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Abstract 

 

The paper shows a new method which has the ability to solve any nonlinear 1st order differential equation with any 

initial conditions. The method is called Piecewise Analytic Method (PAM). The accuracy of the method can be 

controlled according to our needs. A comparison between PAM and Runge-Kutta method is introduced which enhances 

the use of PAM. For non-mathematician, they can now test their systems with any initial condition. 
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1 Introduction 

Mathematical modeling of many engineering and physical systems leads to nonlinear ordinary and partial differential 

equations. In general, it is very difficult to solve nonlinear problems analytically. An effective method that provides 

solutions conforming to physical reality is required to analyze the mathematical model. Therefore, we must be able to 

solve nonlinear ordinary and partial differential equations, in space and time. Some analytic procedures linearize the 

system or assume that nonlinearities are relatively insignificant. Assumptions have to be made artificially or 

unnecessarily to make the practical problems solvable, leading to loss of most important information. Such procedures 

change the actual problem to make it tractable by the conventional methods. These approaches sometimes change the 

solution seriously [1, 2]. 

Generally, The ability to solve nonlinear equations by analytical methods is important because linearization changes the 

problem being analyzed to a different problem, perturbation methods are only reasonable when nonlinear effects are 

very small, and the numerical methods need a substantial amount of computations but only lead to limited information 

[3].  

In this paper, the piecewise analytic method (PAM) is introduced for solving any initial value ordinary nonlinear 

differential equation. The PAM is based on dividing the solution interval into subintervals and obtaining an approximate 

analytic solution which is very accurate and can be applied to each subinterval successively. The approximate analytic 

solution is based on truncated Taylor series [4] or Padé approximants [5, 6]. In PAM, the solution accuracy can be 

controlled according to needs. The PAM gives the exact solution in some special cases [7]. A comparison between 

PAM and Runge-Kutta method is introduced. The Runge-Kutta method is one of the most famous and popular method, 

which is used for solving ordinary differential equations. The Runge-Kutta method is named for its’ creators Carl 

Runge(1856-1927) and Wilhelm Kutta (1867-1944). The Runge-Kutta formulas are available from order 2 up to order 

10. It should be noted that no Runge-Kutta formula of order 11 is available at present [8, 9, 10, 11, 12, 13]. The 

comparison between PAM and Runge-Kutta method enhances the use of PAM, especially, when high order of accuracy 

and analytic form are needed. 

 

2 Piecewise Analytic Method 

Consider the general 1st order differential equation: 
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0 0 0( , ), ( ) , .u t u u t f t t b                                                                                                          (1) 

 

For solving (1) using piecewise analytic method (PAM), The interval 0t t b   is  divided into n  equal parts, each of 

length h , by the points   ,   0,  1,  2,  . . . ,  .mt mh m n  The value 0b t
h

n


  is called the subinterval length. The 

points mt  are called interval points see Fig. 1. 

 

 
Fig. 1 

 

mU  denotes to the approximate analytic solution in the thm  subinterval 1[ , ]m mt t  . mU  can be applied to any 

subinterval m  (  1[ , ], 0,1,2, , 1m mt t t m n   ).  

Now, for calculating mU , equation (1) is written in the form 

 

 1

( , ),

( ) , [ , ], 0,1,2, , 1 .

m

m

m m m m m

d U
t U

d t

U t f t t t m n







   

                 (2) 

 

Then using any symbolic mathematical program like Mathematica for obtaining the approximate solution mU . I have 

two forms of approximate solutions, one is the truncated Taylor series solution and the other is the Padé approximants 

solution.  

In the case of truncated Taylor solution [4], mU  is defined according to the needed accuracy. If we need the accuracy to 

be of ( )sO h , mU  will take the form 

 

 
 

 
1 1

1

0 0

( ) ,
!

m

n
ns s

n m m

m n m m mn
n n

t t

t t d U
U t c t t t t t

n dt

 



 


 
    
 
 

                   (3) 

 

In the case of Padé approximants solution[5, 14, 6], mU  will take the form 

 

 

 
 0

1

0

( ) 1, ,

l
n

n m

nl

m m mk
n

k
n m

n

p t t
P

U t where l k s t t t
Q

q t t









     






                 (4) 

 

if we need the accuracy to be of ( )sO h . 

