Cobweb heuristic for multi-objective vehicle routing problem

Joseph Okitonyumbe Y. F 1*, Berthold Ulungu E.-L 2, Joel Kapiamba Nt. 3

1 Mathematics Department, ISP/Mbanza-Ngungu, Democratic Republic of Congo
2 ISTA/Kinshasa, Democratic Republic of Congo
3 Mathematics Department, Université de Kinshasa, Democratic Republic of Congo
*Corresponding author E-mail: josepffak@gmail.com

Abstract

Solving a classical vehicle routing problem (VRP) by exact methods presents many difficulties for large dimension problem. Consequently, in multi-objective framework, heuristic or metaheuristic methods are required. Due to particular VRP structure, it seems that a dedicated heuristics is more suitable than a metaheuristic. The aim of this article is to collapse different heuristics solving classical VRP and adapt them for to solve the multi-objective vehicle routing problem (MOVRP). The so-called Cobweb Algorithm simulates spider’s behavior when weaving cobweb. This paper presents the algorithm, a didactic example, concluding remarks and way for further researches.

Keywords: Savings; Heuristics; Multiobjective; Vehicle Routing Problem.

1. Introduction

The vehicle routing problem (VRP) [1] is one of the most attractive topics in operation research, which is useful for logistics, and supply-chain management (see [2], [3]). Indeed one of the real-life multi-objective optimization problem applications [4], VRP deals with minimizing the total cost of logistics systems [5]. VRPs are well-known combinatorial optimization problems arising in transportation logistic that usually involve scheduling in constrained environments (see [6], [8]). In transportation management [9], there is a requirement to provide services from a supply point (depot) (see [10], [11] to various geographically dispersed points (customers) with significant economic implications; many researchers have developed solution approaches for those problems (see [12], [15]).

We devote this paper to the hybridization of some heuristics dedicated to classical VRP problems for solving the multi-objective Vehicle Routing Problem (MOVRP) (see [16], [19]). There are:

i) The economics heuristic of Clarke & Wright [20];
ii) Insertion heuristic (see [21], [22]);
iii) The two phases Heuristic [23];
iv) The heuristics of local research [24].

A much more complete description of this classical VRP heuristics, with a comparative analysis of their performance, can be found in chapter 5 of Toth et al. [22] and in Brasseur et al. [25]. All these heuristics are hybridized with the preferential reference mark of predominance method (see [26], [27], [28]). For this purpose, our paper is organized as follows: section 2 presents the mathematical formulation, section 3 presents some incidental definitions, next in section 4 we describe the so-called preferential reference mark of dominance method (PRMD), section 5 outlines Cobweb Algorithm. A didactic example is provided to validate our step.

2. Mathematical formulation of multi-objective vehicle routing problem

Let be considered m objectives functions and v the number of delivery vehicles with a maximal capacity Q intended to serve all customers indicated by the set V from the central deposit during a maximal duration time T. The mathematical formulation of this multi-objective problem of vehicles routing is the following:
\[
\begin{align*}
\text{min} \quad & \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{m} c_{ijk} x_{ijk} \quad k = 1, 2, \ldots, m \\
\sum_{i=1}^{n} \sum_{j=0}^{m} x_{ijt} & = 1 \quad \forall i \in V \setminus \{0\} \quad (1) \\
\sum_{t=1}^{v} x_{ijt} & = \sum_{t=0}^{v} x_{jlt} \quad \forall j \in V \setminus \{0\}, \quad t = 1, 2, \ldots, v \quad (2) \\
\sum_{j=1}^{n} x_{ojt} & = 1, \quad t = 1, 2, \ldots, v \quad (3) \\
(P) \equiv \sum_{i=0}^{v} \sum_{j=0}^{v} x_{ijt} & = 1 \quad t = 1, 2, \ldots, v \quad (4) \\
\sum_{i=1}^{n} \sum_{j=0}^{m} q_i x_{ijt} & \leq Q, \quad t = 1, 2, \ldots, v \quad (5) \\
\sum_{i=1}^{n} \sum_{j=0}^{m} s_i x_{ijt} + \sum_{i=0}^{v} \sum_{j=0}^{v} t_{ijt} & \leq T, \quad t = 1, 2, \ldots, v \quad (6) \\
\sum_{i=1}^{n} \sum_{j=0}^{m} x_{ijt} & \geq \sum_{j=1}^{n} x_{ijt}, \forall \ U \subset V \setminus \{0\}, l \in U; \quad t = 1, 2, \ldots, v \quad (7) \\
x_{ijt} & \in \{0, 1\} \ \forall \ i, j \in V, i \neq j, \quad t = 1, 2, \ldots, v \quad (8)
\end{align*}
\]

Interpretation of the different constraints of the vehicle routing problem is:
(1) Each customer \(i \in V \setminus \{0\} \) is visited one and only one time,
(2) Each vehicle \(l \) arriving at the customer \(j \) leaves from there.
(3) and (4): each vehicle \(l \) leaving the depot comes back to it,
(5) Respect of the maximal capacity \(Q \) of vehicles,
(6) Respect of the maximal duration time \(T \) of routing,
(7) Elimination of the under-tours to guarantee the connection of the different vehicle routing,
(8) Precise that it is a combinatorial optimization.

