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Abstract

The paper shows a new method which has the ability to solve any nonlinear 1st order differential equation with any
initial conditions. The method is called Piecewise Analytic Method (PAM). The accuracy of the method can be
controlled according to our needs. A comparison between PAM and Runge-Kutta method is introduced which enhances
the use of PAM. For non-mathematician, they can now test their systems with any initial condition.
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1 Introduction

Mathematical modeling of many engineering and physical systems leads to nonlinear ordinary and partial differential
equations. In general, it is very difficult to solve nonlinear problems analytically. An effective method that provides
solutions conforming to physical reality is required to analyze the mathematical model. Therefore, we must be able to
solve nonlinear ordinary and partial differential equations, in space and time. Some analytic procedures linearize the
system or assume that nonlinearities are relatively insignificant. Assumptions have to be made artificially or
unnecessarily to make the practical problems solvable, leading to loss of most important information. Such procedures
change the actual problem to make it tractable by the conventional methods. These approaches sometimes change the
solution seriously [1, 2].

Generally, The ability to solve nonlinear equations by analytical methods is important because linearization changes the
problem being analyzed to a different problem, perturbation methods are only reasonable when nonlinear effects are
very small, and the numerical methods need a substantial amount of computations but only lead to limited information
[3].

In this paper, the piecewise analytic method (PAM) is introduced for solving any initial value ordinary nonlinear
differential equation. The PAM is based on dividing the solution interval into subintervals and obtaining an approximate
analytic solution which is very accurate and can be applied to each subinterval successively. The approximate analytic
solution is based on truncated Taylor series [4] or Padé approximants [5, 6]. In PAM, the solution accuracy can be
controlled according to needs. The PAM gives the exact solution in some special cases [7]. A comparison between
PAM and Runge-Kutta method is introduced. The Runge-Kutta method is one of the most famous and popular method,
which is used for solving ordinary differential equations. The Runge-Kutta method is named for its’ creators Carl
Runge(1856-1927) and Wilhelm Kutta (1867-1944). The Runge-Kutta formulas are available from order 2 up to order
10. It should be noted that no Runge-Kutta formula of order 11 is available at present [8, 9, 10, 11, 12, 13]. The
comparison between PAM and Runge-Kutta method enhances the use of PAM, especially, when high order of accuracy
and analytic form are needed.

2  Piecewise Analytic Method

Consider the general 1% order differential equation:
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u'=4g(t,u), u(,) =", t, <t <b. @)

For solving (1) using piecewise analytic method (PAM), The interval t, <t <b is divided into n equal parts, each of

length h, by the pointst, = mh, m= 0,1 2, ..., n. The value h = b1, is called the subinterval length. The
n

points t_ are called interval points see Fig. 1.

UU Ul U2 UM

I k kb k
—t——t——— ——
L 4 4 $ 4 4 L 4 4

Fig. 1

U, denotes to the approximate analytic solution in the m" subinterval [t,t,,]. U, can be applied to any
subinterval m (t e[t, .t, ], m=012,...,(n-1)).
Now, for calculating U, , equation (1) is written in the form

du,
dt _¢(t’Um)v (2)

u,t,)=Ff,, telt,.t,.] m=012,...,(n-1).

Then using any symbolic mathematical program like Mathematica for obtaining the approximate solution U . | have

two forms of approximate solutions, one is the truncated Taylor series solution and the other is the Padé approximants
solution.
In the case of truncated Taylor solution [4], U, is defined according to the needed accuracy. If we need the accuracy to

be of O(h®), U, will take the form

Um(t)zicn (t_tm)n :Szl(t_tm) [dnum

J teft,.t,.] ®)

(t)=i=”:°— where |+k =s-1, telt,.t,,,] 4

if we need the accuracy to be of O (h®).

Another approximate solution is under study.
The final step is applying the approximate analytic solution formula U, to each subinterval successively with the initial

valuef , =U_ (), U @t,)=f,.

Notes:
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s—1
e We have many methods for calculating(3). The first method is the substitution by U _ (t) = ch (t -t, )n and

n=0
its derivatives into the ODE, then equating the coefficients of each power of (t -t )" to zero to get a
recurrence relation. The recurrence relation expresses a coefficient ¢, in terms of the coefficients ¢, where

n! dt

manipulation of the function formula by classical differential calculus techniques. The results are constants that
represent the value of derivatives at the point of evaluation. The other methods are based on the new methods
which give the truncated series solution like Adomian decomposition method [15], Improved Adomian
decomposition method[16, 17], modified variational iteration method [16, 18], homotopy perturbation
method[19], homotopy analysis method[20] and others.
| prefer the first method because it is the origin and all the others are synthesis from it.
e The PAM gives the exact solution in two cases:
1. If the exact solution is a polynomial with order w and the truncated series approximation (3) is used
with s —-1>w .

