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Abstract

In this paper, we study the asymptotic behavior of oscillatory solutions of the first order functional delay difference
equation

∆x(n) = f(n, x(n− τ)), n ≥ n0. (∗)

A new sufficient condition is established under which every oscillatory solution of (*) tends to zero asymptotically.
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1. Introduction

In this paper, we consider the following first order functional delay difference equation of the form

∆x(n) = f(n, x(n− τ)), n ∈ N(n0) (1)

where ∆ is the forward difference operator given by ∆x(n) = x(n+ 1)− x(n), τ is a positive integer, n0 is a fixed
integer, N(n0) = {n0, n0 + 1, n0 + 2, ...}, f : N(n0) × R → R is a real valued function and for any n ∈ N(n0),
f(n, .) is a continuous function with the following properties:

(H1) f(n, 0) = 0;

(H2) uf(n, u) > 0 for u 6= 0; and

(H3) there exists a sequence {q(n)} of positive real numbers defined on N(n0) such that

|f(n, u)| ≤ q(n) |u| .

Qualitative theory of discrete processes has drawn considerable attention in recent years. In particular, oscilla-
tion properties of discrete analogs of delay differential equations have been studied recently by a number of authors
(see e.g., [6,7,10,11]). On the other hand, relatively little is known about the asymptotic behavior of all solutions
of these discrete equations, see for example [3,8,12], and the references cited therein. For the general background
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of difference equations, one can refer to [1,2,5,9].

In [3], Chen et al. obtained sufficient conditions which ensure that all solutions of the first order nonlinear delay
difference equation

∆x(n) + F (n, x(n− k)) = 0, n ≥ n0 (2)

tend to zero as n→∞.
In [8], Liu et al. established sufficient conditions under which every solutions of the equation

∆x(n) = p(n)f(x(n− k)) + r(n), n = 0, 1, 2, ... (3)

converges to zero. The asymptotic behavior of the solutions of the equation

∆x(n) + p(n)x(n− τ) = 0, n = 0, 1, 2, ... (4)

has been extensively investigated in the literature, see for example, [4,12,13].

The purpose of this paper is to give a new sufficient condition under which every oscillatory solution of (1)
tends to zero as n → ∞. By a solution of (1), we mean a nontrivial real sequence {x(n)} which is defined on
N(n0 − τ) = {n0 − τ, n0 − τ + 1, ...} and which satisfies (1) for n ∈ N(n0). A solution {x(n)} of (1) on N(n0) is
said to be oscillatory if for every positive integer N0 > n0, there exists n ≥ N0 such that x(n)x(n+1) ≤ 0, otherwise
{x(n)} is said to be nonoscillatory.

Throughout this paper we use the following notations:

For any a, b ∈ N , define

N(a) = {a, a+ 1, a+ 2, ...} ,

N(a, b) = {a, a+ 1, a+ 2, ..., b} ,

Q(N) := sup
n≥N

n∑
s=n−τ

q(s), for n ≥ n0 + τ

and

Q∞ := lim
N→∞

Q(N) = lim sup
n→∞

n∑
n−τ

q(s).

2. Main Results

Lemma 2.1 Let {x(n)} be a solution of (1) and n0 + τ < n1 < n2 − 1. If x(n) > 0 for all n ∈ N(n1 + 1, n2 − 1)
or x(n) < 0 for all n ∈ N(n1 + 1, n2 − 1) and x(n2)x(n) ≤ 0 for all n ∈ N(n1 + 1, n2 − 1), then n1 ≥ n2 − τ .

Proof. Assume the contrary, that is, n1 < n2 − τ . Without loss of generality, we may suppose that x(n) > 0 for
n ∈ N(n1 + 1, n2 − 1). Then x(n2) ≤ 0 and there exists an integer n∗ satisfying n1 ≤ n∗ − τ < n∗ < n2. Then

∆x(n) = f(n, x(n− τ)) > 0

for n ∈ N(n∗, n2), which implies x(n2) > x(n∗) > 0. This is a contradiction.

The proof is complete.