3. Definitions

1) Reference mark of dominance of available solution \(a \) is often referred to an orthonormal reference mark of origin \(a \), dividing the space in four areas of preference in accordance to the diagram of figure 1 below.

![Fig. 1: Preferences Zones in the Dominance Relation](image)

2) Let us now consider the objectives’ space \(O \) of a multi-objective combinatorial optimization problem, \(z_1, z_2 \in O \) and \(V(z_1) \) a neighborhood of \(z_1 \). It is said that the solution \(z_2 \in V(z_1) \) certainly improves \(z_1 \) if \(z_2 \) is situated in the non-dominated solutions area of the preferential reference mark of \(z_1 \). In this case, the acceptance probability of \(z_2 \) equals 1. It improves \(z_1 \) with an acceptance probability \(\rho \), \(0 < \rho < 1 \) when it is situated in an indifference area of
the z_2 preferential reference mark, and with a nil acceptance probability in the dominated solutions area. In other words, if $\rho \equiv \mathbb{P}(\text{acceptance of neighborhoods } z_1 \text{ of } z_2)$ then:

$$\begin{cases}
\rho = 1 & \text{if } z_2 \in \text{III} \\
0 < \rho < 1 & \text{if } z_2 \in \text{II} \cup \text{IV} \\
\rho = 0 & \text{if } z_2 \in I
\end{cases}$$

4. Description stages of preferential reference mark of dominance method

Input:
D: Set of admissible solutions
$O = F(D) = (f_i(a))_{i=1,\ldots,m}, a \in D.$
Output:$E(P)$: Set of efficient solutions.
Start
$E(P) \leftarrow \emptyset$
Represent graphically O
Do while $O \neq \emptyset$
do
Choose z in O
Draw the preferential reference mark of dominance of z
For z' in $O \setminus \{z\}$ do
If z' is situated in the non-dominated solutions area then
$E(P) \leftarrow E(P) \cup \{z'\}$
$O \leftarrow O \setminus \{z'\}$
End if
If z' is situated in the dominated solutions area then
$O \leftarrow O \setminus \{z'\}$
End if
If the non-dominated solutions area is empty then
$E(P) \leftarrow E(P) \cup \{z'\}$
$O \leftarrow O \setminus \{z'\}$
End if
Next
If z' is situated in the indifference area then
$z \leftarrow z'$
$E(P) \leftarrow E(P) \cup \{z'\}$
$O \leftarrow O \setminus \{z'\}$
End if
Loop
Choose z in $E(P)$
Draw the preferential reference mark of dominance of z
For z' in $E(P) \setminus \{z\}$ do
If z' is situated in the non-dominated solutions area then
$E(P) \leftarrow E(P) \setminus \{z\}$
End if
If z' is situated in the dominated solutions area then
$E(P) \leftarrow E(P) \setminus \{z'\}$
End if
Next
Display $E(P)$
End

5. Description stages of cobweb algorithm

Following functions are used in the algorithm:
- $\text{RePref}(A,B)$ return the efficient solutions set of the saving distance matrix A and the saving priority matrix B obtained by preferential reference mark of dominance method
- $\text{Card}(A)$ return the number of element of A
- $\text{Insert}(x,y)$ return road z in which y is inserted in road x based on the insertion heuristic
- $\text{Capacity}(r)$ return the sum of customers’ request
- $\text{RechLoc}(P)$ return a fleet P ameliorated by local research heuristic
- $\text{Len}(r)$ return road length t

• Priority(r) return the sum of road t visited-customers’ priorities

Input:
- A the set of n customers
- \((d_{ij})\) the matrix of distances between customers \((i=0, \ldots, n; j=0, \ldots, n)\)
- \((p_i)\) the matrix of customers’ priorities \((i=1, \ldots, n)\)
- C the vehicles’ capacity
- \((d_i)\) the requests’ vector of customers, \((i=1, \ldots, n)\)

Output:
- P : Set of compromises’ road
- Triples (length, prior, size) corresponding to fleets’ length, the sum of customers’ priorities and its’ size

Start

For \(i=1\) to \(n\) do

For \(j=1\) to \(n\) do

\(\delta_{ij} \leftarrow d_{i0}+d_{0j} - d_{ij}\)

