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Abstract

In this paper, the stochastic operational matrix of Itô-integration for the Chebyshev wavelets is applied for solving
stochastic Volterra-Fredholm integral equations. The main characteristic of the presented method is that it reduces
stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of
the Chebyshev wavelets basis is considered. The efficiency and accuracy of the proposed method was demonstrated
by some non-trivial examples and comparison with the other existing methods.
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1. Introduction

Stochastic analysis has been an interesting research area in mathematics, fluid mechanics, geophysics, biology,
chemistry, epidemiology, microelectronics, theoretical physics, economics, and finance. The behavior of dynamical
systems in these fields are often dependent on a noise source and a Gaussian white noise, governed by certain proba-
bility laws. This noise might be either due to thermal fluctuations, noise in somecontrol parameter, coarse-graining
of a high-dimensional deterministic system with random initial conditions or the stochastic parameterization of
small scales. The dynamical systems subject to noise can be modeled accurately using stochastic differential equa-
tions, stochastic integral equations, stochastic integro-differential equations or in more complicated cases stochastic
partial differential equation[1, 2, 3, 4, 5, 6, 7, 8].

Since in many cases it is difficult to derive an explicit form of the solution of stochastic functional equations
numerical approximation becomes a practical way to face this problem. Recently, many studies have been appeared
which describe numerical solution of stochastic differential and integral equations [1, 4, 7, 8, 9, 3, 10, 11, 12, 13].

As a powerful tool, wavelets have been extensively used in signal processing, numerical analysis, and many other
areas. Wavelets permit the accurate representation of a variety of functions and operators [14, 15, 17, 18, 19, 20,
21, 16]. In this paper, an stochastic operational matrix for the Chebyshev wavelets is derived. Then application of
this stochastic operational matrix in solving stochastic Volterra-Fredholm integral equations is investigated. Some
non-trivial examples are included to demonstrate the efficiency and accuracy of the proposed method. Also to verify
the proposed method, numerical results are compared with the block pulse functions (BPFs) methed presented in
[8].

This paper is organized as follows: In section 2 some basic definition and preliminaries about stochastic process
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and Itô integral are presented. The Chebyshev wavelets and their properties are introduced in section 3. In section
4 stochastic operational matrix of the Chebyshev wavelets is derived. In section 5 application of this stochastic
operational matrix in solving stochastic Voltera-Fredholm integral equations are described. In section 6 the efficiency
of the proposed method is demonstrated by some non-trivial examples. Finally, a conclusion is given in section 7.

2. Preliminaries

In this section we review some basic definition of the stochastic calculus and the block pulse functions (BPFs).

2.1. Stochastic calculus

Definition 2.1. (Brownian motion process) A real-valued stochastic process B(t), t ∈ [0, T ] is called Brownian
motion, if it satisfies the following properties
(i) The process has independent increments for 0 ≤ t0 ≤ t1 ≤ ... ≤ tn ≤ T ,
(ii) For all t ≥ 0, B(t+ h)−B(t) has Normal distribution with mean 0 and variance h,
(iii) The function t→ B(t) is continuous functions of t.

Definition 2.2. Let {Nt}t≥0 be an increasing family of σ-algebras of subsets of Ω. A process g(t, ω) : [0,∞)×Ω→
Rn is called Nt-adapted if for each t ≥ 0 the function ω → g(t, ω) is Nt-measurable.

Definition 2.3. Let V = V(S, T ) be the class of functions f(t, ω) : [0,∞)→ Ω×R such that
(i) The function (t, ω)→ f(t, ω) is B × F-measurable, where B denotes the Borel algebra on [0,∞) and F is the σ
-algebra on Ω.
(ii) f is adapted to Ft, where Ft is the σ -algebra generated by the random variables B(s), s ≤ t.
(iii)E

(∫ T
S
f2(t, ω)dt

)
<∞.

Definition 2.4. (The Itô integral) Let f ∈ V(S, T ), then the Itô integral of f is defined by∫ T

S

f(t, ω)dBt(ω) = lim
n→∞

∫ T

S

ϕn(t, ω)dBt(ω), (lim in L2(P ))

where, ϕn is a sequence of elementary functions such that

E

(∫ T

s

(f(t, ω)− ϕn(t, ω))
2
dt

)
→ 0, as n→∞.

