes of stenosis and slip velocity at the
wall, Journal of Applied Sciences, 7 (2007), 1071-1077.

[17] P. Chaturani and P. N. Kaloni, Two-layered poiseuille flow model for
blood flow through arteries of small diameter and arterioles, Biorehol-
ogy, 13 (1976), 243-250.

[18] P. Chaturani and V. S. Upadhya, A two-layered model for blood flow
through small diameter tubes, Biorehology, 16 (1979), 109-118.

[19] J. C. Mishra and S. Chakravarty, Flow in arteries in the presence of
stenosis, Journal of Biomechanics, 19 (1986), 907-918.

[20] J. C. Mishra and B. K. Kar, Momentum integral method for studying
flow characterstics of blood through a stenosed vessel, Biorheology, 26
(1989), 23-35.

[21] A. D. Patel, I. A. Salehbhai, J. Banerjee, V. K. Katiyar, A. K. Shukla,
An analytical soluiton of fluid flow through narrowing systems, Italian
Journal of Pure and Applied Mathematics, 29 (2012), 63-70.

[22] M. S. Uma, K. R.Madhura, Analytical solutions for a dusty fluid
flow through a narrowing channel in a porous medium, Advances and
Applications in Fluid Mechanics, 16 (2014), 2017-2021.



International Journal of Applied Mathematical Research 33

Figure 2: Variation of fluid velocity with r (for M = 0.5, Case-1)

Figure 3: Variation of dust phase velocity with r (for M = 0.5, Case-1)

Figure 4: Variation of fluid velocity with r (for M = 1, Case-1)

Figure 5: Variation of dust phase velocity with r (for M = 1, Case-1)

Figure 6: Variation of fluid velocity with r (for M = 0.5, Case-2)

Figure 7: Variation of dust phase velocity with r (for M = 0.5, Case-2)

Figure 8: Variation of fluid velocity with r (for M = 1, Case-2)

Figure 9: Variation of dust phase velocity with r (for M = 1, Case-2)
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Figure 10: Variation of fluid velocity with r (for M = 0.5, Case-3)

Figure 11: Variation of dust phase velocity with r (for M = 0.5, Case-3)

Figure 12: Variation of fluid velocity with r (for M = 1, Case-3)

Figure 13: Variation of dust phase velocity with r (for M = 1, Case-3)

Figure 14: Variation of fluid velocity with r (for M = 0.5, Case-4)

Figure 15: Variation of dust phase velocity with r (for M = 0.5, Case-4)

Figure 16: Variation of fluid velocity with r (for M = 1, Case-4)

Figure 17: Variation of dust phase velocity with r (for M = 1, Case-4)
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Figure 18: Variation of fluid velocity with r (for δ = 0.2, Case-1)

Figure 19: Variation of dust phase velocity with r (for δ = 0.2, Case-1)

Figure 20: Variation of fluid velocity with r (for δ = 0.4, Case-1)

Figure 21: Variation of dust phase velocity with r (for δ = 0.4, Case-1)

Figure 22: Variation of fluid velocity with r (for δ = 0.2, Case-2)

Figure 23: Variation of dust phase velocity with r (for δ = 0.2, Case-2)

Figure 24: Variation of fluid velocity with r (for δ = 0.4, Case-2)

Figure 25: Variation of dust phase velocity with r (for δ = 0.4, Case-2)
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Figure 26: Variation of fluid velocity with r (for δ = 0.2, Case-3)

Figure 27: Variation of dust phase velocity with r (for δ = 0.2, Case-3)

Figure 28: Variation of fluid velocity with r (for δ = 0.4, Case-3)

Figure 29: Variation of dust phase velocity with r (for δ = 0.4, Case-3)

Figure 30: Variation of fluid velocity with r (for δ = 0.2, Case-4)

Figure 31: Variation of dust phase velocity with r (for δ = 0.2, Case-4)

Figure 32: Variation of fluid velocity with r (for δ = 0.4, Case-4)

Figure 33: Variation of dust phase velocity with r (for δ = 0.4, Case-4)
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Figure 34: Variation of fluid velocity with r (for η = 0.4, Case-1)

Figure 35: Variation of dust phase velocity with r (for η = 0.4, Case-1)

Figure 36: Variation of fluid velocity with r (for η = 0.8, Case-1)

Figure 37: Variation of dust phase velocity with r (for η = 0.8, Case-1)

Figure 38: Variation of fluid velocity with r (for η = 0.4, Case-2)

Figure 39: Variation of dust phase velocity with r (for η = 0.4, Case-2)

Figure 40: Variation of fluid velocity with r (for η = 0.8, Case-2)

Figure 41: Variation of dust phase velocity with r (for η = 0.8, Case-2)
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Figure 42: Variation of fluid velocity with r (for η = 0.4, Case-3)

Figure 43: Variation of dust phase velocity with r (for η = 0.4, Case-3)

Figure 44: Variation of fluid velocity with r (for η = 0.8, Case-3)

Figure 45: Variation of dust phase velocity with r (for η = 0.8, Case-3)

Figure 46: Variation of fluid velocity with r (for η = 0.4, Case-4)

Figure 47: Variation of dust phase velocity with r (for η = 0.4, Case-4)

Figure 48: Variation of fluid velocity with r (for η = 0.8, Case-4)

Figure 49: Variation of dust phase velocity with r (for η = 0.8, Case-4)
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