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Abstract

In this paper, we obtain an explicit formula for the total number of paths of length 6 in a simple graph G, in terms
of the adjacency matrix and with the help of combinatorics.
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1. Introduction

In a simple graph G, a walk is a sequence of vertices and edges of the form v0, e1, v1, ..., ek, vk such that the edge ei
has ends vi−1 and vi. A walk is called closed if v0 = vk. If the vertices of a walk are distinct then the walk is called
a path. A cycle is a non-trivial closed path in which all the vertices are distinct except the end vertices..
It is known that if a graph G has adjacency matrix A=[aij ], then for k = 0, 1, ... , the ij-entry of Ak is the number
of vi − vj walks of length k in G. It is also known that tr(An) is the sum of the diagonal entries of An and di is the
degree of the vertex vi.
In 1971, Frank Harary and Bennet Manvel [3], gave formulae for the number of cycles of lengths 3 and 4 in simple
graphs as given by the following theorems:

Theorem 1.1 [3] If G is a simple graph with adjacency matrix A, then the number of 3-cycles in G is 1
6 tr(A3).

(It is known that tr(A3) =
n∑

i=1

a
(3)
ii =

∑
j ̸=i

a
(2)
ij aij).

Theorem 1.2 [3] If G is a simple graph with adjacency matrix A, then the number of 4−cycles in G is
1
8 [ tr(A

4)−2q−2
∑
j ̸=i

a
(2)
ij ], where q is the number of edges in G.

(It is obvious that the above formula is also equal to 1
8 [trA4− trA2 − 2

∑
j ̸=i

a
(2)
ij ] )

Theorem 1.3 [3] If G is a simple graph with n vertices and the adjacency matrix A= [aij ], then the number of

5−cycles in G is 1
10 [tr(A

5)+5 tr(A3)− 5

n∑
i=1

dia
(3)
ii ]
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Their proofs are based on the following fact:
The number of n-cycles (n= 3, 4, 5) in a graph G is equal to 1

2n (tr(A
n)− x ) where x is the number of closed walks

of length n, which are not n-cycles.

In 1986, Tomescu [5], gave some formulae for the number of paths of length s, having k edges in common with a
fixed s-path of a complete graph. In 1994, Bax [6], gave an algorithm to count number of all paths and vi − vj
paths in a graph. His algorithm cannot count number of paths of a specific size.
In 1996, Eric Bax and Joel Franklin [8], gave an algorithm to count paths and cycles of a given length in a directed
graph. In [7, 9, 10, 11, 13, 14, 16], we have also some bounds to estimate the total time complexity for finding or
counting paths and cycles in a graph.
In the previous works there is no formula to count the exact number of paths of a specific size in a graph.
In our recent works [1, 2], we obtained some formulae and propositions to find the exact number of paths of lengths
3, 4 and 5, in a simple graph G, given below:

Proposition 1.4 [1] In a simple graph G with n vertices and the adjacency matrix A= [aij ], the number of paths

of length n is
∑
j ̸=i

a
(n)
ij − x, where x is the number of non-closed walks of length n in G, which are not paths.

Proposition 1.5 [1] In a simple graph G with n vertices and the adjacency matrix A= [aij ], the number of paths

of length n, each of which begins with a specific vertex vi is

n∑
j=1,j ̸=i

a
(n)
ij − x, where x is the number of non-closed

walks of length n in G, starting from the vertex vi, which are not paths.

Proposition 1.6 [1] In a simple graph G with n vertices and the adjacency matrix A= [aij ], the number of vi − vj

(j ̸= i) paths of length n is a
(n)
ij − x, where x is the number of non-closed vi − vj walks of length n in G, which are

not paths.

Theorem 1.7 [1] Let G be a simple graph with n vertices and the adjacency matrix A= [aij ]. The number of paths

of length 3 in G is
∑
j ̸=i

a
(2)
ij (dj − aij − 1).

Theorem 1.8 [1] Let G be a simple graph with n vertices and the adjacency matrix A= [aij ]. The number of paths

of length 4 in G is
∑
j ̸=i

[a
(4)
ij − 2a

(2)
ij (dj − aij)]−

n∑
i=1

[(2di − 1)a
(3)
ii + 6

(
di
3

)
].

Theorem 1.9 [1] Let G be a simple graph with n vertices and the adjacency matrix A= [aij ]. The number of paths

of length 3 in G, each of which starts from a specific vertex vi is

n∑
j=1,j ̸=i

a
(2)
ij (dj − aij − 1).

Theorem 1.10 [1] Let G be a simple graph with n vertices and the adjacency matrix A= [aij ]. The number of

paths of length 4 in G, each of which starts from a specific vertex vi is
n∑

j=1,j ̸=i

[a
(4)
ij − (di + dj − 3aij)a

(2)
ij − (a

(3)
ii +

a
(3)
jj + 2

(
dj − 1

2

)
)aij ].

Theorem 1.11 [1] Let G be a simple graph with n vertices and the adjacency matrix A= [aij ]. The number of

vi − vj (j ̸= i) paths of length 3 in G is

n∑
k=1,k ̸=i,j

(a
(2)
ik − aij)ajk.