Another approximate solution is under study. 

The final step is applying the approximate analytic solution formula mU  to each subinterval successively with the initial 

value 1( )m m mf U t , 1 0 0( )U t f  . 

 

Notes: 
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 We have many methods for calculating(3). The first method is the substitution by  
1

0

( )
s

n

m n m

n

U t c t t




   and 

its derivatives into the ODE, then equating the coefficients of each power of  
n

mt t  to zero to get a 

recurrence relation. The recurrence relation expresses a coefficient nc  in terms of the coefficients mc  where 

m n . The second method is calculating 
 1

0

( )
!

m

n
s

m m

m

n t t

t t dU
U t

n dt



 

 
  

 
 

 which is based on the 

manipulation of the function formula by classical differential calculus techniques. The results are constants that 

represent the value of derivatives at the point of evaluation. The other methods are based on the new methods 

which give the truncated series solution like Adomian decomposition method [15], Improved Adomian 

decomposition method[16, 17], modified variational iteration method [16, 18], homotopy perturbation 

method[19], homotopy analysis method[20] and others. 

I prefer the first method because it is the origin and all the others are synthesis from it.  

 The PAM gives the exact solution in two cases: 

1. If the exact solution is a polynomial with order w  and the truncated series approximation (3) is used 

with  1s w  . 

2. If the exact solution is a rational function 

 

 

0

0

z
n

n m

n

w
n

n m

n

p t t

q t t












 and the Padé approximants (4) is used with 

l z  and k w .   

 The truncated series (3) is suitable if the solution has no poles and bounded, if not, the Padé approximants (4) 

is more suitable than truncated series (3). 

 I don’t know the best form for Padé approximants (4) but by experience I prefer l k even  .   

 The Padé approximants coefficients ( 0,1,2,..., )np n l  and (0,1,2,..., )nq k are determined by [5, 14, 6] 

  

 
 

 
 10

0

0

( ) ,

l
n

n mS l k
n l kn

n m mk
nn

n m

n

p t t

c t t O t t

q t t

 
 







   







                 (5) 

setting 0 1q   and multiply (5) by  
0

k
n

n m

n

q t t


 , which linearizes the equations coefficient. It can be written out in 

more detail as 

1 1 - 1

2 1 1 2

-1 1

    0

    0

       0 

l l l k k

l l l k k

l k l k l k

c c q c q

c c q c q

c c q c q

 

   

 

    


    


    

                                                                                                             (6) 

0 0

1 0 1 1

2 1 1 0 2 2

-1 1 0

                                            

                                   

                         

                  l l l l

c p

c c q p

c c q c q p

c c q c q p

 


  


   


    

                                                                                                             (7) 

Once, the 'q s  are known from equations (6), equations (7) can be solved easily. If equations (6) and (7) are 

nonsingular, then they can be solved directly as follows; 
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1 2 1

1

1

1 0

1 2 1

1

1

det

( ) ,

det

1

l k l k l

l l l k

l l l
j j j

j k j k j

j k j k j

m

l k l k l

l l l k

k k

c c c

c c c

c t c t c t

U t
c c c

c c c

t t

    

 

  

   

    

 





  
                 (8) 

For 1l   and 1k   

 

0 0

2

1 0 2

1

1

,

,

p c

c c c
p

c






                        

0

2
1

1

1,

.

q

c
q

c



 
                 (9) 

For 1l   and 2k   

 

0 0

3 2

1 0 1 2 0 3

1 2

1 1 2

,

2
,

p c

c c c c c c
p

c c c



 



      

0

1 2 0 3

1 2

1 0 2

2

2 1 3

2 2

1 0 2

1,

,

.

q

c c c c
q

c c c

c c c
q

c c c



 









