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Abstract

In this paper, we investigate the mathematical model for the diffusion of dust particles emitted from a fixed source.
Mathematically, the timelependent diffusion equation in the presence of a point source whosgtstsetlependent on

time is solved. The solution in closed form for a source of general time dependence is obtained. A number of special
cases, in which the source function of time is explicitly given and special values of the diffusion parameters are take
are examined in detail. The numerical calculations show the strong dependence of the concentration of dust on the
speed of the wind, the source, and its position in the vertical direction. It is also found that the diffusion parameters pla
an importantrole in the spread of the dust particles in the atmosphere. When diffusion is present only in the vertical
direction, it is found that for small times the dust spreads with a front that travels with the speed of the wind
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1. Introduction

The study of the mathematical model for the diffusion of dust particles emitted from a fixed source is relevant to some
industrial and environmental applicationsi[B]. Most industrial establishments have factories with chimneys through
which the fumes escape into the atmosphere outside the factory. These fumes diffuse into the surroundings causing
pollution and forming a health hazardi[4/]. In arid lands, strong wirgdcan cause the dust from the ground to travel

with wind and can cause danger to tarmac roads and also dirt in hoiisEs|[8

Small particles in the atmosphere are divided into 3 categ@didarge ones (heavy) which are of diameter 0.5 mm or

more, (i) intermediate ones (medium) which are of diameter in the rang@.9.thm, andiii) light ones (small) with

the diameter less than 0.1 mm. The dynamics of these particles depend on their size, the prevailing wind speed and the
resulting turbulent eddsethat disperse and diffuse the particles. An erodible bed is a type of surface, which has loose
particles that can be removed easily by the wind. When wind blows over an erodible bed of small particles, the particles

begin to move. The motion of such peles depends on a certain speed that is cétleshold (critical) wind speed, .

This speed depends on the size and surface roughness of the particles and logically it will be different for each particle.
The particle will move fom one place to another if the prevailing wind speed exceeded the critical speed for this
particle.

For heavy particles, the influence of the gravitational force is strong and the threshold speed is large. So, these particles
stay on the surface of theogmd and their motion takes shape of rolling and/or sliding along the surface. This type of
motion is called creep. The influence of gravity in the case of intermediate particles is smaller than that for heavy
particles. So, their motion takes the formbofluncing along the surface. Such motion is known as saltation [12]. For the
light particles, the critical velocity is small and the influence of gravity forces is not much. So, these particledycan easi
fly in the atmosphere and stay as suspension fay tones before they fall down to the ground. This last family of
particles includes natural dust, industrial fumes, and interstellar particles [13].

The diffusion of particles emitted from a certain source in the atmosphere is given by the atmospheian dif
equation [14]
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In which C(r,t") is the concentration of the dust particles after time r is position vector(r=x"i 4" j #k),
u(rt”) is the local velocit of the particlesw(r,t")is the settling velocity, an®(r) is the stress tensor and it is given
in aCartesian system of coordinat@$x’,y ,Z ) by
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Whereoz" vertically upwards andX andOy are horizontal.

The settling velocity depends mainly on the size and on roughness of the particles. The stress tensor represents the local
viscosity due to the friction beten particles of the fluid. The left hand side of the equdfipnepresents the rate of
change of dust particles while the right hand side representhithd he second term on the left hand side represents
the advection of the particles.

The spread of the dust particles has been studied theoretically and experimentally quatian(1). Gillette and
Goodwin [15] studied the steady state transport of s@atl particles using theld atmospheric diffusion equation (

Z - coordinate) in the case of moderate wind speeds. They suppaseddbnce of the advection term and the
presence of noemero vertical component of diffusion only. In their model, they assumed that the diffusion component
varies with the vertical coordinatg , and the settling velocity is depesrd only on the particle radius. They obtained

an analytic solution for the concentration in closed form as a functian.diVhen they tested the applicability of their
model to actual soil transport, they concluded that therdese @agreement between them.