\(p_{ij} \leftarrow p_{0i}+p_{0j}\)

Next \(j\)

Next \(i\)

E \(\leftarrow\) RePref \(((\delta_{ij}), (p_{ij}))\)

B \(\leftarrow\) \{\(x/ x \) is a customer visited by a road \(t \in E\)\}

Part \(\leftarrow\) \{\(P/P\) is a partition of \(B)\}

A \(\leftarrow\) A \(\setminus\) B

Choose \(P \in \text{Part}\)

taille\(\leftarrow\) Card \((P)\)

Do while A\(\neq\) \(\emptyset\) **do**

Choose \(a\) in A

testinsert \(\leftarrow\) false

Foreach \(r\) in \(P\) do

If Capacity (Insert \((r,a))\leq C\)

\(r \leftarrow\) Insert \((r,a)\)

testinsert \(\leftarrow\) true

End if

Next \(r\)

If testinsert = false then

\(r' \leftarrow\) Insert \((\text{depart, } a)\)

\(P \leftarrow P \cup \{r'\}\)

Size \(\leftarrow\) Size + 1

End if

A \(\leftarrow\) A \(\setminus\) \{a\}

Loop

P \(\leftarrow\) RechLoc \((P)\)

Length\(\leftarrow\) 0

Prior\(\leftarrow\) 0

Foreach \(r\) in \(P\) do

Length\(\leftarrow\) Length + Len\((r)\)

Prior\(\leftarrow\) Prior + Priority\((r)\)

Next \(r\)

Display \((\text{Length, Prior, Size})\)

End

6. Didactic example

6.1. Facts of the case

A pharmaceutical industry having a warehouse (0) launches a new product on the market; it lays out of an offer of delivery vehicles of eight tons maximum capacity. The requests \(d_i\) \((i=1,2,\ldots,15)\) of the customers arise in the following
table, the distances being symmetrical and checking the triangular inequality. The customers’ priorities are quantified from 1 to 15 and are allotted according to descending order of the requests arrivals.

<table>
<thead>
<tr>
<th>N°</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>15</td>
<td>28</td>
<td>30</td>
<td>22</td>
<td>27</td>
<td>21</td>
<td>22</td>
<td>20</td>
<td>36</td>
<td>63</td>
<td>120</td>
<td>22</td>
<td>63</td>
<td>12</td>
<td>27</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>21</td>
<td>32</td>
<td>32</td>
<td>41</td>
<td>35</td>
<td>32</td>
<td>22</td>
<td>52</td>
<td>25</td>
<td>37</td>
<td>18</td>
<td>25</td>
<td>22</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>18</td>
<td>30</td>
<td>46</td>
<td>47</td>
<td>50</td>
<td>42</td>
<td>45</td>
<td>54</td>
<td>40</td>
<td>54</td>
<td>18</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>18</td>
<td>36</td>
<td>43</td>
<td>52</td>
<td>50</td>
<td>24</td>
<td>42</td>
<td>56</td>
<td>49</td>
<td>42</td>
<td>54</td>
<td>36</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>18</td>
<td>27</td>
<td>40</td>
<td>43</td>
<td>21</td>
<td>12</td>
<td>43</td>
<td>38</td>
<td>12</td>
<td>49</td>
<td>63</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>16</td>
<td>33</td>
<td>42</td>
<td>15</td>
<td>51</td>
<td>72</td>
<td>55</td>
<td>51</td>
<td>38</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>18</td>
<td>30</td>
<td>32</td>
<td>23</td>
<td>65</td>
<td>52</td>
<td>23</td>
<td>58</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>15</td>
<td>35</td>
<td>55</td>
<td>37</td>
<td>39</td>
<td>53</td>
<td>55</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>28</td>
<td>52</td>
<td>38</td>
<td>64</td>
<td>52</td>
<td>52</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>43</td>
<td>25</td>
<td>42</td>
<td>43</td>
<td>39</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>40</td>
<td>53</td>
<td>35</td>
<td>64</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>62</td>
<td>26</td>
<td>42</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>33</td>
<td>53</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>62</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

\[d_{ij} = \begin{array}{cccccccccccccccc}
3 & 3 & 4 & 2 & 4 & 2 & 3 & 4 & 5 & 3 & 4 & 2 & 5 & 4 & 3 \\
\end{array} \]

Table 2: Customer priorities: \(C_{ij}^2 \)

<table>
<thead>
<tr>
<th>Priority</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

6.2. Concerns of the decision maker

Organize roads of distribution which
- Minimize the distances covered;
- Minimize height of the fleet;
- Maximize the customers priorities.