t(t-t, )
m<n . The second method is calculating Um(t):zﬂidu—m ] which is based on the
n=0

t=tp,

S (t-t,)

2. If the exact solution is a rational function =>———— and the Padé approximants (4) is used with

W

20, (t-t, )

1>z and k >w .
e The truncated series (3) is suitable if the solution has no poles and bounded, if not, the Padé approximants (4)
is more suitable than truncated series (3).
e I don’t know the best form for Padé approximants (4) but by experience | prefer | =k =even .
e  The Padé approximants coefficients p,(n =0,12,...,1) and g, (0,12,...,k) are determined by [5, 14, 6]

c, (t-t, ) -2

:
" 2.0, (t-t, )

n=0

:O((t _tm)l+k+1)’ (5)

k
settingqg, =1 and multiply (5) by an (t -t )" , Which linearizes the equations coefficient. It can be written out in
n=0

more detail as

Ciut G0y +- 4Gy i =0

Clup #Cpglly +-+4+C 0 =0 (6)
Ci +C iyl +--+CQy =0

Co = Po

C; +Co0; =P

C, +C0; +C 4, =

P, (7

C, +C, 40, +---+CyQ, =P

Once, the gq's are known from equations (6), equations (7) can be solved easily. If equations (6) and (7) are
nonsingular, then they can be solved directly as follows;
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€k Ci sz Cia
det C, Cia C ik
| I |
j i j
denth et o Dt
j=k j=k-1 j=0
Um (t) — J ] ] ,
Cika Cixsz = Cia
det
G Cia Gy
tk et L1
Forl =1and k =1
pO =C0’ qO :1,
2
€, —CuC, C,
p, = — q,=——.
C, C
Forl =1and k =2
Po =Co, 0, =1
3 2
b, = €, —2C4C,C, +CyC, _ 7CiC, +CCy
' C12 —CC, ' Clz —CC,
sz —CCy
q, =
€y —CiCy
For 1 =2 and k =1
Po =Co, q, =1
_ C,C, —CCy _ 3
i 4, =—"
C, C,
2
P C, —CCy
2 1
C,
Forl =2 and k =2
Po =Cos 0, =1
2 2
_ C,C,” =C,C; —C,C,C; +C,C,C, g = —-,C; +C,C,
' sz —CCy ' sz —CCq
b ¢,> —2¢,,C, +C,Cy° +C,°C, —C.C,C, q - ¢’ —CC,
’ sz —CCq ’ sz —CCy

Forl =3 and k =3

Po =Cy,

p, = (- ;> +2¢,C,CC, +CCsC, —C,°c,” —CC,C,° —C,C,Cs +C,°C,C, —
C,C,CsCs +CoC,C,Cs +C,C,7Co —CC.CCe) / (—C5° + 20,6, —CC,° —
C,°Cs +C,CC.),

p, =(C,C;° —2¢,°c,C, —C,C,°C, +26,C,C,° +CC,C,° +C,°Cs —CoCaCy —
€,7C,C5 —CoC,C,C5 —CoCiCs” —C,C,°Cq +C,°CoCq +CoCoCCs —CoCiCCo)
(€’ —2c,cc, +C.C,° +C,°Cs —CLLLs),

p, =(c,' —3kc.c, +¢,%¢,2 +2cc.,” —cc,’ +2¢,°CC; — 26,C,°C, — 20,C,C,Co +
2C,C.L,Cq +C,C.° —C,C,Cs° —C,°Cq +2C,L,C.Cq —CoCs Cq —C,°C,Cq +CoC,C.Cq)
(€’ —2c,c¢, +C,C,° +C,°Cs —CLLLs),

19

®)

©)

(10)

(11

(12)

(13)
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Qo =1
2 2 2
_ €50y +C,C,° +C5C,C —C,C,Cq —C,Cq +C,CCe
3 2 2
¢, —2c,c,c, +CC,° +C,C. —C,CC,

0,

2 2 2
C,C," —C;C, —C,C,Cq +C,C.° +C,C,L, —C,C,Cq
3 2 2 !
c, —2c,.c,+CC,° +C,C,—CC.C,

q, =

€, +20,L,C5 —C,C° —C,°Cq +C,C,Co
¢’ -2,00, +CC2 +C,%C, —CCCy

And so on, where we can calculate any desired Padé approximants by using any symbolic mathematical program for

any series U (t) = ch (t -t )n and then all what we will do is only substituting by c, 's in the suitable p's and
n=0

g's for obtaining the desired Padé approximants .