               (10) 

For 2l   and 1k   

 

0 0

1 2 0 3

1

2

2

2 1 3

2

2

,

,

,

p c

c c c c
p

c

c c c
P

c









                       

0

3

1

2

1,

.

q

c
q

c




                (11) 

For 2l   and 2k    

 

0 0

2 2

1 2 1 3 0 2 3 0 1 4

1 2

2 1 3

3 2 2

2 1 2 3 0 3 1 4 0 2 4

2 2

2 1 3

,

,

2
,

p c

c c c c c c c c c c
p

c c c

c c c c c c c c c c c
P

c c c



  




   




            

0

2 3 1 4

1 2

2 1 3

2

3 2 4

2 2

2 1 3

1,

,

.

q

c c c c
q

c c c

c c c
q

c c c



 









                  (12) 

For 3l   and 3k   

0 0

3 2 2 2 2 2 2

1 1 3 1 2 3 4 0 3 4 1 4 0 2 4 1 2 5 1 3 5

2 3 2

0 2 3 5 0 1 4 5 0 2 6 0 1 3 6 3 2 3 4 1 4

2

2 5 1 3 5

3 2 2 2 2 3 2
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2
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
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
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( 2 ),

( 3 2 2 2 2
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     
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     2

6 1 4 6 0 2 4 6
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3 2 3 4 1 4 2 5 1 3 5
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( 2 ),

c c c c c c c c
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 

   

                                               (13) 
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3 4 2 4 2 3 5 1 4 5 2 6 1 3 6

1 3 2 2

3 2 3 4 1 4 2 5 1 3 5
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3 4 3 5 2 4 5 1 5 2 3 6 1 4 6

2 3 2 2

3 2 3 4 1 4 2 5 1 3 5
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4 3 4 5 2 5 3 6 2 4 6
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2

q
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q
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q

c c c c c c c c c c c

c c c c c c c c c c c
q

c c c c c c



     


   

    


   

    


  2 2

2 5 1 3 5

.
c c c c c 

 

 

And so on, where we can calculate any desired Padé approximants by using any symbolic mathematical program for 

any series  
0

( )
s

n

m n m

n

U t c t t


   and then all what we will do is only substituting by 'nc s  in the suitable 'p s  and 

'q s  for obtaining the desired Padé approximants . 

 

3 Case-Studies  

3.1   Case-study 1: 

Consider the differential equation 

 
3( ) , (0) 1.u t u u                    (14) 

 

This is a nonlinear problem which has the exact solution  

 

1
( ) .

1 2
u t

t



                (15) 

 

Defining a differential equation for each subinterval m  from (14) 

 3

1, ( ) , , .m

m m m m m m

dU
U U t f t t t

dt
                   (16) 

 

where 1( )m m mf U t , 1 0( ) (0) 0U t u   , 0,1,2, , 1m n    

 

Substituting  
0

( )
s

n

m n m

n

U t c t t


   and its derivatives into (16) leads to  

 

      
3

1

0 1

1 0

, , , .
s s

n n

n m n m m m m

n n

n c t t c t t c f t t t




 

 
      

 
                  (17) 

 

Solving (17) leads to: 
3

0 1

5 7

2 3

9 11

4 5

13 13

6 6

15 17

7 8

, ,

3 5
, ,

2 2

35 63
, ,

8 8

231 231
, ,

16 16

429 6435
, ,

16 128

m m

m m

m m

m m

m m

c f c f

c f c f

c f c f

c f c f

c f f

  

  

  

 

  

                                                                                                           (18) 
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Substituting by (18) into(3), if we need accuracy 5( )O h , we obtain the approximate analytic Taylor series solution. 