For more details about stochastic calculus and integration please see [2].

2.2. Block pulse functions

BPFs have been studied by many authors and applied for solving different problems. In this section we recall
definition and some properties of the block pulse functions [7, 8, 24].

The m-set of BPFs are defined as

bi(t) =

{
1 (i− 1)h ≤ t < ih
0 otherwise

(1)

in which t ∈ [0, T ), i = 1, 2, ...,m and h = T
m . The set of BPFs are disjointed with each other in the interval [0, T )

and

bi(t)bj(t) = δijbi(t), i, j = 1, 2, ...,m, (2)

where δij is the Kronecker delta. The set of BPFs defined in the interval [0, T ) are orthogonal with each other, that
is∫ T

0

bi(t)bj(t)dt = hδij , i, j = 1, 2, ...,m. (3)
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If m → ∞ the set of BPFs is a complete basis for L2[0, T ), so an arbitrary real bounded function f(t), which is
square integrable in the interval [0, T ), can be expanded into a block pulse series as

f(t) '
m∑
i=1

fibi(t), (4)

where

fi =
1

h

∫ T

0

bi(t)f(t)dt, i = 1, 2, ...,m. (5)

Rewritting Eq. (4) in the vector form we have

f(t) '
m∑
i=1

fibi(t) = FTΦ(t) = ΦT (t)F, (6)

in which

Φ(t) = [b1(t), b2(t), ...., bm(t)]
T
,

F = [f1, f2, ...., fm]
T
. (7)

Morever, any two dimensional function k(s, t) ∈ L2 ([0, T1]× [0, T2]) can be expanded with respect to BPFs such as

k(s, t) = ΦT (t)ΠΦ(t), (8)

where Φ(t) is the m-dimensional BPFs vectors respectively, and Π is the m × m BPFs coefficient matrix with
(i, j)-th element

Πij =
1

h2h2

∫ T1

0

∫ T2

0

k(s, t)bi(t)bj(s)dtds, i, j = 1, 2, ...,m, (9)

and h1 = T1

m and h2 = T2

m . Let Φ(t) be the BPFs vector, then we have

ΦT (t)Φ(t) = 1, (10)

and

Φ(t)ΦT (t) =


b1(t) 0 . . . 0

0 b2(t)
. . .

...
...

. . .
. . . 0

0 . . . 0 bm(t)


m×m

. (11)

For an m-vector F we have

Φ(t)ΦT (t)F = F̃Φ(t), (12)

where F̃ is an m×m matrix, and F̃ = diag(F ). Also, it is easy to show that for an m×m matrix A

ΦT (t)AΦ(t) = ÂTΦ(t), (13)

where Â = diag(A) is an m-vector.

3. Chebyshev wavelets

Wavelets constitute a family of functions constructed from dilation and translation of a single function ψ called the
mother wavelet. When the dilation parameter a and the translation parameter b vary continuously, we have the
following family of continuous wavelets

ψa,b(t) = a−
1
2ψ

(
t− b
a

)
, a, b ∈ R, a 6= 0. (14)
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The Chebyshev wavelets ψnm(x) = ψ(k, n,m, x) are defined on the interval [0, 1) by

ψnm(t) =

{
2

k+1
2 T̃m(2kt− (2n+ 1)), n

2k
≤ x ≤ n+1

2k

0, otherwise
, (15)

where

T̃m(t) =

{ 1√
π
, m = 0√
2
πTm(t), m > 0

,

and Tm(t) are the well-known Chebyshev polynomials of degreem. The Chebyshev wavelets {ψnm(x)|n = 0, 1, . . . , 2k−
1,m = 0, 1, 2, ...,M − 1} forms an orthonormal basis for L2

wn
[0, 1] with respect to the weight function wn(t) =

w(2k+1t− (2n+ 1)), in which w(t) = 1√
1−t2 [19, 20].