Hassan and Eltayeb [16] extended the Gillette and Goodwin model to find the concentration of the steady state 2

diffusion equation. Considering Cartesian coordin&deéX, Yy, z) with Oz vertical andOX along the wind speed,

they assumed that the wind move with the velo€lty(z),0,0), and the diffusion components are absent except the

vertical one which was proportional to the vertical heightthe same as in the Gillette and Goodwin model. Their
general result from this model was that the concentration is also dependent on the istangethe wind direction.

The study by Hassan and Eltayeb [&#Xhmined the Gillette and Goodwin model in the presence of time variations as
an initial T boundaryvalueproblem (IBVP) and found the solution in closed form for all titne They used the
atmospheric diffusion equation with homogéxy of concentration in the horizontal directions in the presence of the
diffusion and gravitational forces. They assumed that the diffusion components are all zero except that in the vertical
direction and it was linearly proportional to the height zeyrboncluded that the concentration is very dependent on
time, height, and settling velocity. When they tested the initial value problém ag , they deduced the steady state

of the Gillette and Goodwin model.
Sharan et al. [3] exaimed a steadgtate model for low wind speeds. They assumed that the particles are very light and

hence they neglected the gravitational force. They supposed that the air stream moved with a uniforntveiocity

the X - direction. Moreover, they assumed the presence of diffusion components in three coordinate directions and all
of them are linearly proportional to the distance along the prevailing wind. They suggested a source of particles at
ground level, asn the studies above. They compared their results with some observational data and they found
reasonable agreement.

In the current study, we intend to extend the model by Sharan et al. [3] to include the time variation. This model applies
for low wind speds and is chosen because it is relevant to wind speeds in Oman most of the year. This model poses an
initial-boundaryvalue problem for a linear partial differential equation of the second order. Here gravity is ignored but
diffusion is potent. In sectioB, we define the model. In section 3, we obtain the general solution of the problem in
closed form. The solutions of some special cases with regard to the values of the diffusion parameters and the time
dependence of the source, is examined in detailedtion 4, we present the solutions of the special cases graphically
and discuss them in more detail as to their dependence on the parameters of diffusion. We also examine the solutions as
the time increases indefinitely and compare the limiting solutidh thiat of the steady state. In section 5, we make
some concluding remarks.
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2. Formulation of the model

Define a Cartesian system of coordina@®$X, Y, z)in which OZ is vertically upwards,OX and Oy  are

horizontal and thex - axis is oriented in the direction of the wind speed. The Concentr@@n*, y* , z ,f ) of

the dust particles in the time is governed by equan (1). We specify the velocity of dust particles and the settling
velocity

u=U,0,0), w 9, (€)

Where (U, 0, 0) is the wind speed. Herge assume that thiust particles are very light.
We consider the diffusion tens(#) has three nozero components and are linear in the direction so that
* * *
D **:aUX , D* * :&JX ) D** :@X ’ (4)
X X yy zz
In which a, band are positive constants.
Using equation$3) and(4) to write equatior{1) as
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Equation(5) represents théinearizedthreedimensional unsteadgtmospheric diffusion equation in the absence of
gravitational forces. It describes the-steady state diffusion of dust particles. We assume that system is due to a fixed
source at(0,0,h" ), whereh 2 0.

The relewant initial and boundary conditions are:

C(x,y,z,t)- 0 as % ‘ y[.z- = 6)
C(x,y,z,0=0, )
C(o,y*,z*,f)zugd(y)d*z “hyf(t) with f(0) 8t O ®

uC(x',y ,0,t
o

)=o), ©

Whered(s) i s Di r ac 6 s and eohditia(8) indicatestthiatahe source @D,0,h" ) has a sengthQ .

The equation(5) subject to the condition) - (9), poses an initiaboundaryvalue problem for a partial differential
equation of second order. When, 4, gO0andx 20, the partial differential equatio(b) is elliptic in nature.
However if any two of the parametesas 4 vanish, the equation becomes parabolic.