3 Case-Studies

3.1 Case-study 1:
Consider the differential equation

u'(t) =—u®, u(0) =1. (14)
This is a nonlinear problem which has the exact solution

1

ut)= . 15

(t) ey (15
Defining a differential equation for each subinterval m from (14)

d:Jtm =-U_?, u,t,)=~f,, telt, t.] (16)

where f_ =U_,(t,), U ,t,)=u@) =0, m=012...,n-1

SubstitutingU . (t) = ch (t -t )n and its derivatives into (16) leads to

n=0

incn (t —tm)"l=—(ch (t —tm)") o Ce=fo telty t,] a7

Cozfm’ Clz_fm3’
3 5
c,=—f %, c,=——f_",
2 2 m 3 2 m
A_Efmg’ 5= Efmn’
8 8 (18)
231, . 231, .
6=_fm ’ Gz_fm ’
16 16
429, . 6435
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Substituting by (18) into(3), if we need accuracy O (h®), we obtain the approximate analytic Taylor series solution.

U () = —F 3 —t,) 4o S —t, ) —2F Tt —t, )+
35 ’ ’ (19
Efmg(t _tm)4l t E[tm’thrl]

Substituting by (18) into (12) for obtaining p's and g's then substituting by them into(4), we obtain the Padé
approximants

U ()~ af +6f (-t )+f °t-t,)’
"0 4410 P -t, ) +5F, ft-t,)*
if we need accuracy O (h°), we can obtain the approximate analytic Taylor series solution

telt,.t,..] (20)

Up©) = F £, €1+ S F 50 1) =2 F T4+ 20, -t -
63 231 429
=F M-t )P0 Bt ) -0 f Bie-t )+ 21
8m(m) 16m(m) 16m(m) (21)
6435
=5 f Y-t )8, telt .t
128 m ( m) E[m m+l]

and Padé approximants

16f +56f °(t-t,)+60f °(t -t )>+20f "t -t )°+f °t-t, )

16+72f ?(t -t )+108f *(t —t_)?+60f °(t—t,)°+9f 5t -t )*' (22)
telt, t,.l

U, )=

Fig 2 shows the exact solution of (14).

Table 1 shows the absolute error between (14) exact solution and Padé approximants and Taylor series for different
values of h .

Table 2 shows the absolute error between (14) exact solution and different forms of Padé approximants and Taylor series
forh =0.1.
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Fig 2: The exact solution of (14)

Table 1: The absolute error between the exact solution (15) and Padé approximants and Taylor series for different values of h .

7 9 q
h Padé [%] 0(h%) Truncated Series O (h®)
Absalute error Absolute ervor
& xi0L 2x 1077 L
axlo I 10T L
1 4101 210 L
210780 1x10% [
¢ . . Lo
03 o 15 20
Abgolute ervor Absolute ervor
-
15x0? & xI
axio®
1 x107%?
0.1 4 x 107
LSt
25107
2 ¢
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Absolute ervor Ab.st}iuté orror
LTS [l

12x10715
1 x10718 8 w107
[ Ll

O-Ol & w116

4 xotel

4 w1018

2 x107%
2xIp¥eL

Absplute ervor Absolute error

35X 10725
3 w107
25 x 10725
001 2 x1078
' 15510718

110t

5w lpte

Table 2: The absolute error between the exact solution (15) and different forms of Padé approximants and Taylor series for h =0.1.

Orde
r of Padé [n/n] Series
h
Absolute error Absolute error
000008 -
4 x10-7
000005 |
axro7L
5 P 000004
Lalo7r 000002
. . . . : = ¢ . . L . . L
03 Le L3 28 25 50 03 10 13 z0 23 30
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Absoluie exvor Absolute error
sxIo L
2x105f
& x0Tt
15x108f
7 410710
Lxiocf
=i
2510 s wrorl
03 10 15 20 25 20 035 10 15 20 25 an
Absolute error Absolute error
12 gxIoFL
L5xip 2L
axlofL
1owio
9 4 w10
5 oxi0ofL
2x107}
. L . . L L 1 1 1 1 1 1 2
0s 10 1.5 20 25 30 05 10 15 20 IY; 20
Absolute arror Absolute ervor
Lix1p2L
25x10-°L
- [
L o2l 2 x10
11 151077
Sox107f L Lx10?f
S w1l
05 Lo 15 20 25 3D Iy 10 ITEESY, YT
Absolude error Absolute ervor
o[
£ 2108 1510
gaxro ML
3wl
13 gxip L
2 x 1016
4oL
=1
1LxI0 P
| 1 1 1 1 1 1 i
2.0 035 10 15 20 25 30
Absolute error Absolute ervor
4 w1012
310t R
25=x1071E axlo L
2 xioe
1 2103
5 1.5 x 1016
I xig™t®
Ioxrm L
5 oxrot?
. . . . . Ly