By using the orthonormality of the Chebyshev wavelets, any function f(t) over [0, 1); square-integrable with
respect to the measure w(t)dt; with w(t) = wnk(t); for n

2k
≤ t ≤ n+1

2k
; and wnk(t) = w(2k+1t − 2n + 1); being

w(t) = 1√
1−t2 can be expanded in terms of the Chebyshev wavelets as

f(t) '
∞∑
n=0

∞∑
m=0

cnmψnm(t) = CTΨ(t), (16)

where cmn = (f(t), ψmn(t))wnk
and (., .)wnk

denotes the inner product on L2
wnk

[0, 1]. If the infinite series in (16) is
truncated, then it can be written as

f(t) '
2k−1∑
n=0

M−1∑
m=0

cmnψmn(x) = CTΨ(t), (17)

where C and Ψ(t) are m̂ = 2kM column vectors given by

C =
[
c00, . . . , c0(M−1)|c10, . . . , c1(M−1)|, . . . , |c(2k−1)0, . . . , c(2k−1)(M−1)

]T
,

Ψ(x) =
[
ψ00(t), . . . , ψ0(M−1)(t)|ψ10(t), . . . , ψ1(M−1)(t)|, . . . , |ψ(2k−1)0(t), . . . , ψ(2k−1)(M−1)(t)

]T
.

By changing indices in the vectors Ψ(t) and C the series (4) can be rewritten as

f(t) '
m̂∑
i=1

ciψi(t) = CTΨ(t), (18)

where

C = [c1, c2, ..., cm̂] , Ψ(x) = [ψ1(x), ψ2(x), ..., ψm̂(x)] ,

and

ci = cnm, ψi(t) = ψnm(t), i = (n− 1)M +m+ 1.

Similarly, any two dimensional function k(s, t) ∈ L2
w

⊗
w ([0, 1]× [0, 1]) can be expanded into Chebyshev wavelets

basis as

k(s, t) ≈
m̂∑
i=1

m̂∑
j=1

kijψi(s)ψj(t) = ΨT (s)KΨ(t), (19)

where K = [kij ] is an m̂× m̂ matrix and kij =
(
ψi(s), (k(s, t), ψj(t))wnk

)
wnk

.
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3.1. Chebyshev wavelets and BPFs

In this section we will review the relation between the Chebyshev wavelets and BPFs. It is worth mention that
here we set T = 1 in definition of BPFs.

Theorem 3.1. Let Ψ(t) and Φ(t) be the m̂-dimensional Chebyshev wavelets and BPFs vector respectively, the vector
Ψ(t) can be expanded by BPFs vector Φ(t) as

Ψ(t) ' QΦ(t), (20)

where Q is an m̂× m̂ block matrix and

Qij = ψi

(
2j − 1

2m̂

)
, i, j = 1, 2, ..., m̂ (21)

Proof. Let φi(t), i = 1, 2, ..., m̂ be the i-th element of Chebyshev wavelets vector. Expanding φi(t) into an m̂-term
vector of BPFs, we have

ψi(t) '
m̂∑
i=1

Qijbj(t) = QTi Φ(t), i = 1, 2, ..., m̂, (22)

where Qi is the i-th row and Qij is the (i, j)-th element of matrix Q. By using the orthogonality of BPFs we have

Qij =
1

h

∫ 1

0

ψi(t)bj(t)dt =
1

h

∫ j
m̂

j−1
m̂

ψi(t)dt = m̂

∫ j
m̂

j−1
m̂

ψi(t)dt, (23)

by using mean value theorem for integrals in the last equation we can write

Qij = m̂

(
j

m̂
− j − 1

m̂

)
ψi(ηi) = ψi(ηj), ηj ∈

(
j − 1

m̂
,
j

m̂

)
, (24)

now by choosing ηj = 2j−1
2m̂ we have

Qij = ψi

(
2j − 1

2m̂

)
, i, j = 1, 2, ..., m̂. (25)

and this prove the desired result.

The following Remark is the consequence of relations (12), (13) and Theorem 3.1.

Remark 3.2. For an m̂-vector F we have

Ψ(t)ΨT (t)F = F̃Ψ(t), (26)

in which F̃ is an m̂× m̂ matrix as

F̃ = QF̄Q−1, (27)

where F̄ = diag
(
QTF

)
. Moreover, it can be easy to show that for an m̂× m̂ matrix A

ΨT (t)AΨ(t) = ÂTΨ(t), (28)

where ÂT = UQ−1 and U = diag(QTAQ) is a m̂-vector.
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3.2. Convergence analysis

Here we investigate the convergence and error analysis of the Chebyshev wavelets basis.