Theorem 1.12 [2] Let G be a simple graph with n vertices and the adjacency matrix A= [aij ]. The number of paths

of length 5 in G is
∑
j ̸=i

a
(5)
ij − 2

∑
j ̸=i

a
(4)
ij + 2

n∑
i=1

a
(3)
ii (di−2)+ 4

∑
j ̸=i

a
(2)
ij − 2

∑
j ̸=i

a
(2)
ij (dj−aij−1)− 4

∑
j ̸=i

a
(2)
ij

(
di − aij − 1

2

)
+ 6

∑
j ̸=i

aij

(
a
(2)
ij

2

)
− 2

∑
j ̸=i

a
(3)
ii a

(2)
ij − 2

n∑
i=1

a
(3)
ii

(
di − 2

2

)
− 2

n∑
i=1

(a
(4)
ii −a

(2)
ii − 2

(
di
2

)
−

n∑
j=1,j ̸=i

a
(2)
ij )(di−2)−

∑
j ̸=i

aij−

3 tr A4+ 6 tr A3+ 3 tr A2.
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Theorem 1.13 [2] If G is a simple graph with n vertices and the adjacency matrix A= [aij ], then the number of

4−cycles each of which contains a specific vertex vi of G is 1
2 [a

(4)
ii − a

(2)
ii − 2

(
di
2

)
−

n∑
j=1,j ̸=i

a
(2)
ij ].

In this paper we give a formula to count the exact number of paths of length 6 in a simple graph G, in terms of
the adjacency matrix of G and with the help of combinatorics.

2. Number of Paths of Length 6

In this section, we give formulae to count the number of paths of length 6 in a simple graph G. We first give a result
below which is useful to prove our main theorem. In [4], we can see a formula for the number of 5-cycles that pass
trough the vertex vi of a graph G but their formula has some problems in coefficients. Here we have written the
correct formula with its proof.

Theorem 2.1 If G is a simple graph with n vertices and the adjacency matrix A= [aij ], then the number of 5−cycles

each of which contains a specific vertex vi of G is 1
2 [a

(5)
ii −5a

(3)
ii −2(di−2)a

(3)
ii −2

n∑
j=1,j ̸=i

a
(2)
ij aij(dj −2)−2

n∑
j=1,j ̸=i

aij(
1
2a

(3)
jj − aija

(2)
ij )].

Proof: The number of 5−cycles each of which contains a specific vertex vi of the graph G is equal to 1
2 (a

(5)
ii − x),

where x is the number of closed walks of length 5 from the vertex vi to vi that are not 5−cycles. To find x, we
have 4 cases as considered below; the cases are based on the configurations-(subgraphs) that generate vi − vi walks
of length 5 that are not cycles. In each case, N denotes the number of walks of length 5 from vi to vi that are not
cycles in the corresponding subgraph, M denotes the number of subgraphs of G of the same configuration and F
denotes the total number of vi − vi walks of length 5 that are not cycles in all possible subgraphs of G of the same
configuration. It is clear that F is equal to N× M. To find N in each case, we have to include in any walk, all the
edges and the vertices of the corresponding subgraphs at least once.
.
Case 1: For the configuration of Figure 1, N= 10, M= 1

2 a
(3)
ii and F= 5a

(3)
ii .

�
�
�
�
��

A
A
A

A
AA
r

r r
Fig 1

vi

Case 2: For the configuration of Figure 2, N= 4, M= 1
2 (di − 2)a

(3)
ii and F= 2(di − 2)a

(3)
ii .

�
�
�
�
��

A
A
A

A
AA
r r

r r
Figure 2

vi

Case 3: For the configuration of Figure 3, N= 2, M=
n∑

j=1,j ̸=i

a
(2)
ij aij(dj − 2) and F= 2

n∑
j=1,j ̸=i

a
(2)
ij aij(dj − 2).

�
�
�
�
��

A
A
A

A
AA
r

r rr
Figure 3

vi
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Case 4: For the configuration as shown in Figure 4, N= 2, M=
n∑

j=1,j ̸=i

aij(
1
2a

(3)
jj − aija

(2)
ij ) and F= 2

n∑
j=1,j ̸=i

aij(
1
2a

(3)
jj − aija

(2)
ij ).

�
�
�
�
��

A
A
A

A
AA
r r

r r
Figure 4

vi

Consequently, x = 5a
(3)
ii + 2(di − 2)a

(3)
ii + 2

n∑
j=1,j ̸=i

a
(2)
ij aij(dj − 2)+ 2

n∑
j=1,j ̸=i

aij(
1
2a

(3)
jj − aija

(2)
ij ) and we get the

required result. �

Example 2.2 In Figure 5, a
(5)
11 = 68, 5a

(3)
11 = 20, 2(d1 − 2)a

(3)
11 = 8, 2

7∑
j=2

a
(2)
1j a1j(dj − 2) = 20, 2

7∑
j=2

a1j(
1
2a

(3)
jj −

a1ja
(2)
1j )) = 12, So by Theorem 2.1, the number of 5-cycles each of which contains the vertex v1 in the graph of fig

5 is 4.
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A

A
A
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r r

rr r

r r
Figure 5

v1 v2

v6 v3

v5 v4

v7

Theorem 2.3 Let G be a simple graph with n vertices and the adjacency matrix A= [aij ]. The number of paths of

length 6 in G is
∑
j ̸=i

a
(6)
ij − x, where x is the summation of F in the cases which are considered below.