Lemma 2.2 Given δ > 0, there exists an increasing sequence {h(n)} of nonnegative real numbers such that

h(n)− h(n− τ) =
δ

2
, n ≥ n0 + τ. (5)
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Proof. Choose a sequence {Nk} of integers such that N0 = n0 and for k = 0, 1, 2, ..., Nk+1 = Nk + τ . Then
limk→∞Nk =∞. Let us define

h(n) =
δ

2

(
n−Nk
τ

+ k

)
, for n ∈ N (Nk, Nk+1 − 1)

for k = 0, 1, 2, .... We see that h(Nk) = kδ
2 for all k and {h(n)} is an increasing sequence on N(n0). For any

n ∈ N (Nk, Nk+1 − 1), k = 1, 2, 3, ...,

h(n) < h(Nk+1) and h(n− τ) ≥ h(Nk − τ),

which implies

h(n)− h(n− τ) =
δ

2

(
n−Nk
τ

+ k

)
− δ

2

(
n− τ −Nk−1

τ
+ k − 1

)
=
δ

2
.

Therefore (5) holds for n ≥ N1.

Theorem 2.3 Let {h(n)} be an increasing sequence of positive real numbers satisfying (5) for some δ > 0. If

Q(N) ≤
√
11−1
2 for some N ≥ n0+τ , then for any oscillatory solution {x(n)} of (1), there exists a K = K(β, h, x) >

0 such that

|x(n)| < Kēβh(n), n ∈ N(n0), (6)

where

β =
2

3δ
log

4

(Q(N) + 1)2 − 1
, Q(N) < 1

β =
2

3δ
log

2

(Q(N) + 1
2 )2 − 3

4

, 1 ≤ Q(N) ≤
√

11− 1

2
.

 (7)

Proof. Since {x(n)} is an oscillatory solution of (1), there exists a sufficiently large n∗ > N0+τ such that x(n∗) ≤ 0.
We will show that (6) holds for a positive constant K such that

K > max
n0≤n≤n∗

eβh(n) |x(n)| .

Assume that (6) does not hold. Then there exists an integer ξ > n∗ such that

|x(n)| < Kēβh(n) for n ∈ N(n0, ξ − 1) and |x(ξ)| ≥ Kēβh(ξ). (8)

Then x(ξ) 6= 0. Since {x(n)} is oscillatory and ξ > n∗, we can define two integers n1, n2 ∈ N(n0) by

n1 = sup {n : n < ξ, x(n)x(ξ) ≤ 0}

and

n2 = inf {n : n > ξ, x(n)x(ξ) ≤ 0} .

We see that n∗ ≤ n1 < ξ < n2 and x(n) > 0 for all n ∈ N(n1 + 1, n2 − 1) or x(n) < 0 for all n ∈ N(n1 + 1, n2 − 1).
Also, we have x(n1)x(n) ≤ 0 for all n ∈ N(n1 + 1, n2 − 1) and x(n2)x(n) ≤ 0 for all n ∈ N(n1 + 1, n2 − 1). Lemma
2.1 leads to n1 ≥ n2 − τ and hence n1 ≥ u− τ for u ∈ N(n1, n2). Then

|x(u− τ)| = |x(u− τ)− x(n1) + x(n1)|

≤ |x(n1)− x(u− τ)|+ |x(n1)|

=

∣∣∣∣∣
n1−1∑
s=u−τ

∆x(s)

∣∣∣∣∣+ |x(n1)|

=

∣∣∣∣∣
n1−1∑
s=u−τ

f(s, x(s− τ))

∣∣∣∣∣+ |x(n1)|



International Journal of Applied Mathematical Research 237

which implies that for u ∈ N(n1, n2),

|x(u− τ)| ≤
n1−1∑
s=u−τ

q(s) |x(s− τ)|+ |x(n1)| . (9)

Moreover, because of x(n1)x(ξ) ≤ 0, we have

|x(ξ)| ≤ |x(ξ)− x(n1)|

=

∣∣∣∣∣
ξ−1∑
u=n1

∆x(u)

∣∣∣∣∣
=

∣∣∣∣∣
ξ−1∑
u=n1

f(u, x(u− τ))

∣∣∣∣∣
≤

ξ−1∑
u=n1

q(u) |x(u− τ)| ,

and

|x(ξ)| ≤ |x(n2)− x(ξ)|

=

∣∣∣∣∣∣
n2−1∑
u=ξ

∆x(u)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
n2−1∑
u=ξ

f(u, x(u− τ))

∣∣∣∣∣∣
≤
n2−1∑
u=ξ

q(u) |x(u− τ)| .