03 10 1) 2.0 235 3.0
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Absolute ervor Abgolute error
5 ero-tk Idx107 8L
12x10708]
4 w07 1 x107 7
17 I w107 L B x10ML
5 xi0-H6F & x1074 L
4 w10 HL
Lx1oe g 2 x107ML
' O.IS I.IG I.IS 2.IO 2.I5 3.IO '
3.2 Case study 2:
Consider the differential equation
u't)=-u-t-2, u(0)=1. (23)
This is a nonlinear problem which has the exact solution
u)=2e" -t -1. (24)
Defining a differential equation for each subinterval m from (23)
du
dtm =-U, -t-2 U,t,) =", tet, .ty (25)

where f_ =U_ . (,), U, ,t,)=u@)=1, m=012...,n-1

Substituting by U (t) = c, (t —t,, )" and its derivatives into (16) leads to
n=0

in ¢, (t-t,) " = —(Zs‘,cn (t-t,) j—(tm +(t-t,))-2 (26)

n=1 n=0

Co=Fon tefty to].
Solving (26) leads to:

Cozf Cl=—2—t _f

czzé(lﬁm +f.), caz—%(lﬂm +f.),
c :i(l+t +f.), c :—i(1+t +f.),
4 24 m m 5 120 m m (27)
1 1
CG Z%(l+tm+fm), C7 =_%(1+tm+fm)'
= 1+t +f
G 40320( +o +f),

If we need accuracyO (h®) , we’ll substitute by (27) into(3), we obtain the approximate analytic Taylor series solution.



26 International Journal of Applied Mathematical Research

U, @)=f -+t +f )t —tm)+1(1+tm +f )t -t,) -
2
1 1 (28)
g(1+tm +f )t -t,)° +§(1+tm +f )t -t,)" telt,.t,,]
Substituting by (27) into (12) for obtaining p's and q's then substituting by them into(4), we obtain the Padé
approximants

U, () ~ (4@ -t,,) -12t, (t -t,,)-12t,*(t -t,)* -6t ~t,,)* -12t, (¢ ~t,)" -
12f  +12t f —12(t -t )f  —18t (t -t )f  —11(t -t )°f +t (-t )°f, +
12f 2 —6(t -t )f >+ -t )*f 2)/(-12+12t +6t (t—t )+ (-t )"+

t (-t ) +12f +6(t -t ) +@ -t )*f ), telt, .t ]

(29)

if we need accuracy O (h®), we can obtain the approximate analytic Taylor series solution

U, @) =f —@+t, +f )t —tm)+%(l+tm +f )t -t,) -

1(1+tm +f )t -t,)° Jri(1+trn +f )t -t,) -
6 24 (30)

L Lyt o
120(1+tm+fm)(t t.) +720(1+tm +f )t -t,)

ﬁ(lﬂm +f )t -t,) +

and Padé approximants

1+t +f )@t -t )&, telt t
40320( m m)( m) E[m m—l]

U, (t) =~ (10080(t —t,)+1680t,, (t —t,)—1680t *(t -t )+840(t —t, )* -
1680t,, (t —t, )* +360(t —t, )* —40t (t -t,)*—40t, °(t -t,)°*-20(t -t,)* -
—40t (t -t )* —5040f ~+1680t, f —2520t (t -t )f  -1860(t -t )°f +
180t (t -t, )°f, —40(t -t )°f, —60t, (t—t, )°f, —39(t -t )f, +

t (t-t,)"f, +1680f 2)/(-5040+1680t, A —1680(t —t,)+840t, (t—t, )~
180(t —t, )> +180t,, (t -t )>+20t, (t —t,)* +(t -t ) +t (-t )"+
1680f +840(t -t )f +180(t -t )*f +20(t -t )*f +(t -t )'f ),

(1)

telt,.t,,]
Fig. 3 shows the exact solution of (23). Table 3 shows the absolute error between (23) exact solution and Padé
approximants and Taylor series for different values of h .
Table 4 shows the absolute error between (23) exact solution and different forms of Padé approximants and Taylor series

for h=1.
Foaact Solution

Fig. 3: The exact solution of (23).

Table 3: The absolute error between the exact solution (24) and Padé approximants and Taylor series for different values of h .
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4 9 . 9
h Padé [%] 0(h°) Truncated Series O (h°)
Absolute ervor Absolute ervor
S xIns|
1ax107[
12x107F 4x106}
Lx107L
2xt0¢f
l g xl0FL
X107 2xips[
4 x107°[
L0l
2x10ff
- 1 1 I a
1 2 4 5 g 10
Absolute ervor Absolute error
r2xiptf
~ 2x107% L
Lol
-1 [
g 107150 Iix1d
. -15
01 §x107 Lxio [
4 x1075L
5 a0
2x1075L
10 ¢
Absolute error Absolute error
ER
255107
25x107
2 xioH
2x107L
0.01 1S5xi0
: 15107
=14
Lxio ML I w10
S x10 L 5 w1028
L 1 t
Absolu; Abzoln
255107
Tdx10 L
r2xi0 AL 2xI07L
1 xIo-t3L
1ix107
001 g0l
axiot4L Lxp el
4 x10L
Sxln L
2xipL
3.3 Case study 3:
Consider the differential equation
2+t
u't)=u-—->, u(0)=1. (32)
2
1+t)