2.1. Solution of the general case

If we define
aa ‘6 27 5 al

t=alt” ,x X ,2 & $2,Y = ¥, a—— ;a8 b g0, (10)
¢9 = & 2 a

Thenequation(5) becomes
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With the initial and boundary conditions

(i) C(x,y,z,00=0; (i) C(x,y,z,t)- 0 ; x]y,z- @ :J

(iii ) %M:O; (v)C Oy zt) Qdly)dz (), f(0) 04; "
Where

hz% ﬂgh* , Q % (13

Now, we take the Fourier transform in , Fourier Cosine transform in , and Laplace transform in time of equation
(11) and the conditionél2). Thus we obtain

d*w dw
X +

-(x/? xnf W 0, 14
o (X 4 (14
Where
W(x,/,m }=rC(x /my e di (15
C (x,/,mt) = \E AC(x /2 1 cos(mz) dz (16)
P o
— 1 ° ; .
C(x,/,z,t)= —— RC(x v,z D & dy; i &, 17
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, W(x/, m 1 satisfies the conditions

(YW(X,/,m, - 0 asx- © P
U

. Q U, (18)
@ir) W (0,/ ,m, w=— cosfmh) F ( v)g/
2p
And we have defined
F(w)=rf (t) e dt. (19
The equatiorffl4)c an be reduced to Whittakerds equation
2 a E-/I2 0
e a [0}
373”’821 +£k e 800 0
® :

By using the transformations
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W (x,/,m y= x** Ux /m )i (21)
z:_W, h—a -l, 32 :% mz, k 2sx, (22
2s 2

The equatior{20) has the general solution [18]

~ o

e 3a w ad w
uk,/,m, = 6 K21 @2 % Mge +—,ak8+BU %* (23
g 2 2¢2s

In which A and B are constants ani (a,b,x),U(ab, x) are the Confluent hypergeometric functions of first and
second kind, rgmectively [19].
Then using22) - (22) to expressV (x,/, m, win the general form

é 5 w o] aa fi
W(x,/,m W= e (297 A +—,a2s +B U—(—+ S 24
(x y= e @9 %Eaxo 28e25azx?t (29

The application of the conditiongl8) and using the properties of the Confluent hypergeometric functions [19] when
x- 0 andX - © leadto

A=0, (29
Q G % % 5
B = 5cos(mh)F(W)—QW(_Zs) : (26)

Where G(a) is Gamma function.
The solution of equatio24) then can be written in the form

o

W (x,/,m, v}cLCOS(mh) F( Mgel 2
20G(1 -a) C 2

aO
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The next tep is taking the inverse Fourier transform with respecy eind inverse Fourier Cosine with respectzto

and theinverse Laplace transform with respect to time forakeressior(27). After some algebraic simplificationse
obtain

Q c+Hi o

COuY.Zh= o A FWAXY 2z W dw oo, (28
8ip° Gl -a) c-i @

Where, all the poles¥, of F(w) Ax,y,z, ¥lie in Re@)<c, and the functionf (X, Y, z, Iy is given by

f:z’f{Jo(r\iy2 {z h)z) \]o‘( r\/yz (z+ r)z}} % %3 w (.)s Uaa w ' ax r(ﬁ 2

29 =

In which J,(x) is Bessel functin of the first kind of ordero, and we have defined the following circular
transformation

/=rcos(g , m *sin( § (30

Wherethe Jacobian of this transformation is given by
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The expression&8) and(29) give the solution for the concentration in the y,z) plane at all times. The soluti¢@8)
has a complicated dependence on the variables of the system. However, we can get some undefrttendihgeace
of diffusion parameters in all directions by studying some special cases of the parfameterdc. In this paper, we

considerthecase = 6 9; .