Thus we obtain

|x(ξ)| ≤ 1

2

n2−1∑
u=n1

q(u) |x(u− τ)| . (10)

Here we consider two cases.
Case 1: Q(N) < 1. We note that β > 0. By (9) and (10),

|x(ξ)| ≤ 1

2

n2−1∑
u=n1

q(u)

(
n1−1∑
s=u−τ

q(s) |x(s− τ)|+ |x(n1)|

)
or

|x(ξ)| ≤ 1

2

n2−1∑
u=n1

q(u)

n1−1∑
s=u−τ

q(s) |x(s− τ)|+ 1

2
|x(n1)|

n2−1∑
u=n1

q(u) (11)

By (8), we see that |x(s− τ)| < Kēβh(s−τ) for s ∈ N(n0 + τ, n1). Then by (11),

|x(ξ)| < 1

2

n2−1∑
u=n1

q(u)

n1−1∑
s=u−τ

q(s)Kēβh(s−τ) +
1

2
|x(n1)|

n2−1∑
u=n1

q(u).

Since {h(n)} is increasing and β > 0,

|x(ξ)| < K

2

n2−1∑
u=n1

q(u)ēβh(u−2τ)
n1−1∑
s=u−τ

q(s) +
1

2
|x(n1)|

n2−1∑
u=n1

q(u)
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≤ K

2
ēβh(n1−2τ)

n2−1∑
u=n1

q(u)

n1−1∑
s=u−τ

q(s) +
1

2
|x(n1)|

n2−1∑
u=n1

q(u).

Then

|x(ξ)| < K

2
ēβh(n1−2τ)

{
n2−1∑
u=n1

q(u)

u∑
s=u−τ

q(s)−
n2−1∑
u=n1

q(u)

u∑
s=n1

q(s)

}
+ |x(n1)|

n2−1∑
u=n1

q(u).

Since

n2−1∑
u=n1

q(u)

u∑
s=n1

q(s) ≥ 1

2

n2−1∑
u=n1

q(u)

n2−1∑
s=n1

q(s) =
1

2

(
n2−1∑
u=n1

q(u)

)2

, (12)

|x(ξ)| < K

2
ēβh(n1−2τ)

Q(N)

n2−1∑
u=n1

q(u)− 1

2

(
n2−1∑
u=n1

q(u)

)2
+

1

2
|x(n1)|Q(N). (13)

The right side of (13) is a quadratic function of

n2−1∑
u=n1

q(u) and 0 <

n2−1∑
u=n1

q(u) ≤
n2−1∑

u=n2−τ
q(u) ≤ Q(N).

Then

|x(ξ)| < K

2
ēβh(n1−2τ)

{
Q2(N)− Q2(N)

2

}
+
K

2
ēβh(n1−2τ)Q(N)

=
K

2
ēβh(n1−2τ)

{
Q2(N)

2
+Q(N)

}
=
K

4
ēβh(n1−2τ)

{
Q2(N) + 2Q(N)

}
≤ K

4
ēβh(ξ−3τ)

{
(Q(N) + 1)2 − 1

}
≤ K

4

{
(Q(N) + 1)2 − 1

}
ēβh(ξ−3τ)

=
K

4

{
(Q(N) + 1)2 − 1

}
eβ(h(ξ)−h(ξ−3τ))e−βh(ξ).

By Lemma 2.2, h(ξ)− h(ξ − 3τ) = 3δ
2 .