Proof: By Proposition 1.4, the number of paths of length 6 in a graph G is equal to
∑
j ̸=i

a
(6)
ij − x, where x is the

number of non-closed walks of length 6, that are not paths. To find x, we have 26 cases as considered below;
the cases are based on the configurations-(subgraphs) that generate all non-closed walks of length 6, that are not
paths. In each case, N denotes the number of non-closed walks of length 6, that are not paths in the corresponding
subgraph, M denotes the number of subgraphs of G of the same configuration and F denotes the total number of
non-closed walks of length 6, that are not paths in all possible subgraphs of G of the same configuration. However,
in the cases with more than one Fig (cases 9, 10, 12, 16, 19, 20, 21, 23, 24, 25, 26), N, M and F are based on the first
graph of the respective figures and P1, P2,... denotes the number of subgraphs of G which do not have the same
configuration as the first graph but are counted in M. It is clear that F is equal to N × (M− P1−P2−...). To find N in
each case, we have to include in any walk, all the edges and the vertices of the corresponding subgraphs at least once.

Case 1: For the configuration of Fig 6, N= 8, M= 1
2

∑
j ̸=i

a
(2)
ij and F= 4

∑
j ̸=i

a
(2)
ij .

r r r
Fig 6

Case 2: For the configuration of Fig 7, N= 16, M= 1
2

∑
j ̸=i

a
(2)
ij (dj − aij − 1) and F= 8

∑
j ̸=i

a
(2)
ij (dj − aij − 1).

(See Theorem 1.7)
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r r rr
Fig 7

Case 3: For the configuration of Fig 8, N= 14, M= 1
2 [

∑
j ̸=i

[a
(4)
ij − 2a

(2)
ij (dj − aij)]−

n∑
i=1

[(2di − 1)a
(3)
ii + 6

(
di
3

)
]]

and F= 7
∑
j ̸=i

[a
(4)
ij − 2a

(2)
ij (dj − aij)]−7

n∑
i=1

[(2di − 1)a
(3)
ii + 6

(
di
3

)
]. (See Theorem 1.8)

r r rrr
Fig 8

Case 4: For the configuration of Fig 9, N= 4, M= 1
2 [

∑
j ̸=i

a
(5)
ij − 2

∑
j ̸=i

a
(4)
ij + 2

n∑
i=1

a
(3)
ii (di−2)+ 4

∑
j ̸=i

a
(2)
ij − 2

∑
j ̸=i

a
(2)
ij (dj−

aij − 1)− 4
∑
j ̸=i

a
(2)
ij

(
di − aij − 1

2

)
+ 6

∑
j ̸=i

aij

(
a
(2)
ij

2

)
− 2

∑
j ̸=i

a
(3)
ii a

(2)
ij − 2

n∑
i=1

a
(3)
ii

(
di − 2

2

)
− 2

n∑
i=1

(a
(4)
ii − a

(2)
ii −

2

(
di
2

)
−

n∑
j=1,j ̸=i

a
(2)
ij )(di−2)−

∑
j ̸=i

aij− 3 tr A4+ 6 tr A3+ 3 tr A2] and F= 2 [
∑
j ̸=i

a
(5)
ij − 2

∑
j ̸=i

a
(4)
ij + 2

n∑
i=1

a
(3)
ii (di−2)+

4
∑
j ̸=i

a
(2)
ij − 2

∑
j ̸=i

a
(2)
ij (dj−aij−1)− 4

∑
j ̸=i

a
(2)
ij

(
di − aij − 1

2

)
+ 6

∑
j ̸=i

aij

(
a
(2)
ij

2

)
− 2

∑
j ̸=i

a
(3)
ii a

(2)
ij − 2

n∑
i=1

a
(3)
ii

(
di − 2

2

)
−

2
n∑

i=1

(a
(4)
ii − a

(2)
ii − 2

(
di
2

)
−

n∑
j=1,j ̸=i

a
(2)
ij )(di − 2)−

∑
j ̸=i

aij− 3 tr A4+ 6 tr A3+ 3 tr A2]. (See Theorem 1.12)

r r rrr r
Fig 9

Case 5: For the configuration of Fig 10, N= 102, M= 1
6 trA3 and F= 17 trA3. (See Theorem 1.1)
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A
A
AA
r

r r
Fig 10

Case 6: For the configuration of Fig 11, N= 74, M= 1
2

n∑
i=1

a
(3)
ii (di − 2) and F= 37

n∑
i=1

a
(3)
ii (di − 2).

�
�
�
�
��

A
A
A

A
AA
r r

r r
Fig 11

Case 7: For the configuration of Fig 12, N= 10, M=
∑
j ̸=i

a
(2)
ij

(
di − aij − 1

2

)
and F= 10

∑
j ̸=i

a
(2)
ij

(
di − aij − 1

2

)
.
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Q
Q

QQ
�
�

��r

r

r r

r

Fig 12

Case 8: For the configuration of Fig 13, N= 30, M=
n∑

i=1

(
di
3

)
and F= 30

n∑
i=1

(
di
3

)
.