J= . (31

2.2. Solution in the case of vertical diffusion£= 69, g0)

This case happens when the vertical diffusion only is present, and both longitudinak (pkomdlatitudinal (alongy )
diffusions are absent. Thus, the solution is given by the express

) ) é .. 2 l,:l .. i 2- 0‘(
C(x,z,t)= QIE(t-)H( -x) éexp?Lzz} irexp M ( (32
Z\Ex é ’[ 2X y T 2X }'/l

Wheret , x,z,h,Q are given in the equatior{¢0) and(13) and H (X ) is the Heaviside function.
Expression(32) represents the general solution for a general sofifdg in closed form. This expression speetfithe

concentration at every poirftx, z, t) of the domain. We note that the time dependence appears only in the amplitude of

the concentration and is absent in the exponential dependence. We also note that the presence of the keaviside u
function in the amplitude of the solution represents the discontinuity in the solution across the straightt limethe
(x,t) plane. In section 4 below, we will illustrate this solution by three examplée gource functiod (t) .

3. Discussion

Expression32) gives the general solution of the concentration for a source withd#pendencé (t) whenvertical
diffusion (D,)is present, and both longitudinal and latitudinal diffusidds,and D , are absent. Here we specify the
solution of the concentration of dysrticles using three examples of functio@) , which are (i) Heaviside function
H (), and two exponential functions (i} e",/ >0and (iii) 1- e“. The main difference betwa these examples of

function is that the first one has a jump from 0 to 1 a0, and the others start from 0 and then increase continuously

until they reach 1. Our aim for choosing these specific examples is that we want to effecthaf the strength of the
source as time varies. |In the case of the first=0exampl
While in the second and third examples, the strength of the source dependgioreth

3.1. The source function withf ) =H ()

The general expression of the solut{88) can be written in the form

€ Q Sexp‘é_(h 2) Oy oy &N D08
C(X,Z,t):in/ZXé 2y AR T : (33
% 0 , X >t

The contours of the solutigi33) in the (x,z) plane are illustrated in figures 1 and 2 for different values of timé&/e
observe that the solution has a disauity at x =t for smallt . Noting the transformatio(iL0) we see that the line

x - t €onstancomresponds tox - Ut =onstan. So that on this characteristix /dt = U, i.e. the concentration

of particles travels with a spedd away from the source. This is, illustrated for two sample valugs(20.0, 5.0)in

figures 1 and 2, respectively. The case 0.0 corresponds to pollution from a car exhaust while that a6.0 is
representative of pollution due to an industrial chimney. In this case,uhesoe of pol |l ut ant doesnbo
For x <t, the concentration decreases away from the source and spreads further from the soumceeases. For

x >t , there is no pollutan This situation applies for all values of the height of the source above ground level. For
small values of the time, the proximity of the front ak =t to the source causes the pollution to diffuse upwards
(figures 1,2(a), (b), (c)). For large values of timethe discontinuity ak =t has no effect on the distribution of the
pollutant. This is because the source is not strong enough to force the pollua@rafafrom the origin. As a result the
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pollution concentration is reduced near the source. We notice that the height of the source above ground level affects
the distribution of dust on the ground. When the source is situated on the ground, the pmildlierground is strong

but as the height increases, the pollution spreads over a larger area both horizontally and verticalty. Whehe
distribution of dust approaches the steady state solution, as can be seen from thi(figames2(f).

Figures 3 and 4 show the sketch of the solu(®8) in the (x,z,C) space for two values of the source heighand

fixed timet . The surface of the concentration here is drawn-@din8nsions. The characteristic lizke=t appears in
the figure. We deduce from figures 3 and 4 that the front moves with the speed ofdhe w

@
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@

Fig. 1: The Isolines of he ConcentratiorC(X, Z )= Q(X z }/ Cin the (X, Z) Plane vinen f (t)=H (t) andh =0.0, for Different Values
of the Time: (A)t =0.1, (B)t =0.4, (C)t =1.0, (D)t =5.0, (E)t =7.5, and (F)t =10.0. Note the Precipitation of the Pollutant on the
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Ground ashe Time Increasedlotethe Position oftie CharacteristicX =t ast Is Increasedthe Scales are Different for the SakieQarity.
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Fig. 2: Thelsolines of he ConcentratiorC (X, z,t) = C(X, z §/ Gin the (X, Z) Plane vien f (t)=H (t) andh =5.0, for Different Values of