Then, we have

|x(ξ)| < 1

4

{
(Q(N) + 1)2 − 1

}
e

3δβ
2

(
Ke−βh(ξ)

)
.

Thus, (7) implies |x(ξ)| < Kēβh(ξ).
Then we have a contradiction to the assumption that |x(ξ)| ≥ Kēβh(ξ).

Case 2: 1 ≤ Q(N) ≤
√
11−1
2 . We note that β ≥ 0. There are two possibilities.

Case 2.1: 1 ≤
∑n2−1
n=n1

q(n) ≤
√
11−1
2 . There exists an integer η such that n1 ≤ η ≤ n2 − 1 and

∑n2−1
n=η q(n) ≥ 1.

By (9) and (10), we have

|x(ξ)| ≤ 1

2

n2−1∑
u=n1

q(u) |x(u− τ)|
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≤ 1

2

η−1∑
u=n1

q(u) |x(u− τ)|+ 1

2

n2−1∑
u=η

q(u) |x(u− τ)|

≤ 1

2

η−1∑
u=n1

q(u) |x(u− τ)|+ 1

2

n2−1∑
u=η

q(u)

{
n1−1∑
s=u−τ

q(s) |x(s− τ)|+ |x(n1)|

}

=
1

2

η−1∑
u=n1

q(u) |x(u− τ)|+ 1

2

n2−1∑
u=η

q(u)

n1−1∑
s=u−τ

q(s) |x(s− τ)|+ 1

2

n2−1∑
u=η

q(u) |x(n1)|

=
1

2

η−1∑
u=n1

q(u) |x(u− τ)|+ 1

2

n2−1∑
u=η

q(u)

[
η−1∑

s=u−τ
q(s) |x(s− τ)| −

η−1∑
s=n1

q(s) |x(s− τ)|

]
+

1

2

n2−1∑
u=η

q(u) |x(n1)|

=
1

2

η−1∑
u=n1

q(u) |x(u− τ)|+ 1

2

n2−1∑
u=η

q(u)

η−1∑
s=u−τ

q(s) |x(s− τ)| − 1

2

n2−1∑
u=η

q(u)

η−1∑
s=n1

q(s) |x(s− τ)|+ 1

2

n2−1∑
u=η

q(u) |x(n1)| .

Since
∑n2−1
n=η q(n) ≥ 1,

n2−1∑
u=η

q(u)

η−1∑
s=n1

q(s) |x(s− τ)| =

(
n2−1∑
u=η

q(u)

)(
η−1∑
s=n1

q(s) |x(s− τ)|

)
≥

η−1∑
s=n1

q(s) |x(s− τ)|

which implies

|x(ξ)| ≤ 1

2

n2−1∑
u=η

q(u)

η−1∑
s=u−τ

q(s) |x(s− τ)|+ 1

2

n2−1∑
u=η

q(u) |x(n1)| . (14)

By (8) and the fact that s− τ ≤ n1 < ξ for s ∈ N(n0 + τ, n2), |x(s− τ)| < Ke−βh(s−τ) for s ∈ N(n0 + τ, η). Then
by (14),

|x(ξ)| < 1

2

n2−1∑
u=η

q(u)

η−1∑
s=u−τ

q(s)Kēβh(s−τ) +
K

2
e−βh(n1−τ)

n2−1∑
u=η

q(u)

≤ K

2

n2−1∑
u=η

q(u)ēβ(u−2τ)
η−1∑

s=u−τ
q(s) +

K

2
e−βh(n1−τ)

η−1∑
s=u−τ

q(s)

≤ K

2
ēβh(n1−2τ)

{
n2−1∑
u=η

q(u)

η−1∑
s=u−τ

q(s) +

η−1∑
s=u−τ

q(s)

}

≤ K

2
ēβh(n1−2τ)

{
n2−1∑
u=η

q(u)

η−1∑
s=u−τ

q(s) +Q(N)

}

=
K

2
ēβh(n1−2τ)

{
n2−1∑
u=η

q(u)

u∑
s=u−τ

q(s)−
n2−1∑
u=η

q(u)

u∑
s=η

q(s) +Q(N)

}
.