�
�
��

Q
Q

QQ
r

r r

r

Fig 13

Case 9: For the configuration of Fig 14(a), N= 20, M= 1
2

∑
j ̸=i

a
(3)
ii a

(2)
ij . Let P1 denotes the number of all subgraphs

of G that have the same configuration as the graph of Fig 14(b) and are counted in M. Thus P1= 6× 1
6×trA3,

where 1
6×trA3 is the number of subgraphs of G that have the same configuration as the graph of Fig 14(b) (See

Theorem 1.1) and 6 is the number of times that this subgraph is counted in M. Let P2 denotes the number of
all subgraphs of G that have the same configuration as the graph of Fig 14(c) and are counted in M. Thus P2=

2× 1
2×

n∑
i=1

a
(3)
ii (di − 2), where 1

2×
n∑

i=1

a
(3)
ii (di − 2) is the number of subgraphs of G that have the same configuration

as the graph of Fig 14(c) and 2 is the number of times that this subgraph is counted in M. Let P3 denotes the
number of all subgraphs of G that have the same configuration as the graph of Fig 14(d) and are counted in M.

Thus P3= 4× 1
2×

∑
j ̸=i

(
a
(2)
ij

2

)
aij , where

1
2×

∑
j ̸=i

(
a
(2)
ij

2

)
aij is the number of subgraphs of G that have the same

configuration as the graph of Fig 14(d) and 4 is the number of times that this subgraph is counted in M.

Consequently, F= 10
∑
j ̸=i

a
(3)
ii a

(2)
ij − 20 trA3− 20

n∑
i=1

a
(3)
ii (di − 2)− 40

∑
j ̸=i

(
a
(2)
ij

2

)
aij .

A
A

A
A
AA�

�
�

�
�� �

�
�
�
��

r

r r

r

r

r

Fig 14
(c)
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r
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A

A
A
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�
�
�
�
��

r r

r r
(d)

�
�
�
�
��

A
A
A
A
AA
r

r r
(b)

Case 10: For the configuration of Fig 15(a), N= 4, M= 1
2

∑
j ̸=i

a
(3)
ii a

(2)
ij (dj−aij−1) (See theorem 1.7). Let P1 denotes

the number of all subgraphs of G that have the same configuration as the graph of Fig 15(b) and are counted in

M. Thus P1 = 2 × [ 12

∑
j ̸=i

a
(3)
ii a

(2)
ij − trA3 −

n∑
i=1

a
(3)
ii (di − 2) − 2

∑
j ̸=i

(
a
(2)
ij

2

)
aij ] (See case 9), where 1

2

∑
j ̸=i

a
(3)
ii a

(2)
ij −

trA3 −
n∑

i=1

a
(3)
ii (di − 2)− 2

∑
j ̸=i

(
a
(2)
ij

2

)
aij is the number of subgraphs of G that have the same configuration as the

graph of Fig 15(b) and 2 is the number of times that this subgraph is counted in M. Let P2 denotes the number of
all subgraphs of G that have the same configuration as the graph of Fig 15(c) and are counted in M. Thus P2 =
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2× 1
2

n∑
i=1

a
(3)
ii (di − 2), where 1

2

n∑
i=1

a
(3)
ii (di − 2) is the number of subgraphs of G that have the same configuration as

the graph of Fig 15(c) and 2 is the number of times that this subgraph is counted in M. Let P3 denotes the number
of all subgraphs of G that have the same configuration as the graph of Fig 15(d) and are counted in M. Thus P3 =

8 × 1
2

∑
j ̸=i

(
a
(2)
ij

2

)
aij , where

1
2

∑
j ̸=i

(
a
(2)
ij

2

)
aij is the number of subgraphs of G that have the same configuration

as the graph of Fig 15(d) and 8 is the number of times that this subgraph is counted in M. Let P4 denotes the
number of all subgraphs of G that have the same configuration as the graph of Fig 15(e) and are counted in M.

Thus P4 = 2 ×
∑
j ̸=i

(
a
(2)
ij

2

)
aij(dj − 3), where

∑
j ̸=i

(
a
(2)
ij

2

)
aij(dj − 3) is the number of subgraphs of G that have

the same configuration as the graph of Fig 15(e) and 2 is the number of times that this subgraph is counted in
M. Let P5 denotes the number of all subgraphs of G that have the same configuration as the graph of Fig 15(f)

and are counted in M. Thus P5 = 2 × [ 12

∑
j ̸=i

a
(2)
ij (dj − aij − 1)(aija

(2)
ij ) − 2

∑
j ̸=i

aij

(
a
(2)
ij

2

)
] (See case 12), where

1
2

∑
j ̸=i

a
(2)
ij (dj −aij −1)(aija

(2)
ij )−2

∑
j ̸=i

aij

(
a
(2)
ij

2

)
is the number of subgraphs of G that have the same configuration

as the graph of Fig 15(f) and 2 is the number of times that this subgraph is counted in M.

Consequently, F= 2
∑
j ̸=i

a
(3)
ii a

(2)
ij (dj − aij − 1) − 4

∑
j ̸=i

a
(3)
ii a

(2)
ij + 8 trA3 + 4

n∑
i=1

a
(3)
ii (di − 2) + 16

∑
j ̸=i

(
a
(2)
ij

2

)
aij −

8
∑
j ̸=i

(
a
(2)
ij

2

)
aij(dj − 3)− 4

∑
j ̸=i

a
(2)
ij (dj − aij − 1)(aija

(2)
ij ).