the Time: (A)t =0.1, B)t =0.4, (C)t =1.0, (D) t =5.0, (E) t =7.5, and (F)t =10.0. CompareFigures 1 and 2 to Notice the Influence Of
Increasing the Heightf@\n Industrial Chimneythe Scales are Different for the SakieQarity.
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Fig. 3: TheProfiles of he ConcentratiorE(x, z,t)=C(x z 9/ Qin the (x, z,E) Space wen f (t)=H (t) andh =0.0, fort =0.4. Notethe
Characteristic Linex =0.4. Comparewith Figure 1(B).
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Fig. 4: The Profiles of he ConcentratiorC(x,z,t)= C(x, z §/ Qin the (x,z,C) Space Whenf ¢)=H ) andh=5.0, fort =0.4.
Comparewith Figure 2(B).Notethe Pollutant Concentrat&tery Close tolie Source.

3.2. The sarrce function with f t) =1 €’ , / ©

The solution(32) becomes

2

D:

(s (1o 9<))2exr)}|§_(h +Z)20ij*exp P 37 08 ¢
C(X'ZJF%Z\@x 6 1 2%y 122 yj (34
i

0 , X >t

The contours of the solutioi84) in the (X, Z) planeare illustrated for different values of the timeand decay factor

/ in figures 58. We note that the strength of the source in this case is an exponential function of the time, and hence
the strength oftte source depends on the coefficient of décag well as on the time. When this coefficient is small,

then the strength of the source is weak for small times. Figures 5 and 6 illustrate the profiles of the solution for a fixed
value of / =10.0 and different values of the tintewith two different heights of the source. We observe that there is no
discontinuity in the distribution of the pollutant in tige,z) plane whatever the values of the time and height. This is

due to the fact that the source is very weak for small times and hence the emission of pollution is weak and this gives
the discontinuity atx =t , which travels with the speed of thénd, time to travel further than the front of the pollution.

Thus the linex =t is present but the pollution is behind the line and there is no actual discontinuity in the distribution

of the pollutant.

As we have seen in case (hetheight of the source above ground level affects the spread of pollutant in the space. This
state happens here also. Figures 5 and 6 illustrate the relation between the height of the source and the area that is
covered by the pollutants in the space. leoge values of the time, the distribution of the pollutant converges to the
steady state solution (figures 5 and 6(f)).
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Figures 7 and 8 show the profiles of the concentration of pollutants in the space for a fixed valdenaf tl+.0 and

different values of the decay factorfor two different values of the height of the source. For small values, dfie

strength of the source is weak and its abilityptsh the pollutant far away from the origin is not strong. Hence, the
pollutant cannot spread far away from the source and so the characteristic din¢ & far ahead of the pollutant

(figure 7,8 (a, b)). When we choose a largiugeof the decay factor , the strength of the source of the pollutant is
increased. Then the particles diffuse in large areas in the atmosphere, and this resulted in the appearance of the
characteristic linex =1 (figure 7,8 (c, d)). Furthermore, wheh- = , the spread of the particles approaches the
distribution of particles in case (i) (see figures 7(d), 8(d) and compare them with figures 1(c) and 2(c), respectively).
These situations hapned due to the relation of the Heaviside function in case (i) and exponential function in case (ii)

for large values of .

The height of the source above ground level plays an important role in the distribution of the patiutiaat i
atmosphere. Whenever the source of pollutant is raised, the pollution spreads both upwards and downwards as well as
horizontally and hence can cover a wideza than that at ground level.
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Fig. 5: The Isolines of he ConcentratioiC (x, z, t)in the (X, Z) Plane wnen f (t) =1 € /t tor h=0.0,and/ =10.(and he Timet Takes
the Values0.1,0.4,1.0,5.0,7.5, and 1Cin (A), (B), (C), (D), (E) ad (F), RespectivelyThe Scdesare Different for the Sake €larity.
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Fig. 6: Thelsolines of he ConcentratiorE(x, z,t)in the (X, Z) Plane ven f (t) =1 <~ /t for h=5.0,and/ =10.(and he Timet Takes the