Since

n2−1∑
u=η

q(u)

u∑
s=η

q(s) ≥ 1

2

(
n2−1∑
u=η

q(u)

)2

,

|x(ξ)| < K

2
ēβh(n1−2τ)

Q(N)

n2−1∑
u=η

q(u)− 1

2

(
n2−1∑
u=η

q(u)

)2

+Q(N)


≤ K

2
ēβh(n1−2τ)

{
Q2(N)− 1

2
+Q(N)

}
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≤ K

2
ēβh(n1−2τ)

{(
Q(N) +

1

2

)2

− 3

4

}

≤ K

2
ēβh(ξ−3τ)

{(
Q(N) +

1

2

)2

− 3

4

}

=
K

2
eβ(h(ξ)−h(ξ−3τ))e−βh(ξ)

{(
Q(N) +

1

2

)2

− 3

4

}

=
K

2
e

3δβ
2 e−βh(ξ)

{(
Q(N) +

1

2

)2

− 3

4

}
.

Thus, (7) implies |x(ξ)| < Kēβh(ξ). Then we have a contradiction to the assumption that |x(ξ)| ≥ Kēβh(ξ).

Case 2.2:
∑n2−1
n=n1

q(n) < 1. In the same way as a Case 1, we have

|x(ξ)| < K

2
ēβh(n1−2τ)

Q(N)

n2−1∑
u=n1

q(u)− 1

2

(
n2−1∑
u=n1

q(u)

)2

+Q(N)

 .

Since Q(N)
∑n2−1
u=n1

q(u)− 1
2

(∑n2−1
u=n1

q(u)
)2

is a quadratic function of
∑n2−1
u=n1

q(u) and 0 <
∑n2−1
u=n1

q(u) < 1 ≤ Q(N),

we have,

|x(ξ)| < K

2
ēβh(n1−2τ)

{
Q(N).1− 1

2
.12 +Q(N)

}

≤ K

2
ēβh(n1−2τ)

{
Q2(N) +Q(N)− 1

2

}

≤ K

2
ēβh(ξ−3τ)

{(
Q(N) +

1

2

)2

− 3

4

}

=
K

2
eβ(h(ξ)−h(ξ−3τ))e−βh(ξ)

{(
Q(N) +

1

2

)2

− 3

4

}

=
K

2
e

3δβ
2 e−βh(ξ)

{(
Q(N) +

1

2

)2

− 3

4

}
.

By (7), |x(ξ)| < Kēβh(ξ). Then we have a contradiction to the assumption that |x(ξ)| ≥ Kēβh(ξ). Hence, by virtue
of the Case 1 and 2, we obtain (6). The proof is complete.

Using Theorem 2.3, we have two corollaries.

Corollary 2.4 If Q(N) ≤
√
11−1
2 for some N ≥ n0 + τ , then every oscillatory solution of (1) is bounded.

Corollary 2.5 If Q∞ <
√
11−1
2 , then every oscillatory solution of (1) tends to zero as n→∞.

In the case where
√
11−1
2 < Q(N) < ∞ for some N ≥ n0 + τ we can prove the following theorem in the same way

as case 1 in the proof of Theorem 2.3:

Theorem 2.6 If {h(n)} is an increasing sequence of positive real numbers defined on N(n0) and Q(N) >
√
11−1
2

for some N ≥ n0 + τ , then for any oscillatory solution {x(n)} of (1), there exists a constant K = K(h, x) > 0 such
that

|x(n)| < Keh(n), n ≥ n0.
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Lemma 2.7 Let f(n, x(n− τ) = q(n)x(n− τ), where {q(n)} is a sequence of nonnegative and real numbers defined
on N(n0), {x(n)} be a solution of (1) and Q∞ <∞. If {x(n)} is not oscillatory, then there exist a N0 = N0(x) > n0
and a positive constant C = C(x) such that

|x(n)| ≥ C exp

{
1

Q∞ + 2

n−1∑
s=n0

q(s)

}
, n > N0.