A
A
A
A
AA

�
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�
�
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r
r
r

r

r

r

r

Fig 15

(c)
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(e) (f)
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�
�
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A

A
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r
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�
�
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r
r

r

r r
(b)

Case 11: For the configuration of Fig 16, N= 64, M= 1
2

∑
j ̸=i

(
a
(2)
ij

2

)
aij and F= 32

∑
j ̸=i

(
a
(2)
ij

2

)
aij .

�
�
�
�
��

A
A
A

A
AA

�
�
�
�
��

r r

r r
Fig 16

Case 12: For the configuration of Fig 17(a), N= 12, M=1
2

∑
j ̸=i

a
(2)
ij (dj − aij − 1)(aija

(2)
ij ) (See theorem 1.7). Let

P1 denotes the number of walks in all subgraphs of G that have the same configuration as in Figure 17(b) and
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are counted in M. Thus P1= 4 × 1
2×

∑
j ̸=i

aij

(
a
(2)
ij

2

)
, where 1

2×
∑
j ̸=i

aij

(
a
(2)
ij

2

)
is the number of subgraphs of G

that have the same configuration as in Figure 17(b) and 4 is the number of times that this Fig is counted in M.

Consequently, F= 6
∑
j ̸=i

a
(2)
ij (dj − aij − 1)(aija

(2)
ij )−24

∑
j ̸=i

aij

(
a
(2)
ij

2

)
.

A
A
A
A

�
�
�
�
@

@
@

@@

�
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�

��

r
r

r
r r

Fig 17
(b)(a)

�
�
�
�
��

�
�
�
�
��

A
A

A
A
AA
r

r r

r

Case 13: For the configuration of Fig 18, N= 16, M= 1
2

n∑
i=1

a
(3)
ii

(
di − 2

2

)
and F= 8

n∑
i=1

a
(3)
ii

(
di − 2

2

)
.

�
�
�
�
��

A
A
A

A
AA
rr r

r r
Fig 18

Case 14: For the configuration of Fig 19, N= 32, M= 1
8 (trA4− trA2 − 2

∑
j ̸=i

a
(2)
ij ) and F= 4 (trA4− trA2 − 2∑

j ̸=i

a
(2)
ij ) (See Theorem 1.2) .

r r

rr

Fig 19

Case 15: For the configuration of Figure 20, N= 30, M= 1
10 [tr(A

5)+5 tr(A3) − 5
n∑

i=1

dia
(3)
ii ] (See Theorem 1.3)

and F= 3tr(A5) + 15tr(A3) −15
n∑

i=1

dia
(3)
ii .
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A
A

�
�
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�
@

@
@

@@
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�
��

r
r

r
r r
Fig 20

Case 16: For the configuration of Figure 21(a), N= 4, M= 1
2 [

n∑
i=1

[(a
(5)
ii − 5a

(3)
ii − 2(di − 2)a

(3)
ii )(di − 2) −

2
n∑

j=1,j ̸=i

a
(2)
ij aij(dj − 2)(di − 2)− 2

n∑
j=1,j ̸=i

aij(di − 2)(
1

2
a
(3)
jj − aija

(2)
ij )]] (See Theorem 2.1). Let P1 denotes the num-

ber of all subgraphs of G that have the same configuration as the graph of Fig 21(b) and are counted in M. Thus

P1 = 2× [ 12

∑
j ̸=i

a
(2)
ij (dj−aij−1)(aija

(2)
ij )−2

∑
j ̸=i

aij

(
a
(2)
ij

2

)
], where 1

2

∑
j ̸=i

a
(2)
ij (dj−aij−1)(aija

(2)
ij )−2

∑
j ̸=i

aij

(
a
(2)
ij

2

)
is the number of subgraphs of G that have the same configuration as the graph of Fig 21(b) (See case 12) and 2 is
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the number of times that this subgraph is counted in M. Consequently, F= 2

n∑
i=1

(a
(5)
ii − 5a

(3)
ii − 2(di − 2)a

(3)
ii )(di −

2)−4
∑
j ̸=i

a
(2)
ij aij(dj−2)(di−2)−4

∑
j ̸=i

aij(di−2)(
1

2
a
(3)
jj −aija

(2)
ij )−4

∑
j ̸=i

a
(2)
ij (dj−aij−1)(aija

(2)
ij )+16

∑
j ̸=i

aij

(
a
(2)
ij

2

)
.
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�
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Fig 21
(b)(a)

Case 17: For the configuration of Figure 22, N= 24, M=

n∑
i=1

(
di
4

)
and F= 24

n∑
i=1

(
di
4

)
.

.