This is a nonlinear problem which has the exact solution



28 International Journal of Applied Mathematical Research

1
u)=——-.
® 1+t

Defining a differential equation for each subinterval m from (32)

du 2+t
m=Um_ , Um tm =fm' tetm,tm .
dt (1+t)’ tn) ot ]

where f =U_.(,.), U {,)=u@)=1, m=012...,n-1

Substituting by U, (t) =Y c, (t—t, )" and its derivatives into (34) leads to
n=0

S

chn(t—tm)"lz[nsz_:ocn(t—tm)”} i( "2+t J

n 2
n=1 n=0 dt (1+t) -

(t-t,)" |

Co=fo. teltyth.]-

Solving (35) leads to:

co="F.,

2 t-t,)
R TRN RN R TRN TR L
c. - 3 N t-t,) 1 o (t-ty) fo
220+ (t-t,))° 20+@-t,))} (A+@-t,)? 20+@t-t,)?> 2
o 4 et 1 Loty
3@+ (t-t, ) 3(+@-t,) 20+@-t,))} 6@+(-t,))’

1 oty f
3+t -t,))° 6@+(t-t,)? 6
c = 5 N t-t,) 1 (-t N
YA+t -t,))® 4d+(t-t,)° 3@+(t-t,)" 120+t -t,))"

1 N t-t,) 1 o (t-ty) +f_m
8(L+(t-t,))° 24(L+(t-t,))° 12(1+(t-t,))® 24(1+(t-t,))? 24’
oo 1 o (t-ty) . 21 . t-t,)
A+ -t,))® 120+ -t,))° 2001+ -t,))° 20(1+(t-t,))°

1 -t . 1 . t-t.) ~
151+t -t,))" 60(L+(t-t,))* 40Q+(t-t,))° 120(L+(t-t,))°

1 t-t,.) +fm

60(1+(t —t,))° 120(L+(t—t,))° 120

(33)

(34)

(3%)

(36)

Substituting by (36) into(3) for obtaining the needed approximate analytic Taylor series and substituting by (36) into
one of (9)-(13) for obtaining the appropriate p's and q's which are used to obtain Padé approximants. The Padé

approximants gives the exact solution in this example because the exact solution of this problem is rational function.
Figure 4 shows the exact solution of (33) which is identical with PAM solution using Padé. If we use the PAM series

solution, the result is not accepted especially near the pole of the exact solution.
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Exget Solution
Ia

. . . . Ly
2 4 a 8 10

Figure 4: The exact solution of (33).

Table 4: The absolute error between the exact solution (24) and different forms of Padé approximants and Taylor series for h =1.

Order

of h Padé [n/n] Truncated Series
Absolute error Absolute error
o014k a0k
0012F oo01zf
aorof aorof
G008 aaosk
5 [ N
o008k aonsb
o04f o004f
0.002F 0002 F
L L 1 L TR L L L 1
2 4 § g 10 2 4 § g
Absolute error Absolute error
e
4 xI00[ ooz f
ao002s b
2xI0[
7 ao0020E
2xI0FL oooIsE
p ao0oIoE
1L xI05L
a00005 F
1 1 1 L ! 1 1 I
2 4 § g 10 2 P P ]
Absalute error Absolute error
4L
1an1oF S x10
122107 ¢ 4 x105f
LxI10-7f
axl0sf
-
9 & xloFt
107 2x1075f
4 x10ff
P 1Lxi0ff
. L T . L n
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Absolute error Absojuta error
S =1L
4 x108L
4 510
» 2x10-8L
ax10
11 .
2_){10_;1_ 2 x107E
Lxio ML } 1Lx107°f
: : : = ¢ . . . -
2 4 a & in 2 4 4 2 10
Absalute error Abaolute error
35x10717F 3xIotoL
31070 2551070
-13
25x10718E o erotok
2x10773E
13 15510770
1ix107%¢
10t
w109k Lxl0
S xioitp Saiog
L L — } L 1 i Lot
2 4 g & 10 ] 4 & P 10
Absolute error Abaolute error
ER i 1dx10712[
Zxi0 L 12510712
285m0 1 x10712
2x1075L g x1073 [
15
1ixio 5L ax1073 [
1 =10 5L 4 x1070L
5 w1016 2x1079L
— 3 L 1 1 it
2 4 4 5 10 2 4 § [ 10
Absolute ervar Absolute error
5w 108 SISt
4 xI0~ [ 4 x1075L
2xI0 Bl ER S LRt
17
2xIo] 2x1075L
LxIpL 1Lxig [
4 : . I :
2 4 4 [ 10
3.4 Casestudy 4:
Consider the differential equation
' t,,2 —t —1
u't)y=eu“—-u+e—, u(0)=—. 37)
a