 

3 5 2 7 3

9 4

1

3 5
( ) ( ) ( ) ( )

2 2

35
( ) , [ , ]

8

m m m m m m m m

m m m m

U t f f t t f t t f t t

f t t t t t 

      

 

               (19) 

 

Substituting by (18)  into (12)  for obtaining 'p s and 'q s  then substituting by them into(4), we obtain the Padé 

approximants 

 
3 5 2

12 4 2

4 6 ( ) ( )
( ) , [ , ]

4 10 ( ) 5 ( )

m m m m m

m m m

m m m m

f f t t f t t
U t t t t

f t t f t t


   


   
               (20) 

if we need accuracy 9( )O h , we can obtain the approximate analytic Taylor series solution 

 

3 5 2 7 3 9 4

11 5 13 6 15 7

17 8

1

3 5 35
( ) ( ) ( ) ( ) ( )

2 2 8

63 231 429
( ) ( ) ( )

8 16 16

6435
( ) , [ , ]

128

m m m m m m m m m m

m m m m m m

m m m m

U t f f t t f t t f t t f t t

f t t f t t f t t

f t t t t t 

        

     

 

               (21) 

and Padé approximants  
3 5 2 7 3 9 4

2 4 2 6 3 8 4

1

16 56 ( ) 60 ( ) 20 ( ) ( )
( ) ,

16 72 ( ) 108 ( ) 60 ( ) 9 ( )

[ , ]

m m m m m m m m m

m

m m m m m m m m

m m

f f t t f t t f t t f t t
U t

f t t f t t f t t f t t

t t t 

       

       



               (22) 

Fig 2 shows the exact solution of  (14).  
 

 

 

 

 

 
Table 1 shows the absolute error between (14) exact solution and Padé approximants and Taylor series for different 

values of h .  
 

 

 

 

 

 

 

 

 

 

 

Table 2 shows the absolute error between (14) exact solution and different forms of Padé approximants and Taylor series 

for 0.1h  . 
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Fig 2: The exact solution of (14) 

 

 

 

 

 

 

 
Table 1: The absolute error between the exact solution (15) and Padé approximants and Taylor series for different values of h . 

h Padé 4
4

 
 

9( )O h  Truncated Series 9( )O h  

1 

  

0.1 
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0.01 

  

.001 

  
 
 

 

 

 

 

 

 

 

 

 

 

 

Table 2: The absolute error between the exact solution (15) and different forms of Padé approximants and Taylor series for 0.1h  . 

Orde

r of 

h  

Padé [n/n] Series 

5 
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11 

  

13 

  

15 
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3.2   Case study 2: 

Consider the differential equation 

 

( ) 2, (0) 1.u t u t u                                                                                                                 (23) 

 

This is a nonlinear problem which has the exact solution  

 

( ) 2 1.tu t e t                   (24) 

 

Defining a differential equation for each subinterval m  from (23) 

 

 12, ( ) , , .m

m m m m m m

dU
U t U t f t t t

dt
                     (25) 

 

where 1( )m m mf U t , 1 0( ) (0) 1U t u   , 0,1,2, , 1m n    

Substituting by  
0

( )
s

n

m n m

n

U t c t t


   and its derivatives into (16) leads to  

 

      

 

1
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s s
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m m m
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

 



 
        

 

 

 
               (26) 

 

Solving (26) leads to: 

 

   

   

   

 

0 1

2 3

4 5

6 7

8
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1 1
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1 , 1 ,

24 120

1 1
1 , 1 ,

720 5040

1
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m m m

m m m m

m m m m

m m m m

m m

c f c t f

c t f c t f

c t f c t f

c t f c t f

c t f

    

      

      

      

  

               (27) 

If we need accuracy 5( )O h , we’ll substitute by (27) into(3), we obtain the approximate analytic Taylor series solution. 
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 

   

2

3 4

1

1
( ) (2 )( ) 1 ( )

2

1 1
1 ( ) 1 ( ) , [ , ]

6 24

m m m m m m m m
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               (28)  

Substituting by (27)  into (12)  for obtaining 'p s and 'q s  then substituting by them into(4), we obtain the Padé 

approximants 

 
2 4 2 2

2 2

2 2 2 2 2

2

( ) (24( ) 12 ( ) 12 ( ) 6( ) 12 ( )

12 12 12( ) 18 ( ) 11( ) ( )