Proof. Without loss of generality, we may assume that {x(n)} is eventually positive, i.e., there exists n1 > n0 such
that x(n) > 0 for any n > n1. Choose N0 > n0, such that N0 − 3τ > n1 and

∑n
s=n−τ q(s) < Q∞ + 1, n > N0.

By (1) and x(n) 6= 0 for n > n1, we have

x(n) ≥ x(N0) exp

{
n−1∑
s=N0

q(s)
x(s− τ)

x(s+ 1)

}
, n > N0.

Since ∆x(n) ≥ 0 for n > n1 + τ , we have

x(n+ 1)− x(n− τ) =

n∑
s=n−τ

∆x(s)

=

n∑
s=n−τ

q(s)x(s− τ)

≤ x(n− τ)

n∑
s=n−τ

q(s)

≤ x(n− τ)(Q∞ + 1), n > N0.

Then

x(n− τ)

x(n+ 1)
≥ 1

Q∞ + 2
,

which leads to that

x(n) ≥ x(N0) exp

{
1

Q∞ + 2

n−1∑
s=N0

q(s)

}

= x(N0) exp

{
−1

Q∞ + 2

N0−1∑
s=n0

q(s)

}
exp

{
1

Q∞ + 2

n−1∑
s=n0

q(s)

}
, n > N0.

The proof is complete. By this lemma we obtain the following theorem:

Theorem 2.8 Assume that Q∞ <
√
11−1
2 .

(i) If a solution {x(n)} of (1) satisfies

lim
n→∞

x(n)

exp
{

1
Q∞+2

∑n−1
s=n0

q(s)
} = 0, (15)

then x(n) tends to zero as n→∞.

(ii) If

∞∑
s=n0

q(s) =∞, (16)

then every bounded solution of (1) tends to zero as n→∞.

Proof. (i) By Lemma 2.7 and (15), {x(n)} is oscillatory. Therefore, by Corollary 2.5, x(n) tends to zero as n→∞.
(ii) Let {x(n)} be a bounded solution of (1). By (16), {x(n)} satisfies (15).

Hence x(n) tends to zero as n→∞.
The proof is complete.
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3. Equations with special forcing term

Let A0 be the set of all real sequences {a(n)} defined on N(n0 − τ) such that

lim
n→∞

a(n) = 0.

Consider the following equation:

∆x(n) = q(n)x(n− τ) + r(n), n ≥ n0, (17)

where the sequence {r(n)} is given by r(n) = q(n)a(n − τ) − ∆a(n) with some {a(n)} ∈ A0. We compare the
asymptotic behavior of the oscillatory solution of (17) with that of the equation (1).

Lemma 3.1 Let {y(n)} be a sequence of real numbers defined on N(n0) and {a(n)} ∈ A0. If z(n) = y(n) + a(n)
is a solution of (1) and {y(n)} is oscillatory, then {z(n)} is also oscillatory.

Proof. Assume that {z(n)} is not oscillatory. Then there exists n1 > n0 + τ such that |z(n)| > 0 for n > n1.
Without loss of generality, we may assume that z(n) > 0. Since {z(n)} is a solution of (1) and q(n) ≥ 0, ∆z(n) =
q(n)z(n− τ) ≥ 0 for n > n2 for some n2 > n1 + τ . Then z(n) ≥ z(n2) > 0 for n > n2. Since {a(n)} tends to zero
as n→∞, we have

lim inf
n→∞

y(n) = lim inf
n→∞

{z(n)− a(n)} ≥ z(n2) > 0.

This is a contradiction to the assumption that {y(n)} is oscillatory. The proof is complete.

Theorem 3.2 If every oscillatory solution of (1) tends to zero as n → ∞, then every oscillatory solution of (17)
tends to zero as n→∞.

Proof. Let {x(n)} be an oscillatory solution of (17). Then it follows that

∆x(n) = q(n)x(n− τ) + q(n)a(n− τ)−∆a(n),

which implies that

∆(x(n) + a(n)) = q(n)(x(n− τ) + a(n− τ)).

Set

z(n) = x(n) + a(n).