Theorem 3.3. Suppose f(x) ∈ L2
wn

[0, 1] with bounded second derivative |f ′′| ≤ L, and let
∑∞
n=0

∑∞
m=0 cmnψmn(x)

be its infinite Chebyshev wavelets expansion, then

|cmn| ≤
√

2πL

(2n)
5
2 (m2 − 1)

, (29)

this means the Chebyshev wavelets series converges uniformly to f(x) and

f(x) =

∞∑
n=1

∞∑
m=0

cnmψnm(x), (30)

Proof. See [23].

Theorem 3.4. Let f(x) be a continuous function defined on [0, 1), with second derivatives f ′′(x) bounded by L,
then we have the following accuracy estimation

σM,k ≤

(
πL2

24

∞∑
n=0

∞∑
m=M

1

n5(m2 − 1)2
+
πL2

24

∞∑
n=2k

M−1∑
m=0

1

n5(m2 − 1)2

) 1
2

, (31)

where

σM,k =

∫ 1

0

f(x)−
2k−1∑
n=0

M−1∑
m=0

cnmψnm(x)

2

dx


1
2

.

Proof. We have

σ2
M,k =

∫ 1

0

f(x)−
2k−1∑
n=0

M−1∑
m=0

cnmψnm(x)

2

dx

=

∫ 1

0

 ∞∑
n=0

∞∑
m=0

cnmψnm(x)−
2k−1∑
n=0

M−1∑
m=0

cnmψnm(x)

2

dx

=

∞∑
n=0

∞∑
m=M

c2nm

∫ 1

0

ψ2
nm(x)dx+

∞∑
n=2k

M−1∑
m=0

c2nm

∫ 1

0

ψ2
nm(x)dx =

∞∑
n=0

∞∑
m=M

c2nm +

∞∑
n=2k

M−1∑
m=0

c2nm,

now by considering the relation (29) the desired result is achieved.

4. Stochastic operational matrix of Chebyshev wavelets

In this section we derive an stochastic operational matrix for Chebyshev wavelets. For this purpose we first remind
some useful results for BPFs[7, 8].

Lemma 4.1. [7] Let Φ(t) be the m̂-dimensional BPFs vector defined in (7), then integration of this vector can be
derived as∫ t

0

Φ(s)ds ' PΦ(t), (32)
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where P is called the operational matrix of integration for BPFs and is given by

P =
h

2



1 2 2 . . . 2
0 1 2 . . . 2

0 0 1
...

...
...

...
...

. . . 2
0 0 0 . . . 1


m̂×m̂

. (33)

Lemma 4.2. [7] Let Φ(t) be the m̂-dimensional BPFs vector defined in (7), the Itô integral of this vector can be
derived as∫ t

0

Φ(s)dB(s) ' PsΦ(t), (34)

where Ps is called the stochastic operational matrix of BPFs and is given by

Ps =


B
(
h
2

)
B (h) B (h) . . . B (h)

0 B
(
3h
2

)
−B (h) B (2h)−B(h) . . . B (2h)−B(h)

0 0 B
(
5h
2

)
−B (2h) . . . B (3h)−B(2h)

...
...

...
. . .

...

0 0 0 . . . B
(

(2m̂−1)h
2

)
−B ((m̂− 1)h)


m̂×m̂

. (35)

Now we are ready to derive a new operational matrix of stochastic integration for the Chebyshev wavelets basis.
For this end we use BPFs and the matrix Q introduced in (20).

Theorem 4.3. Suppose Ψ(t) be the m̂-dimensional Chebyshev wavelets vector defined in (17), the integral of this
vector can be derived as∫ t

0

Ψ(s)ds ' QPQ−1Ψ(t) = ΛΨ(t), (36)

where Q is introduced in (20) and P is the operational matrix of integration for BPFs derived in (33).