�
�
��

@
@

@@

@
@
@@

�
�

��

r
r r

rr

Fig 22

Case 18: For the configuration of Fig 23, N= 12, M=
∑
j ̸=i

(
a
(2)
ij

2

)
(di− 3)aij and F= 12

∑
j ̸=i

(
a
(2)
ij

2

)
(di− 3)aij .
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��r r

rr
r

Fig 23

Case 19: For the configuration of Fig 24(a), N= 4, M= 1
2

n∑
i=1

[(a
(4)
ii −a

(2)
ii −2

(
di
2

)
−

n∑
j=1,j ̸=i

a
(2)
ij )(

n∑
j=1,j ̸=i

(a
(2)
ij )−2)]

(See Theorem 1.13). Let P1 denotes the number of all subgraphs of G that have the same configuration as the

graph of Fig 24(b) and are counted in M. Thus P1 = 2 × [ 12

n∑
i=1

(a
(4)
ii − a

(2)
ii − 2

(
di
2

)
−

n∑
j=1,j ̸=i

a
(2)
ij )(di − 2)−

∑
j ̸=i

(
a
(2)
ij

2

)
aij ], where

1
2

n∑
i=1

(a
(4)
ii − a

(2)
ii − 2

(
di
2

)
−

n∑
j=1,j ̸=i

a
(2)
ij )(di − 2)−

∑
j ̸=i

(
a
(2)
ij

2

)
aij is the number of sub-

graphs of G that have the same configuration as the graph of Fig 24(b) (See case 21) and 2 is the number of times
that this subgraph is counted in M. Let P2 denotes the number of all subgraphs of G that have the same configu-

ration as the graph of Fig 24(c) and are counted in M. Thus P2 = 8× 1
2

∑
j ̸=i

(
a
(2)
ij

2

)
aij , where

1
2

∑
j ̸=i

(
a
(2)
ij

2

)
aij

is the number of subgraphs of G that have the same configuration as the graph of Fig 24(c) (See case 11) and
8 is the number of times that this subgraph is counted in M. Let P3 denotes the number of all subgraphs of G

that have the same configuration as the graph of Fig 24(d) and are counted in M. Thus P3 = 6× 1
2

∑
j ̸=i

(
a
(2)
ij

3

)
,
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where 1
2

∑
j ̸=i

(
a
(2)
ij

3

)
is the number of subgraphs of G that have the same configuration as the graph of Fig

24(d) (See case 22) and 6 is the number of times that this subgraph is counted in M. Let P4 denotes the number
of all subgraphs of G that have the same configuration as the graph of Fig 24(e) and are counted in M. Thus

P4 =2× [ 12

∑
j ̸=i

a
(2)
ij (dj −aij −1)(aija

(2)
ij )−2

∑
j ̸=i

aij

(
a
(2)
ij

2

)
], where 1

2

∑
j ̸=i

a
(2)
ij (dj −aij −1)(aija

(2)
ij )−2

∑
j ̸=i

aij

(
a
(2)
ij

2

)
is the number of subgraphs of G that have the same configuration as the graph of Fig 24(e) (See case 12) and 2
is the number of times that this subgraph is counted in M. Let P5 denotes the number of all subgraphs of G that

have the same configuration as the graph of Fig 24(f) and are counted in M. Thus P5 =1×
∑
j ̸=i

(
a
(2)
ij

2

)
(di−3)aij ,

where
∑
j ̸=i

(
a
(2)
ij

2

)
(di − 3)aij is the number of subgraphs of G that have the same configuration as the graph

of Fig 24(f) (See case 18) and 1 is the number of times that this subgraph is counted in M. Consequently, F=

2
n∑

i=1

[(a
(4)
ii − a

(2)
ii − 2

(
di
2

)
−

n∑
j=1,j ̸=i

a
(2)
ij )(

n∑
j=1,j ̸=i

(a
(2)
ij )− 2)]− 4

n∑
i=1

(a
(4)
ii − a

(2)
ii − 2

(
di
2

)
−

n∑
j=1,j ̸=i

a
(2)
ij )(di − 2) + 8

∑
j ̸=i

(
a
(2)
ij

2

)
aij − 4

∑
j ̸=i

a
(2)
ij (dj − aij − 1)(aija

(2)
ij )− 12

∑
j ̸=i

(
a
(2)
ij

3

)
− 4

∑
j ̸=i

(
a
(2)
ij

2

)
(di − 3)aij .

�
�
�
�

r r

rr
r r

�
�

�
�

��

�
�

�
�

r r

rr
r

�
�
�
�
�
�
�
�

��������

r r

rr
r

�
��

@
@@

r r

rr
r

�
�
�
�

r r

rr
r

(a) (d) (e) (f)(b) (c)

Fig 24
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Case 20: For the configuration of Figure 25(a), N=14, M=1
2

∑
j ̸=i

a
(2)
ij aij(dj − 2)(di − 2). Let P1 denotes the

number of all subgraphs of G that have the same configuration as in Figure 25(b) and are counted in M. Thus P1=

2× 1
2

∑
j ̸=i

aij

(
a
(2)
ij

2

)
, where 1

2

∑
j ̸=i

aij

(
a
(2)
ij

2

)
is the number of subgraphs of G that have the same configuration as

in Figure 25(b) and 2 is the number of times that this subgraph is counted in M.

Consequently, F=7
∑
j ̸=i

a
(2)
ij aij(dj − 2)(di − 2) −14

∑
j ̸=i

aij

(
a
(2)
ij

2

)
.