This case study is very good, which shows the power of PAM. It is a nonlinear problem which has the exact solution

: (38)
sint +acost

G = e (cost—asint}
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This solution has infinite number of singular points.
Defining a differential equation for each subinterval m from (37)

du
dt

m—e'U,’-U, +e™, u,t,)=~, telt, th.] (39)

where f_=U_.(,.), Ufl(to):u(O):—l, m=0,12,...,n-1
a

Substituting by U, (t) = ch (t-t, )n and its derivatives into (39) leads to

n=0

S n— S(d"
t-t )= t
;ncn( m) [n o[dtne J

= . n=0
(40)
S n S dn n
de(t=ty) |+ D e (t-t,)" | Co=f,, tet, t,.]
n=0 n=0 dt -t
Solving (40) leads to:
c,="F,,
c,=e" —f_+e"f ?
c, :%(—Ze"m +3f  —2e'"f _2+2e%f ®),
c, :%(Se’tm ~7f, +1kf P —Ge?nf P+’ f *),
= 1 _ —t _ thf 2 2ng 3 Stf 4 a,¢ 5
Co =g (12677 +20F , —36e™f 752670, ~24e0F  * 4 2401 ), @1

C, :%(415% ~101f | +22%e'f 2 —220e?f °+300e’"f *—
120e“nf °+120e""f °©),

Ce :%0(—142{‘m +543f —-982'"f ?+1862e*~f °-1560e*~f *+
2040e“~f ° —~720e%"f °+720e°"f 7),

Substituting by (41) into(3) for obtaining the needed approximate analytic Taylor series and substituting by (41) into
one of (9)-(13) or others for obtaining the appropriate p's and gq's which are used to obtain Padé approximants.

The PAM truncated series solution O (h®) is
U,t)=f, +@€™ —f, +e"f )t —tm)+%(—2e’tm +3f, —2e"f 2+
2% f )t -t ) +1(5e‘tm ~7f, +1l"f *-6e*f *+6eif *)
6 (42)
t-t,)° +2—14(—12e’tm +29f —36e""f ?+52%nf 3_24e%f ‘4

24e4tmfm5)(t _tm)A’ t e[tm'tm—l]'

The PAM Padé solution O (h®) is
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U, (t) = (24t —t,)+24(t -t )* +24e'"f_—120(t -t )e'"f +58(t -t,)%e"f
144e%~f 2 +126(t —t, )e”f 2 +26(t —t,)’e? f > +60e°f °-174(t -t )’
f 2+87(t -t )%’ f *—24e*f *+102(t -t )™ f *+2(t-t, )e“f *+
24 f °—48(t —t, )’ f °+28(t —t, )% f °)/(24e" +48(t -t )e" +

28(t —t, )’e' —144e®f —102(t -t, )’ f +2(t -t )% f +60e*f %+
174(t —t, )e®f > +87(t —t,, )%’ f > -14de*~f °-126(t -t )e“f *+26( —
t,)’e*nf *+24e%f *+120(t -t )e’f *+58(t —t, )% f ¢ —24(t -

t )e’nf °+24(t -t )e’f %), teflt,.t, ]

It is massive to write the obtained solution O (h®) but the results are summarized in the following figures. Figure 5

shows the exact solution of (37). Table 5 shows the absolute error between (37) exact solution and Padé approximants
and Taylor series for different values of h . Table 6 shows the absolute error between (37) exact solution and different
forms of Padé approximants and Taylor series forh =0.1.

Exact Solution
2

[

/ z ( o [ s g 10

Figure 5: The exact solution of (37).

Table 5: The absolute error between the exact solution (38) and Padé approximants and Taylor series for different values of h .

h Padé [%] 0(h) Truncated Series O (h°)
Absolute ervor Absolute arvor
Sxpgr
o0k dx1t L
[ Fx AL
1 200F
: 2xiprAEL
oor IxIPHL
. . . . Lt ; * * y rik
p ” % 2 70 0s Lo 13 20 25 20
Absolute ervor Absolute ervor
7 xI06E 20x I8
GxI0FL
P Lix I L
-“f
01 #x® Lox 1008
IxI0SF
2xI08E S0x 10207 L
Lxl0®F
L L L L I 3 L 1 L 1 L t
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Abzolute error Absolute errar
L5x107?L
SxIPeRL
821
1 x107%) 4x 107
0.01 Fx 1L
5 x1070) 2wiptRal
Ixi0PoaL
. L L} L L L L
2 4 g & b 05 Lo 13 20
Absolute ervor Absolute error
2L
1'4)(10—5‘ r 4)(105
L2x109L .
ixl F
LxIiosL
& x10-7L
.001 2x12f
& xi0fL
-9 r
410 IxIF?|
2 %1077
. . - 3 1 1 1 L
2 4 8 @ 10 03 Lo L3 20

Table 6: The absolute error between the exact solution (38) and different forms of Padé approximants and Taylor series for h =0.1.