Proof. Let Ψ(t) be the Chebyshev wavelets vector, by using Theorem 3.1 and Lemma 4.1 we have∫ t

0

Ψ(s)ds '
∫ t

0

QΦ(s)ds =Q

∫ t

0

Φ(s)ds = QPΦ(t), (37)

now Theorem 3.1 give∫ t

0

Ψ(s)ds 'QPΦ(t) = QPQ−1Ψ(t) = ΛΨ(t), (38)

and this complete the proof.

Theorem 4.4. Suppose Ψ(t) be the m̂-dimensional Chebyshev wavelets vector defined in (17), the Itô integral of
this vector can be derived as∫ t

0

Ψ(s)dB(s) ' QPsQ−1Ψ(t) = ΛsΨ(t), (39)

where Λs is called stochastic operational matrix for Chebyshev wavelets, Q is introduced in (20) and Ps is the
stochastic operational matrix of integration for BPFs derived in (35).

Proof. Let Ψ(t) be the Chebyshev wavelets vector, by using Theorem 3.1 and Lemma 4.2 we have∫ t

0

Ψ(s)dB(s) '
∫ t

0

QΦ(s)dB(s) =Q

∫ t

0

Φ(s)dB(s) = QPsΦ(t), (40)

now Theorem 3.1 result∫ t

0

Ψ(s)dB(s) =QPsΦ(t) = QPsQ
−1Ψ(t) = ΛsΨ(t), (41)

and this complete the proof.
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5. Numerical solution of stochastic Voltera-Fredholm integral equation

In this section, we use the stochastic operational matrix of Chebyshev wavelets for solving stochastic Voltera-
Fredholm integral equations. In this way, consider the following stochastic Voltera-Fredholm integral equation

X(t) = f(t) +

∫ β

α

X(s)k1(s, t)ds+

∫ t

0

X(s)k2(s, t)ds+

∫ t

0

X(s)k3(s, t)dB(s), t ∈ [0, T ), (42)

where X(t), f(t) and ki(s, t), i = 1, 2, 3 are the stochastic processes defined on the same probability space (Ω, F, P ),

and X(t) is unknown. Also B(t) is a Brownian motion process and
∫ t
0
k3(s, t)X(s)dB(s) are the Itô integral. For

sake of simplicity and without loss of generality we set (α, β) = (0, 1). Now, we approximate X(t), f(t) and
ki(s, t), i = 1, 2, 3 in term of m̂-dimensional Chebyshev wavelets as follows

f(t) = FTΨ(t) = ΨT (t)F, (43)

X(t) = XTΨ(t) = ΨT (t)X, (44)

ki(s, t) = ΨT (s)KiΨ(t) = ΨT (t)KT
i Ψ(s), i = 1, 2, 3, (45)

where X and F are Chebyshev wavelets coefficients vector, and Ki, i = 1, 2, 3 are Chebyshev wavelets coefficient
matrices defined in Eq. (17) and Eq. (19). Substituting above approximations in Eq. (42), we have

XTΨ(t) = FTΨ(t) +XT

(∫ 1

0

Ψ(s)ΨT (s)

)
K1Ψ(t)

+ΨT (t)KT
2

(∫ t

0

Ψ(s)ΨT (s)Xds

)
+ ΨT (t)KT

3

(∫ t

0

Ψ(s)ΨT (s)XdB(s)

)
,

using relation
∫ 1

0
Ψ(s)ΨT (s)ds = Im̂×m̂ and Remark 3.2 we get

XTΨ(t) = FTΨ(t) +XTK1Ψ(t) + ΨT (t)KT
2

(∫ t

0

X̃Ψ(s)ds

)
+ ΨT (t)KT

3

(∫ t

0

X̃Ψ(s)dBi(s)

)
,

where X̃ is an m̂× m̂ matrix. Now applying the operational matrices Λ and Λs for Haar wavelets derived in Eqs.
(36) and (39) we have

XTΨ(t) = FTΨ(t) +XTK1Ψ(t) + ΨT (t)KT
2 X̃ΛΨ(t) + ΨT (t)KT

3 X̃ΛsΨ(t), (46)

by setting Y2 = KT
2 X̃Λ, Y3 = KT

3 X̃Λs and using Remark 3.2 we derive

XTΨ(t)−XTK1Ψ(t)− Ŷ T2 Ψ(t)− Ŷ T3 Ψ(t) = FTΨ(t), (47)

in which Ŷ2 and Ŷ3 are m̂×m̂ matrix and they are linear function of vector X. This equation is hold for all t ∈ [0, 1),
so we can write

XT −XTK1 − Ŷ T2 − Ŷ T3 = FT . (48)

Since Ŷ2 and Ŷ3 are linear function of X, Eq. (48) is a linear system for unknown vector X. Solving this linear
system and determining X, we can approximate solution of stochastic Voltera-Fredholm integral equation (42) by
substituting obtained vector X in Eq. (44).