12 6( ) ( ) ) / ( 12 12 6 ( ) ( )

( ) 12 6( )

m m m m m m m m m

m m m m m m m m m m m m m

m m m m m m m m m

m m m m

U t t t t t t t t t t t t t t

f t f t t f t t t f t t f t t t f

f t t f t t f t t t t t t

t t t f t t

         

         

          

    2

1( ) ), [ , ]m m m m mf t t f t t t   

                                               (29) 

 

if we need accuracy 9( )O h , we can obtain the approximate analytic Taylor series solution 

 

   

   

   

2

3 4

5 6

7 8

1

1
( ) (2 )( ) 1 ( )

2

1 1
1 ( ) 1 ( )

6 24

1 1
1 ( ) 1 ( )

120 720

1 1
1 ( ) 1 ( ) , [ , ]

5040 40320

m m m m m m m m

m m m m m m

m m m m m m

m m m m m m m m

U t f t f t t t f t t

t f t t t f t t

t f t t t f t t

t f t t t f t t t t t 

        

       

       

       

               (30) 

and Padé approximants  

 
2 2

2 3 3 2 3 4

4 2

2 3

( ) (10080( ) 1680 ( ) 1680 ( ) 840( )

1680 ( ) 360( ) 40 ( ) 40 ( ) 20( )

40 ( ) 5040 1680 2520 ( ) 1860( )

180 ( ) 40( )

m m m m m m m

m m m m m m m m

m m m m m m m m m m

m m m m

U t t t t t t t t t t t

t t t t t t t t t t t t t

t t t f t f t t t f t t f

t t t f t t f

       

         

        

   3 4

4 2

2 2 3 4 4

2 3 4

60 ( ) 39( )

( ) 1680 ) / ( 5040 1680 1680( ) 840 ( )

180( ) 180 ( ) 20 ( ) ( ) ( )

1680 840( ) 180( ) 20( ) ( ) ),

[

m m m m m m

m m m m m m m m

m m m m m m m m

m m m m m m m m m

m

t t t f t t f

t t t f f t t t t t t

t t t t t t t t t t t t t

f t t f t t f t t f t t f

t t

    

        

         

       

 1, ].mt 

               (31) 

Fig. 3 shows the exact solution of  (23). Table 3 shows the absolute error between (23) exact solution and Padé 

approximants and Taylor series for different values of h .  

Table 4 shows the absolute error between (23) exact solution and different forms of Padé approximants and Taylor series 

for 1h  . 

 
Fig. 3: The exact solution of (23). 

 
Table 3: The absolute error between the exact solution (24) and Padé approximants and Taylor series for different values of h . 
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h  Padé 4
4

 
 

9( )O h  Truncated Series 9( )O h  

1 

  

0.1 

  

0.01 

  

.001 

  
 

3.3   Case study 3: 

Consider the differential equation 

2

2
( ) , (0) 1.

(1 )

t
u t u u

t


   


               (32) 

This is a nonlinear problem which has the exact solution  
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1

( ) .
1

u t
t




                (33) 

 

Defining a differential equation for each subinterval m  from (32) 

 

 
 12

2
, ( ) , , .

1

m

m m m m m m

dU t
U U t f t t t

dt t



   


               (34) 

 

where 1( )m m mf U t , 1 0( ) (0) 1U t u   , 0,1,2, , 1m n    

Substituting by  
0

( )
s

n

m n m

n

U t c t t


   and its derivatives into (34) leads to  

   
 

 

 

1

2
1 0 0

0 1

2
,

1

, , .

m

ns s s
n n n

n m n m mn
n n n

t t

m m m

d t
n c t t c t t t t

dt t

c f t t t



  




                   

 

  
               (35) 

 

Solving (35) leads to: 

0

1 2 2

2 3 3 2 2

3 4 4 3 3

2

,

( )2
,

(1 ( )) (1 ( ))

( ) ( )3 1
,

22(1 ( )) 2(1 ( )) (1 ( )) 2(1 ( ))