�
�
�
�
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�
�
�
�
��

A
A
A
A
AA
r

r r

r

Fig 25

(b)
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A

A
A
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rr

r r r
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Case 21: For the configuration of Fig 26(a), N= 12, M= 1
2

n∑
i=1

(a
(4)
ii − a

(2)
ii − 2

(
di
2

)
−

n∑
j=1,j ̸=i

a
(2)
ij )(di − 2)

(See Theorem 1.13). Let P1 denotes the number of all subgraphs of G that have the same configuration as the

graph of Fig 26(b) and are counted in M. Thus P1 = 2× 1
2

∑
j ̸=i

(
a
(2)
ij

2

)
aij , where

1
2

∑
j ̸=i

(
a
(2)
ij

2

)
aij is the number
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of subgraphs of G that have the same configuration as the graph of Fig 26(b) and 2 is the number of times that this

subgraph is counted in M. Consequently, F= 6
n∑

i=1

(a
(4)
ii −a

(2)
ii −2

(
di
2

)
−

n∑
j=1,j ̸=i

a
(2)
ij )(di−2)−12

∑
j ̸=i

(
a
(2)
ij

2

)
aij .

�
�
�
�

r r

rr
r

(a) (b)
Fig 26
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Case 22: For the configuration of Figure 27, N=12, M= 1
2

∑
j ̸=i

(
a
(2)
ij

3

)
, F= 6

∑
j ̸=i

(
a
(2)
ij

3

)
.

�
�
�
�
�
�
�
�

��������

r r

rr
r

Fig 27

Case 23: For the configuration of Fig 28(a), N= 4, M= 1
2

∑
j ̸=i

a
(3)
ii a

(2)
ij (di−3)−

∑
j ̸=i

a
(2)
ij aij(di−3)−

n∑
i=1

a
(3)
ii (di−2)(di−

3)− 2
∑
j ̸=i

(
a
(2)
ij

2

)
(di−3)aij ( See case 9). Let P1 denotes the number of all subgraphs of G that have the same con-

figuration as the graph of Fig 28(b) and are counted in M. Thus P1= 4×[

n∑
i=1

(
1
2a

(3)
ii

2

)
−
∑
j ̸=i

(
a
(2)
ij

2

)
aij ], where

n∑
i=1

(
1
2a

(3)
ii

2

)
−
∑
j ̸=i

(
a
(2)
ij

2

)
aij is the number of subgraphs of G that have the same configuration as the graph of

Fig 28(b) and 4 is the number of times that this subgraph is counted in M. Consequently, F= 2
∑
j ̸=i

a
(3)
ii a

(2)
ij (di−3)−

4
∑
j ̸=i

a
(2)
ij aij(di−3)− 4

n∑
i=1

a
(3)
ii (di−2)(di−3)− 8

∑
j ̸=i

(
a
(2)
ij

2

)
(di−3)aij −16

n∑
i=1

(
1
2a

(3)
ii

2

)
+16

∑
j ̸=i

(
a
(2)
ij

2

)
aij .
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r �
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Fig 28
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Case 24: For the configuration of Fig 29(a), N= 2, M=

n∑
i=1

[


n∑

j=1,j ̸=i

a
(2)
ij

2

 −
∑
j ̸=i

(
dj − aij

2

)
aij ](di − 2).

Let P1 denotes the number of all subgraphs of G that have the same configuration as the graph of Fig 29(b) and

are counted in M. Thus P1 = 1 × [ 12

n∑
i=1

(a
(4)
ii − a

(2)
ii − 2

(
di
2

)
−

n∑
j=1,j ̸=i

a
(2)
ij )(di − 2)−

∑
j ̸=i

(
a
(2)
ij

2

)
aij ], where
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1
2

n∑
i=1

(a
(4)
ii − a

(2)
ii − 2

(
di
2

)
−

n∑
j=1,j ̸=i

a
(2)
ij )(di − 2)−

∑
j ̸=i

(
a
(2)
ij

2

)
aij is the number of subgraphs of G that have

the same configuration as the graph of Fig 29(b) (See case 21) and 1 is the number of times that this subgraph is
counted in M. Let P2 denotes the number of all subgraphs of G that have the same configuration as the graph of Fig

29(c) and are counted in M. Thus P2 = 6× 1
2

∑
j ̸=i

(
a
(2)
ij

2

)
aij , where

1
2

∑
j ̸=i

(
a
(2)
ij

2

)
aij is the number of subgraphs

of G that have the same configuration as the graph of Fig 29(c) (See case 11) and 6 is the number of times that this
subgraph is counted in M. Let P3 denotes the number of all subgraphs of G that have the same configuration as the

graph of Fig 29(d) and are counted in M. Thus P3 = 1× 1
2

n∑
i=1

a
(3)
ii (di − 2), where 1

2

n∑
i=1

a
(3)
ii (di − 2) is the number of

subgraphs of G that have the same configuration as the graph of Fig 29(d) and 1 is the number of times that this
subgraph is counted in M. Let P4 denotes the number of all subgraphs of G that have the same configuration as the

graph of Fig 29(e) and are counted in M. Thus P4 = 2× [ 12

∑
j ̸=i

a
(3)
ii a

(2)
ij −

n∑
i=1

a
(3)
ii −

n∑
i=1

a
(3)
ii (di−2)−2

∑
j ̸=i

(
a
(2)
ij

2

)
aij ]