So this is a multiple objective vehicle routing problem with three criteria. Solving this problem consist to find all non-dominated solutions.

6.3. Solving problem

To find the set of efficient solutions we proceed sequentially. We consider initially the distance and priority to illuminate some solutions with superfluous components to remain only solutions with components significant. To solve this problem we use Cobweb algorithm (see §4). Following table 3 summarize values \(\delta_{ij}^k = C_{ij}^1 + C_{oj}^k - C_{ij}^1 \) in distance and priority.

<table>
<thead>
<tr>
<th>Priority</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3: Saving in Distance and Priorities: \((\delta_{ij}^1, \delta_{ij}^2) \)

<table>
<thead>
<tr>
<th>Priority</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

For example couple \((22, 29)\) intersection of line 1 and column 2 is obtained by:

\[
\delta_{12}^1 = C_{10}^1 + C_{12}^0 - C_{12}^1 = 15 + 28 - 21 = 22
\]

\[
\delta_{12}^2 = C_{20}^2 + C_{22}^0 - C_{12}^2 = 15 + 14 - 0 = 29
\]
6.3.1. Sequentially efficient solutions

The set of sequentially efficient solutions is in conformity with the table 3:
E(P) = {(22,29), (40,27), (53,21), (98,20), (108,19), (143,11)}. Corresponding roads are respectively (0-1-2-0), (0-2-3-0), (0-1-10-0), (0-1-11-0), (0-2-11-0) and (0-10-11-0) of respective capacities 6, 7, 6, 7, 7, 7; these roads are incompatible because only customer 3 is visited once.

6.3.2. Roads building under capacity constraint

The set of customers corresponding to E1(P) is B= {1, 2, 3, 10, 11}. A partition of these customers is formed of the sets {1,2}, {3}, {10, 11} corresponding to roads (0-1-2-0), (0-3-0), (0-10-11-0). Taking a non-affected customer randomly, 5 for example, single possible insertion is (0-3-5-0) of a total request for 8 tons. Taking another customer randomly, for example 12, a good possible insertion is (0-12-1-2-0) of a 8-tons capacity. Following the same step, one finally obtains (0-6-4-14-0), (0-7-8-0), (0-13-15-0) and (0-9-0) corresponding respectively to the requests of 8, 7, 8 and 5 tons each one. An improvement of this solution is the permutation and reintegration of the customers 3 and 14. The final result is (0-12-1-2-0), (0-5-14), (0-10-11-0), (0-3-4-6-0), (0-7-8-0), (0-13-15-0) and (0-9-0).

Table 4: Recapitulation of Rounds with Capacity, Length, Priority and Size of the Fleet

<table>
<thead>
<tr>
<th>No.</th>
<th>Roads</th>
<th>Length in Km</th>
<th>Capacity in Ton</th>
<th>Priority</th>
<th>Fleet height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0-12-1-2-0)</td>
<td>89</td>
<td>8</td>
<td>41</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(0-5-14-0)</td>
<td>77</td>
<td>8</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>(0-10-11-0)</td>
<td>223</td>
<td>7</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>(0-3-4-6-0)</td>
<td>96</td>
<td>8</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>(0-7-8-0)</td>
<td>57</td>
<td>7</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>(0-13-15-0)</td>
<td>115</td>
<td>8</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>(0-9-0)</td>
<td>72</td>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>TOTAL</td>
<td>729</td>
<td>6</td>
<td>120</td>
<td>7</td>
</tr>
</tbody>
</table>

6.3.3. Obtaining efficient solutions set

With a similar reasoning applied on the partition {1, 2}, {3, 10}, {11}, we have two solutions which are: (862, 120,7) and (887,120,7). With the partition {1}, {2,3}, {10, 11} we have the solution: (782,120,7); with {1, 3}, {2,10}, {11} we obtain two additional solutions: (800,120,7) and (792,120,7); with {1,3}, {2,11}, {10}, the solution found is (759,120,7); for {1,10}, {2,11}, {3}, one has (723,120,7) and finally, for {2,10}, {1,11}, {3} we have (750,120,7).

The decision maker must choose between the following nine solutions:
(729,120,7),(862,120,7), (887,120,7), (782,120,7), (800,120,7), (792,120,7), (759,120,7), (723,120,7) and (750,120,7).

7. Conclusion

The originality of this method lies in the fact that it always keeps on the multi-objective aspect of the studied problem and that it has never dealt with any classical optimization problem. Yet, the majority of results found in the literature incorporate various objectives in a single objective thanks to an aggregation function and to the weights provided by the decision maker; nevertheless the subjectivity of situations weight interpretation still problematic in any. A trail of research opened here is the implementation of this algorithm in a suitable computer programming language.

References