( ) ( )4 1

3(1 ( )) 3(1 ( )) 2(1 ( )) 6(1 ( ))

1

3(1 ( ))

m

m

m

m m

m m m

m m m m

m m

m m m m

m

c f

t t
c f

t t t t

t t t t f
c

t t t t t t t t

t t t t
c

t t t t t t t t

t t




   

   

 
    

       

 
     

       


  2

4 5 5 4 4

3 3 2 2

5 6

( )
,

66(1 ( ))

( ) ( )5 1

4(1 ( )) 4(1 ( )) 3(1 ( )) 12(1 ( ))

( ) ( )1 1
,

248(1 ( )) 24(1 ( )) 12(1 ( )) 24(1 ( ))

( )1

(1 ( )) 12(1 (

m m

m

m m

m m m m

m m m

m m m m

m

m m

t t f

t t

t t t t
c

t t t t t t t t

t t t t f

t t t t t t t t

t t
c

t t t t




 

 
    

       

 
   

       


  

    6 5 5

4 4 3 3

2 2

( )21

)) 20(1 ( )) 20(1 ( ))

( ) ( )1 1

15(1 ( )) 60(1 ( )) 40(1 ( )) 120(1 ( ))

( )1
,

12060(1 ( )) 120(1 ( ))

m

m m

m m

m m m m

m m

m m

t t

t t t t

t t t t

t t t t t t t t

t t f

t t t t


  

   

 
   

       


 

                                                       (36) 

Substituting by (36) into(3) for obtaining the needed approximate analytic Taylor series and substituting by (36) into 

one of (9)-(13) for obtaining the appropriate 'p s and 'q s  which are used to obtain Padé approximants. The Padé 

approximants gives the exact solution in this example because the exact solution of this problem is rational function. 

Figure 4 shows the exact solution of (33) which is identical with PAM solution using Padé. If we use the PAM series 

solution, the result is not accepted especially near the pole of the exact solution.  
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Figure 4: The exact solution of (33). 

 

Table 4: The absolute error between the exact solution (24) and different forms of Padé approximants and Taylor series for 1h  . 

Order 

of h  
Padé [n/n] Truncated Series 

5 

  

7 

  

9 
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11 

  

13 

  

15 

  

17 

  

 

3.4    Case study 4 : 

Consider the differential equation 

 

2 1
( ) , (0) .t tu t e u u e u

a

 
                    (37) 

 

This case study is very good, which shows the power of PAM. It is a nonlinear problem which has the exact solution  

 

cos sin
( ) .

sin cos

t t a t
u t e

t a t

  
   

 
                (38) 
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This solution has infinite number of singular points. 

Defining a differential equation for each subinterval m  from (37) 

 

 2

1, ( ) , , .t tm

m m m m m m m

dU
e U U e U t f t t t

dt



                    (39) 

where 1( )m m mf U t , 1 0

1
( ) (0)U t u

a



  , 0,1,2, , 1m n    

Substituting by  
0

( )
s

n

m n m

n

U t c t t


   and its derivatives into (39) leads to  

 

     

     

2

1

1 0 0

0 1

0 0

, , , .

m

m

ns s s
n n nt

n m m n mn
n n n

t t

ns s
n nt

n m m m m mn
n n

t t

d
n c t t e t t c t t

dt

d
c t t e t t c f t t t

dt



  






 


            
    

           
     

  

 

                                            (40) 

 

Solving (40) leads to: 

 

0

2

1

22 3

2

2 32 3 4

3

2 3 42 3 4 5

4

22

5

,

,

1
( 2 3 2 2 ),

2

1
(5 7 11 6 6 ),

6

1
( 12 29 36 52 24 24 ),

24

1
(41 101 221 220

120

m m

m m m

m m m m

m m m m m

m m

m

t t

m m

t t t

m m m

t t t t

m m m m

t t t t t

m m m m m

t t t

m m

c f

c e f e f

c e f e f e f

c e f e f e f e f

c e f e f e f e f e f

c e f e f e













  