Order
of h

Padé [n/n]

Absalute errar

0.00005 |
0 00004
000002
000002

0.00001 |

Abgolute errar
Lxio )

& win™?
& xin~?
4 w1~

2 =i~

)
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Absalute ervor
25x1013L
21079

9 I5xIp7 12

Lxio 2L

5 x 10717 & J
L L 1 L L L 1 L L L il Ilu L 1 3

Abgalute arvor

1210705
I xIpdsL
& x10-18 L
11

axIpieL

4 xIoTEL

2 w107

Abgoluts error

2o tEL

Lixi0iet

|
13 I w1p-T¢

5 xrpt7

A,

2 4 a 8 I

4  Error estimation and changing the initial condition

Now, unlike the above case-studies, PAM will be applied only when the exact solution is not known. Thus, in practice
the error at each interval points will not be known. It is essential then to know, a priori, that the PAM error at each
interval points decrease to zero as h decreases to zero or the accuracy order increases to infinity. Of course, it does not
make sense to apply a zero interval size or infinity order of accuracy to PAM, but the point is that we can make the error
as small as we wish by selecting h sufficiently small or the order of accuracy sufficiently high. That this is correct
when all calculations are exact will be established next. In this case the truncation error in computing U, (t) using

PAM is bounded in direct proportion with respect to the interval size h and order of accuracy which takes us to PAM
is convergent.

Turning now to the computation of PAM solution as described by the algorithm, we first specify values for the
parameters of the problem and the initial data. Because, in any practical computing device, the number of digits
allocated to a number is limited, it will probably be necessary to chop or round these numbers before they are stored.
The error committed by doing this is called inherent roundoff. Also, during the computation, arithmetic operations are
performed that produce results with more digits than the operands, and these results must be chopped or rounded before
they are stored. This error is called arithmetic roundoff [21]. At the present time there is no universally accepted method
to analyze roundoff error after a large number of time steps. The three main methods for analyzing roundoff
accumulation are the analytical method, the probabilistic method [22] and the interval arithmetic method [23, 24], each
of which has both advantages and disadvantages.

If we follow the results in Tables 1-6, we can observe that the absolute error is reduced as h is decreased or the order
of convergence accuracy is increased. The absolute error is not reduced indefinitely as a result of the roundoff error.
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In practice, what will we do if we solve problems and don’t know its exact solution or needs to change its parameters or
initial conditions? If one wishes arbitrarily high accuracy, one need only choose h sufficiently small or large order of
accuracy. If one has a prescribed accuracy, it is often estimated in an a posteriori manner as follows. One calculates for
both h and smaller h and takes those figures which are in agreement for the two calculations. For example, if at a point
t and for h =0.1 one finds U = 0.876 532 while for h = 0.01 one finds at the same point that U = 0.876 513, then one
assumes that the result U = 0.8765 is an accurate result.

In the following, I’11 use the notation U n[f'm](t) for denoting the PAM solution with step size h and order of accuracy
m o(h™).

If we take case study 2 for example, Table 7 shows the difference between two PAM solutions for two different values
of h, fixing the accuracy order, which indicates that the accuracy is increased as the step size h is reduced. Table 8 and

Table 9 show the difference between two PAM solutions for two different order of accuracy, fixing the step size, which
indicates that the accuracy is increased as the order is increased.

Table 7: The difference between two PAM solution as h is changed.

Padé Taylor
b 0.014F
0.0005 [
F 0.012F
0,0004; 0‘010;
] rE‘I,S] —U r510 15] 0{0003; 0,005;
g 0.006F
0.0002F [
t 0.004F
0.0001} r
[ 0.002F
L L L L L L T 1 L L L L L L 1
1 2 3 4 5 6 4 1 2 3 4 5 6 7
5.ox1078F }
6. x10-7F
8 -
4.x10 5 %107
01 _gsfons) 31080 d.x 10—}
2 x10°8f haaomy
2 x1077)
-8 .
1.x10 1 5107
. . . . . ; . ‘ . . ‘ . : ‘
1 2 2 4 5 6 7 1 2 3 4 5 6 7
5.x10° 0L 6. x10-1 |
4x1072F 51071
. DE 4x10-1 ¢
J.x = r
tees] _pyioaens) 3x1070 L
" " 2x1072L
¥ 2l
-n
1x10 1 x10-1
t f

tn
C
-1

1 2 3 4 5 6 7 1 2 3 4

Table 8: The difference between two PAM Padé solution as order of accuracy is changed.