Then {z(n)} is a solution of (1), we see from Lemma 3.1 that {z(n)} is oscillatory. Therefore z(n) tends to zero as
n→∞ by assumption. Hence x(n) = z(n)− a(n) tends to zero as n→∞.

The proof is complete.

Corollary 3.3 If Q∞ <
√
11−1
2 , then every oscillatory solution of (17) tends to zero as n→∞.

Proof. By Corollary 2.5, every oscillatory solution of (1) tends to zero as n→∞. By Theorem 3.2, we obtain that
every oscillatory solution of (17) tends to zero as n→∞.

The proof is complete. Now, let us consider the equations:

∆x(n) = qx(n− τ) + µλ−n, n ≥ n0 (18)

and

∆x(n) = qx(n− τ) (19)

where µ is a constant, τ is a positive integer and q, λ are positive real numbers with λ > 1.

Theorem 3.4 Every oscillatory solution of (18) tends to zero as n → ∞, if and only if every oscillatory solution
of (19) tends to zero as n→∞.
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Proof. Sufficiency. Suppose that every oscillatory solution of (19) tends to zero as n → ∞. Define a sequence
{a(n)} on N(n0 − τ) by

a(n) =
µλ−n

1− 1
λ + qλτ

.

Then we see that {a(n)} ∈ A0 and µλ−n = qa(n − τ) −∆a(n). By Theorem 3.2 every oscillatory solution of (18)
tends to zero as n→∞.

Necessity. Suppose that every oscillatory solution of (18) tends to zero as n → ∞ for some µ 6= 0. Let {y(n)}
be an oscillatory solution of (19) and let z(n) = y(n)− a(n). Then

∆z(n) = qz(n− τ) + qa(n− τ)−∆a(n)

= qz(n− τ) + µλ−n,

which means that {z(n)} is a solution of (18), We will prove that z(n) tends to zero as n → ∞. If {z(n)} is
oscillatory, then z(n) tends to zero as n → ∞ by assumption. Therefore it is enough to consider the case that
{z(n)} is not oscillatory. We will show that for some N∗ > n0,

0 < |z(n)| ≤ |µ|
1− 1

λ

λ−n, n > N∗. (20)

Let µ > 0. Assume that z(n) > 0 for n > N1 for some N1 > n0, Since qz(n− τ) > 0 for n > N1 + τ , ∆z(n) > 0 for
n > N1 + τ . Then {z(n)} is monotonic increasing as N(N1 + τ), which implies that for N2 > N1 + τ ,

lim inf
n→∞

y(n) ≥ lim inf
n→∞

z(n) + lim inf
n→∞

a(n)

≥ z(N2) > 0.

Since {y(n)} is oscillatory, we have a contradiction. Hence z(n) < 0 for n > N3 for some N3 > n0. Then

∆

(
z(n) +

µλ−n

1− 1
λ

)
= qz(n− τ) < 0, n > N3 + τ,

which implies that
{
z(n) + µλ−n

1− 1
λ

}
is monotone decreasing on N(N3 + τ). Then we have that for any m > N3 + τ ,

lim sup
n→∞

y(n) = lim sup
n→∞

(z(n) + a(n))

≤
(

lim sup
n→∞

z(n) +
µλ−n

1− 1
λ

)
+ lim sup

n→∞

(
a(n)− µλ−n

1− 1
λ

)

≤ z(m) +
µλ−m

1− 1
λ

.

Since lim supn→∞ y(n) ≥ 0, z(m) + µλ−m

1− 1
λ

≥ 0 for m > N3 + τ . Therefore 0 > z(n) ≥ −µλ
−m

1− 1
λ

, n > N3 + τ . In case

µ < 0, we see in the same way that 0 < z(n) ≤ −µλ
−m

1− 1
λ

, n > N4, for some N4 > n0. Then we have (20), and hence

z(n) tends to zero as n → ∞ when z(n) is not oscillatory. Therefore y(n) = z(n) + a(n) tends to zero as n → ∞,
which implies that every oscillatory solution of (19) tends to zero as n→∞.

The proof is complete.
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