Values 0.1,0.4,1.0,5.0,7.5, and 1Cin (A), (B), (C), (D), (E) ad (F), RespectivelyCompareFigures 5 and 6 to Notice the Influence of
Increasing the Height ohalndustrial Chimney.
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Fig. 7: Thelsolines  the ConcentratiorC (x, z, t)in the (X, 2) Plane vhen f(t) =1 ' for h=0.0, andt =l1.(and he Factor/ Takes
the Values0.5,1.0,10.0,and 100in (A), (B), (C) and (D), RespectivelyNotethe Increasing of th€oefficient d Decay.
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Fig. 8: Thelsolines of he Concentratioi€ (x, z, t)in the (X, Z) Plane vhen f (t) =1 " /ttor h= 5.0,andt =1.(and he Factor/ Takes
the Values1.0,10.0,100.0, and 1000in (A), (B), (C) axd (D), Respectivelomparewith Figure3(C).

3.3. The source function withf (t) =1 et

The solution(32) becanes

€ q (%28 B 2?0 B 3% 09
1 1-e ) €expj >— Uexp +——— UWix €
C(x,z, 9= 2y2px 6 1T " y T 2x vl (39
|
io , X >t

The contours of the solutiqi35) in the (x,z) plane are illustrated for different values of the timan figures 9 and 10.

We note here that the source is very weak whénsmall. This has the effect that the concentration of the pollutant
spreads with slow speed (i.e. much l#sU ) and hence the characteristic travels with a faster speed so that there is
no discontinuity in te concentration of the pollutarithe pollution decreases away from the source.
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For large values of the time, the source is still weak and unable to push the pollutants away frdrheit the
characteristic figues thmeéneral, thbepagieurof the solutioh ia this case is very similar to case
(i) except that the distribution decreases more rapidly as the distance from the source is increased.

The influence of the height of the source on the distribusothé same as that discussed in cases (i) and'i(ig.
distribution of the pollutants in the atmosphere converges to the steady state solutian when

Comparison between the three cases of the fundtion shows that the dependence of the source on the time has an
influence on the distribution of the pollutant in the space. This applies to all values of the height (figis 1

The solution of the case (i) in which the source function is 1 far=all, is identical with the limiting case (ii) when the
parameter/ - = for all t , 0. The solution of case (iii) also approaches that of case (i} as . For small and
modeate values of the time, the concentration of pollution at a general pgintz) is different in the three cases. This
is because the strength of the source at these times is different for the three caseifoiThestrength of the source for
case (i) resulted in the appearance of the discontinuity after smdllle the disappearance of the discontinuity in
cases (ii) and (iii) is due to the weak sources so that the pollution ikunakach the discontinuity.

@ ) ©

(O]

Fig. 9: TheIsolines of he Concentratiol€ (x, z, t)in the (X, 2) Plane vhen f (t) =1 <2 andh = 0.0 for Different Values of the Time: (A)
t=0.1,(®)t=0.4,(C)t=1.0, (D)t =5.0, ()t =7.5, and (F) t =10.0.

— 12
Fig. 10: TheIsolines of he ConcentratiorC (x, z, t)in the (X, Z) Plane vhenf (t) =1 € t andh =5.0 for Different Values oflie Time: (A)
t=0.1,(B)t=0.4,(C)t=1.0,(D)t =5.0,(E) t =7.5, and (F) t =10.0. Notethe Rise of Dustsat Increases.

For the limiting cases, we examine the soluti(@8® and(35) for large values of the time. For large values of the time,
theybecome

é ..- 20 Ty ! 2 l’:l‘
C(x,z,t)|t_ 0 = Qe éexp?% (rex Fen 229 L (36)
2wx § 1 2%y’ g

Which is the same as soluti¢®3). This means that the solutions in the cases (ii) and (iii) are uniformly convergent to
the solution in the case of the functiéift)=H (t) whent - © . Furthermorefor the limit / - =, the solution(34)