, where 1
2

∑
j ̸=i

a
(3)
ii a

(2)
ij −

n∑
i=1

a
(3)
ii −

n∑
i=1

a
(3)
ii (di − 2) − 2

∑
j ̸=i

(
a
(2)
ij

2

)
aij is the number of subgraphs of G that have

the same configuration as the graph of Fig 29(e) (See case 9) and 2 is the number of times that this subgraph
is counted in M. Let P5 denotes the number of all subgraphs of G that have the same configuration as the

graph of Fig 29(f) and are counted in M. Thus P5 = 2 × [ 12

∑
j ̸=i

a
(2)
ij aij(dj − 2)(di − 2) −

∑
j ̸=i

aij

(
a
(2)
ij

2

)
] , where

1
2

∑
j ̸=i

a
(2)
ij aij(dj − 2)(di − 2) −

∑
j ̸=i

aij

(
a
(2)
ij

2

)
is the number of subgraphs of G that have the same configuration

as the graph of Fig 29(f) (See case 20) and 2 is the number of times that this subgraph is counted in M. Conse-

quently, F= 2
n∑

i=1

[


n∑

j=1,j ̸=i

a
(2)
ij

2

−
∑
j ̸=i

(
dj − aij

2

)
aij ](di − 2)−

n∑
i=1

(a
(4)
ii − a

(2)
ii − 2

(
di
2

)
− 2

n∑
j=1,j ̸=i

a
(2)
ij )(di −

2)− 2
∑
j ̸=i

a
(3)
ii a

(2)
ij + 4

n∑
i=1

a
(3)
ii + 3

n∑
i=1

a
(3)
ii (di − 2) + 8

∑
j ̸=i

(
a
(2)
ij

2

)
aij − 2

∑
j ̸=i

a
(2)
ij aij(dj − 2)(di − 2)
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r r

Fig 29
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Case 25: For the configuration of Fig 30(a), N= 4, M=
∑
j ̸=i

a
(2)
ij (dj − aij − 1)

(
di − aij − 1

2

)
( See case 2). Let

P1 denotes the number of all subgraphs of G that have the same configuration as the graph of Fig 30(b) and are

counted in M. Thus P1= 2× [ 12

∑
j ̸=i

a
(2)
ij aij(dj − 2)(di − 2) −

∑
j ̸=i

aij

(
a
(2)
ij

2

)
], where 1

2

∑
j ̸=i

a
(2)
ij aij(dj − 2)(di − 2) −

∑
j ̸=i

aij

(
a
(2)
ij

2

)
is the number of subgraphs of G that have the same configuration as the graph of Fig 30(b) (See

case 20) and 2 is the number of times that this subgraph is counted in M.
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Consequently, F= 4
∑
j ̸=i

a
(2)
ij (dj − aij − 1)

(
di − aij − 1

2

)
− 4

∑
j ̸=i

a
(2)
ij aij(dj − 2)(di − 2) + 8

∑
j ̸=i

aij

(
a
(2)
ij

2

)
.
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Case 26: For the configuration of Fig 31(a), N= 4, M= 1
2

n∑
i=1

(a
(4)
ii −a

(2)
ii −2

(
di
2

)
−

n∑
j=1,j ̸=i

a
(2)
ij )

(
di − 2

2

)
(See

Theorem 1.13). Let P1 denotes the number of all subgraphs of G that have the same configuration as the graph of

Fig 31(b) and are counted in M. Thus P1 = 1×
∑
j ̸=i

(
a
(2)
ij

2

)
(di−3)aij (See case 18), where

∑
j ̸=i

(
a
(2)
ij

2

)
(di−3)aij

is the number of subgraphs of G that have the same configuration as the graph of Fig 31(b) and 1 is the number of

times that this subgraph is counted in M. Consequently, F= 2

n∑
i=1

(a
(4)
ii −a

(2)
ii −2

(
di
2

)
−

n∑
j=1,j ̸=i

a
(2)
ij )

(
di − 2

2

)
−

4
∑
j ̸=i

(
a
(2)
ij

2

)
(di − 3)aij .
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Now we add the values of F arising from the above cases and determine x. By putting the value of x in∑
j ̸=i

a
(6)
ij − x and simplifying, we get the desired result. �

Example 2.4 In K7 we have, Case 1 = 840, Case 2 = 6720, Case 3 = 17640, Case 4 = 10080, Case 5 = 3570,
Case 6 = 31080, Case 7 = 12600, Case 8 = 4200, Case 9 = 25200, Case 10 = 10080, Case 11 = 13440,
Case 12 = 15120, Case 13 = 10080, Case 14 = 3360, Case 15 = 7560, Case 16 = 10080, Case 17 = 2520,
Case 18 = 15120, Case 19 = 10080, Case 20 = 17640, Case 21 = 15120, Case 22 = 2520, Case 23 = 10080,

Case 24 = 5040, Case 25 = 10080, Case 26 = 5040. So, we have x = 274890 and
∑
j ̸=i

a
(6)
ij = 279930.

Consequently, by theorem 2.3, the number of paths of length 6 in K7 is 5040.
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