Padé
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e o1
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Lix 10~
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Table 9: The difference between two PAM Taylor series solution as order of accuracy is changed.
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1.5x 1010

Lx1071}
U[a L7] _ U)[ﬂm 8]

m

Sox 1071

2x107E}

Lix 10712}

7[0.18]  77[0.19) Lx107|
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2 x107¥ |

Lsx107V [
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5 Comparing PAM with Runge-Kutta method

If we try to solve the same case studies with Runge-Kutta, it is founded that Runge-Kutta doesn’t give accepted results
in the case studies 1, 3 and 4 because of the singular points in the solution. Case study 2 can be solved by Runge-Kutta.
Table 10 shows figures of the absolute error using Runge-Kutta and PAM with different order of accuracy.

PAM has no order limit. PAM gives an analytic solution form which can be used for analytic differentiation and
integration. In the other side, Runge-Kutta gives only numerical values at limited points of the interval.

6 Conclusion

The piecewise analytic method is promising method. PAM can be used for solving any ordinary differential equation
with any order of accuracy. PAM is very easy to use, the main effort in PAM in calculatingU , (t) , which is now very

easy to calculate because of the symbolic mathematical software. For non-mathematician, they can now test their
equations with any initial condition.
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Table 10: The absolute error between the exact solution and different methods with different order of accuracy.
Method Absolute Error

Absolute error

0.000012

0.00001

8 x107°
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15x10°%F

1 x1075F

5ox1077}

Absolute error

6. x 10711
5. x1071
4. x1071
RK4-Classical 3 x 1071
2. %1071

1. x1071

Absolute error
2551070

2x107"}

PAM Padé [2/2] o(/™) 1L5x1077 |

1. x 1070

e V\
L L L Loy

Absoliute error

2. x1070
1.5 x 1070
. 4
PAM series o(h")

1 x107"

5.xi107




International Journal of Applied Mathematical Research 39

References

[1] D. Roy, A new numeric-analytical principle for nonlinear deterministic and stochastic dynamical systems, Proc. Roy. Soc. Lond. A 457
(2001), 539-566.

[2]  A.H. Nayfeh and B. Balachandran, Applied non-linear dynamics, Wiley, New York (1995).

[3] D. Zwillinger, Handbook of differential equations, (third edition) Academic Press, New York (1997).

[4] G. Arfken, "Taylor's expansion.” 85.6 in mathematical methods for physicists, 3rd ed., Orlando, FL: Academic Press (1985), 303-313.

[5] G. A. J. Baker, The theory and application of the padé approximant method., New York: Academic Press (1965).

[6] G. A. J. Baker and P. Graves-Morris, Padé approximants, New York: Cambridge University Press (1996).

[7]  T.A. Abassy, Piecewise analytic method., International J. of Appl. Mathematical Research 1 (2012), no. 1, 77-107.

[8] G. D., Numerical solution of ordinary differential equations for classical, relativistic and nano systems., WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim (2008).

[9] A. R. Curtis, High-order explicit runge—kutta formulae, their uses, and limitations, JIMA 16 (1975), 35.

[10] E. Hairer, A runge—kutta method of order10, J. IMA 21 (1978), 47.

[11] D. Sarafyan, 7th-order 10-stage runge—kutta formulas., TR #38, Math. Dept., LSU in New Orleans (1970).

[12] E. Fehlberg, Classical fifth-, sixth- seventhand eighth-order runge—kutta formulas with step size control, NASA, TR-R-287, Marshall Space
Flight Center, Huntsville, Ala. (1968).

[13] H. A. Luther, An explicit sixth-order runge—kutta formula, Math. Comp. 22 (1968), 344.

[14] G. A.J. Baker, Essentials of pade approximants in theoretical physics, New York: Academic Press (1975).

[15] G. Adomian, Solving frontier problem of physics: The decomposition method, MA: Kluwer Academic Publishers, Boston (1994).

[16] T.A. Abassy, Introdction to piecewise analytic method, Journal of Fractional Calculus and Applications 3(S) (2012), 1-19.

[17] T. A. Abassy, Improved adomian decomposition method, Computers & Mathematics with Applications 59 (2010), no. 1, 42-54.

[18] T. A. Abassy, Modified variational iteration method (nonlinear homogeneous initial value problem), Comp. & Math. with Appl. 59 (2010), no.
2,912-918.

[19] J.-H. He, Homotopy perturbation technique, Comp. Methods in Appl. Mech. and Eng. (1999), no. 178, 257-262.

[20] L. SJ., The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis. Shanghai: Shanghai Jiao Tong
University (1992).

[21] J. N. Shoosmith, "Numerical analysis," Encyclopedia of physical science and technology (third edition), Academic Press, New Y ork, 2003,
pp. 39-70.

[22]  P. Henrici, Discrete variable methods in ordinary differential equations, Wiley, New York: Academic Press (1963).

[23] R. E. Moore, Methods and applications of interval analysis, SIAM, Philadelphia (1979).

P. Henrici, Error propagation in difference methods, Wiley, New York (1963).