    

    

      

   
33 4

4 55 6

2 32 3 4

6

4 5 65 6 7

300

120 120 ),

1
( 142 543 982 1862 1560

720

2040 720 720 ),

m m

m m

m m m m

m m m

t

m m

t t

m m

t t t t

m m m m

t t t

m m m

f e f

e f e f

c e f e f e f e f

e f e f e f



 



      

 

               (41) 

Substituting by (41) into(3) for obtaining the needed approximate analytic Taylor series and substituting by (41) into 

one of (9)-(13) or others for obtaining the appropriate 'p s and 'q s  which are used to obtain Padé approximants.  

The PAM truncated series solution 5( )O h is 

 

2 2

2 2 33 2 2 3 4

2 33 2 3 4

4 5 4

1

1
( ) ( )( ) ( 2 3 2

2

1
2 )( ) (5 7 11 6 6 )

6

1
( ) ( 12 29 36 52 24

24

24 )( ) , [ , ].

m m m m

m m m m m

m m m m

m

t t t t

m m m m m m m

t t t t t

m m m m m m

t t t t

m m m m m

t

m m m m

U t f e f e f t t e f e f

e f t t e f e f e f e f

t t e f e f e f e f

e f t t t t t

 







        

     

       

 

               (42) 

 

The PAM Padé solution 5( )O h is 
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2 2

2 2 2 3 32 2 2 2 3

3 4 4 43 2 3 4 4 2 4

5

( ) (24( ) 24( ) 24 120( ) 58( )

144 126( ) 26( ) 60 174( )

87( ) 24 102( ) 2( )

24

m m m

m m m m m

m m m m

t t t

m m m m m m m m

t t t t t

m m m m m m m

t t t t

m m m m m m m m

U t t t t t e f t t e f t t e f

e f t t e f t t e f e f t t e

f t t e f e f t t e f t t e f

e

        

      

       

5 55 5 2 5

2 2 2 32 2 2

3 3 4 42 2 2 3 3

42

48( ) 28( ) ) / (24 48( )

28( ) 144 102( ) 2( ) 60

174( ) 87( ) 144 126( ) 26(

)

m m m m m

m m m m m

m m m m

m

t t t t t

m m m m m m

t t t t t

m m m m m m m

t t t t

m m m m m m m

t

m m

f t t e f t t e f e t t e

t t e e f t t e f t t e f e f

t t e f t t e f e f t t e f t

t e f

      

       

       

5 5 53 4 4 2 4

6 65 2 5

1

24 120( ) 58( ) 24(

) 24( ) ), [ , ].

m m m

m m

t t t

m m m m m

t t

m m m m m m

e f t t e f t t e f t

t e f t t e f t t t 

      

  

 

 

It is massive to write the obtained solution 9( )O h  but the results are summarized in the following figures. Figure 5 

shows the exact solution of (37). Table 5 shows the absolute error between (37) exact solution and Padé approximants 

and Taylor series for different values of h . Table 6 shows the absolute error between (37) exact solution and different 

forms of Padé approximants and Taylor series for 0.1h  . 

 

 
Figure 5: The exact solution of (37). 

 

Table 5: The absolute error between the exact solution (38) and Padé approximants and Taylor series for different values of h . 

h  Padé 4
4

 
 

9( )O h  Truncated Series 9( )O h  

1 

  

0.1 
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0.01 

  

.001 

  
 

Table 6: The absolute error between the exact solution (38) and different forms of Padé approximants and Taylor series for 0.1h  . 

Order 

of h  
Padé [n/n] 

5 

 

7 
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9 

 

11 

 

13 

 

4 Error estimation and changing the initial condition 

Now, unlike the above case-studies, PAM will be applied only when the exact solution is not known. Thus, in practice 

the error at each interval points will not be known. It is essential then to know, a priori, that the PAM error at each 

interval points decrease to zero as h  decreases to zero or the accuracy order increases to infinity. Of course, it does not 

make sense to apply a zero interval size or infinity order of accuracy to PAM, but the point is that we can make the error 

as small as we wish by selecting h  sufficiently small or the order of accuracy sufficiently high. That this is correct 

when all calculations are exact will be established next. In this case the truncation error in computing ( )mU t  using 

PAM is bounded in direct proportion with respect to the interval size h  and order of accuracy which takes us to PAM 

is convergent.  