6. Numerical examples

Here we demonstrate the efficiency and accuracy of the Chebyshev wavelets method (CWM) by some non-trivial
examples. All algorithms are performed by Maple 17 with 20 digits precision.
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Example 6.1. Consider the following stochastic Volterra-Fredholm integral equation [8]

X(t) = f(t) +

∫ 1

0

cos(s+ t)X(s)ds+

∫ t

0

(s+ t)X(s)ds+

∫ t

0

e−3(s+t)X(s)dB(s), s, t ∈ [0, 1] ,

in which

f(t) = t2 + sin(1 + t)− 2 cos(1 + t)− 2 sin(t)− 7t4

12
+

1

40
B(t),

and X(t) is an unknown stochastic process defined on the probability space (Ω,z, P ) and B(t) is a Brownian motion
process. The proposed method in Section 5 are used for solving this stochastic Volterra-Fredholm integral equation.
Fig. 1 presents the approximate solution computed by CWM for m̂ = 64. The numerical results derived by the
CWM and BPFs method [8] are shown in Table 1.

Figure 1: The approximate solution for m̂ = 64.

Table 1: Numerical results for m̂ = 32 and m̂ = 64.

t
m̂ = 32 m̂ = 64

CWM BPFs[8] CWM BPFs[8]

0.2 0.0384640678 0.0566018117 0.0160672577 0.0162899633
0.4 0.1547742035 0.1550820154 0.1291019803 0.1151902625
0.6 0.3335285787 0.3908514112 0.3050923299 0.3840300664
0.8 0.6243209968 0.6338163380 0.5891794668 0.6993271966
1.0 0.9459824713 0.9684881988 0.9108351381 1.0017286969

Example 6.2. Consider the following stochastic Volterra-Fredholm integral equation[8]

X(t) = f(t) +

∫ 1

0

(s+ t)X(s)ds+

∫ t

0

(s− t)X(s)ds+
1

125

∫ t

0

sin(s+ t)X(s)dB(s), s, t ∈ [0, 1] ,

where

f(t) = 2− cos(1)− (1 + t) sin(1) +
1

250
sin (B(t)) ,

and X(t) is an unknown stochastic process defined on the probability space (Ω,z, P ) and B(t) is a Brownian motion
process. The stochastic operational matrix of Chebyshev wavelets is employed for deriving numerical solution of this
Volterra-Fredholm integral equation. Fig. 2 presents the approximate solution computed by the CWM for m̂ = 64.
Table 2 shows the numerical results given by the CWM and BPFs method [8]. The numerical results reveal the
efficiency of the proposed method.
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Figure 2: The approximate solution for m̂ = 64.

Table 2: Numerical results for m̂ = 32 and m̂ = 64.

t
m̂ = 32 m̂ = 64

CWM BPFs[8] CWM BPFs[8]

0.2 0.8418226141 0.9860154776 0.8954496110 0.9833522815
0.4 0.7498444252 0.9432021950 0.8152919762 0.9157653040
0.6 0.6260729397 0.8554015473 0.7005129168 0.8042753408
0.8 0.4848493405 0.7250865831 0.5658723582 0.6954537702
1.0 0.3315123423 0.5459802735 0.4102839976 0.5713651151

7. Conclusion

A computational method based on the Chebyshev wavelets and their Itô-integration operational matrix is proposed
for solving stochastic Volterra-Fredholm integral equations. The main advantage of the proposed method is that
it transforms stochastic Volterra-Fredholm integral equations into linear systems of algebraic equations which can
be simply solved. Convergence and error analysis of the Chebyshev wavelets is investigated. The efficiency and
accuracy of this method is shown by comparison with other existing methods on some non-trivial examples.
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