Turning now to the computation of PAM solution as described by the algorithm, we first specify values for the 

parameters of the problem and the initial data. Because, in any practical computing device, the number of digits 

allocated to a number is limited, it will probably be necessary to chop or round these numbers before they are stored. 

The error committed by doing this is called inherent roundoff. Also, during the computation, arithmetic operations are 

performed that produce results with more digits than the operands, and these results must be chopped or rounded before 

they are stored. This error is called arithmetic roundoff [21]. At the present time there is no universally accepted method 

to analyze roundoff error after a large number of time steps. The three main methods for analyzing roundoff 

accumulation are the analytical method, the probabilistic method [22] and the interval arithmetic method [23, 24], each 

of which has both advantages and disadvantages. 

If we follow the results in Tables 1-6, we can observe that the absolute error is reduced as h  is decreased or the order 

of convergence accuracy is increased. The absolute error is not reduced indefinitely as a result of the roundoff error. 
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In practice, what will we do if we solve problems and don’t know its exact solution or needs to change its parameters or 

initial conditions? If one wishes arbitrarily high accuracy, one need only choose h  sufficiently small or large order of 

accuracy. If one has a prescribed accuracy, it is often estimated in an a posteriori manner as follows. One calculates for 

both h  and smaller h  and takes those figures which are in agreement for the two calculations. For example, if at a point 

t  and for h  = 0.1 one finds U = 0.876 532 while for h  = 0.01 one finds at the same point that U = 0.876 513, then one 

assumes that the result U = 0.8765 is an accurate result. 

In the following, I’ll use the notation 
 ,

( )
h m

mU t for denoting the PAM solution with step size h  and order of accuracy 

m  ( )mo h . 

If we take case study 2 for example, Table 7 shows the difference between two PAM solutions for two different values 

of h , fixing the accuracy order, which indicates that the accuracy is increased as the step size h  is reduced. Table 8 and 

Table 9 show the difference between two PAM solutions for two different order of accuracy, fixing the step size, which 

indicates that the accuracy is increased as the order is increased. 

 
Table 7: The difference between two PAM solution as h  is changed. 

 Padé Taylor 

[1,5] [0.1,5]

m mU U

 

1 2 3 4 5 6 7
t

0.0001

0.0002

0.0003

0.0004

0.0005

 1 2 3 4 5 6 7
t

0.002

0.004

0.006

0.008

0.010

0.012

0.014

 

 
 

Table 8: The difference between two PAM Padé solution as order of accuracy is changed. 

 Padé 
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Table 9: The difference between two PAM Taylor series solution as order of accuracy is changed. 

 Taylor 
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5 Comparing PAM with Runge-Kutta method  

If we try to solve the same case studies with Runge-Kutta, it is founded that Runge-Kutta doesn’t give accepted results 

in the case studies 1, 3 and 4 because of the singular points in the solution. Case study 2 can be solved by Runge-Kutta. 

Table 10 shows figures of the absolute error using Runge-Kutta and PAM with different order of accuracy. 

PAM has no order limit. PAM gives an analytic solution form which can be used for analytic differentiation and 

integration. In the other side, Runge-Kutta gives only numerical values at limited points of the interval. 

 

6 Conclusion 

The piecewise analytic method is promising method. PAM can be used for solving any ordinary differential equation 

with any order of accuracy. PAM is very easy to use, the main effort in PAM in calculating ( )mU t , which is now very 

easy to calculate because of the symbolic mathematical software. For non-mathematician, they can now test their 

equations with any initial condition. 
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Table 10: The absolute error between the exact solution and different methods with different order of accuracy. 

Method Absolute Error 
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