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Abstract

A smoothing transformation, Legendre and Chebyshev collocation method are presented to solve numerically the
Voltterra-Fredholm Integral Equations with Logarithmic Kernel. We transform the Volterra Fredholm integral
equations to a system of Fredholm integral equations of the second kind, using a smoothing transformation to
cancel the singularities in the kernel, a system Fredholm integral equation with smooth kernel is obtained and will
be solved using Legendre and Chebyshev polynomials. This lead to a system of algebraic equations with Legendre
or Chebychev coefficients. Thus, by solving the matrix equation, Legendre and Chebychev coefficients are obtained.
Some numerical examples are included to demonstrate the validity and applicability of the proposed technique.
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1. Introduction

We consider the Volterra-Fredholm integral equation of the second kind with Logarithmic Kernel:

ψ(x, t)−
∫ t

0

∫ 1

−1
ln |x− y|ψ(y, τ)dydτ = f(x, t), (x, t) ∈ [−1, 1]× [0, T ] (1)

where 0 6 T and f is a given function. The elements K(x, y) = ln |x− y| is Logarithm Kernel.
For solving Volterra-Fredholm integral equations, many methods with enough accuracy and efficiency have been

used before by many researches [4, 5, 6, 7, 8, 9, 10, 11, 12]. Maleknejad and Fadaei Yami [8] solved the system
of Volterra-Fredholm integral equations by Adomian decomposition method. Kauthen in [7], used continuous
time collocation method for Volterra-Fredholm integral equations. Legendre wavelets also were applied for solving
Volterra-Fredholm integral equations [13]. In [14], Yalsinbas developed numerical solution of nonlinear Volterra-
Fredholm integral equations by using Taylor polynomials. In this paper, we use numerical technique based on
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Trapezoidal rule, to reduce the Volterra-Fredholm integral Equations to a linear system of Fredholm Integral
equations which will be solved using Legendre, Chebyshev collocation method (this technique is presented for the
Abel Kernel in [1, 2]) and new technique based on smooth transformation. The paper is organized as follows.
In section 2, a system of Fredholm integral equations of the second kind is obtained from the Volterra-Fredholm
Integral equation. In Sections 3 and 4, we present the Legendre and Chebychev collocation Method to solve the
system obtained with special choice of the nodes. In section 5, we derive a smooth transformation to cancel the
singularities in the kernel. In the remainder of the paper, we give a practical example to certify the validity of the
proposed technique.

2. System of Fredholm equations

We consider the Volterra-Fredholm integral equation of the second kind with Logarithm Kernel (1). First, if t = 0
the Volterra-Fredholm integral equations is reduced to: ψ(x, 0) = f(x, 0). For t 6= 0, we apply Trapezoidal Method
to solve the Volterra integral equations according to the variable τ . For a given t, we divide the interval of integration
(0; t) into m equal subintervals, δτ = tm−0

m , where tm = t. Let τ0 = 0, t0 = τ0, tm = τm = t, τj = jδτ, tj = τj . Using
the trapezoid rule, ∫ t

0

∫ 1

−1
ln |x− y|ψ(y, τ)dydτ ∼ δτ

m∑
j=0

′′ ∫ 1

−1
ln |x− y|ψ(y, τj)d y

where the double prime indicates that the first and last term to be halved, where

δτ =
τj − 0

j
=
t− 0

m
, τj 6 t, j > 1, t = tm = τm

In all our approximation, the error assumed negligible, this help us to get a system of Fredholm Integral equations.
Now, for 0 6 r 6 m, the Volterra Fredholm integral equations become a system of Fredholm integral equations

ψ(x, tr)− δτ
r∑
j=0

′′ ∫ 1

−1
ln |x− y|ψ(y, τj)d y = f(x, tr), 1 6 r

and ψ(x, 0) = f(x, 0). We get the system:

ψ(x, 0) = f(x, 0)

ψ(x, t1)− δτ

2

1∫
−1

ln |x− y|ψ(y, t1)dy = f(x, t1) +
δτ

2

1∫
−1

ln |x− y|ψ(y, 0)dy

ψ(x, t2)− δτ

2

1∫
−1

ln |x− y|ψ(y, t2)dy = f(x, t2) +


δτ
2

1∫
−1

ln |x− y|ψ(y, 0)dy

+

δτ
1∫
−1

ln |x− y|ψ(y, t1)dy

...

ψ(x, tm)− δτ

2

1∫
−1

ln |x− y|ψ(y, tm)dy = f(x, tm) + δτ

m−1∑
j=0

′ 1∫
−1

ln |x− y|ψ(y, tj)d y,

where the prime indicates that the first term to be halved. Denote:

f(x, t`) = f `(x), ψ(y, τ`) = ψ`(y), ` = 0, . . . ,m

Putting

Fm(x) = fm(x) +

m−1∑
j=0

′ 1∫
−1

ln |x− y|ψj(y)d y,
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An astitute computation gives

Fm(x) = fm(x) + 2
∑m−1
j=1 (−1)j+m

(
f j(x)− ψj(x)

)
+ (−1)m+1 δτ

2

1∫
−1

ln |x− y|ψ0(y)dy

Now, our problem become:

ψ`(x)− δτ

2

1∫
−1

ln |x− y|ψ`(y)dy = F `(x), ` = 1, . . . ,m (2)

ψ(x, 0) = f(x, 0)

Equations (2) represents a system of Fredholm integral equations of the second kind. In the next, we will present
the well known techniques of Legendre and Chebychev collocation methods to solve this system and later we present
a smooth transformation to solve the system of Fredholm integral equation with singular kernel.

3. Legendre collocation method

Orthogonal polynomials are widely used in applications in mathematics, mathematical physics, engineering and
computer science. One of the most common set of orthogonal polynomials is the Legendre polynomials.

We choice xk, k ∈ [[0, n]] the zeros of the Legendre polynomial of degree equal n+ 1. Here, [[a, b]] used to indicate
the interval of all integers between a and b. We determine a suitable interpolating elements φj(x), j = 0, 1, . . . , n,
such that

ψn(x) =

n∑
j=0

φj(x)ψ(xj) (3)

is the unique interpolating polynomial of degree n, which interpolates ψ at the points xi, i = 0, 1, . . . , n.
The elements φj(x), j = 0, 1, . . . , n are called the basic functions associated with the Legendre interpolation

polynomial and they satisfy φj(xi) = δij .
Then we get an approximation of the exactly integral, let say:

In(ψ) =

∫ 1

−1
K(x, y)ψn(y)dy (4)

This type of approximation must be chosen so that the integral (4) can be evaluated (either explicitly or by an
efficient numerical technique).

The functions P0(x), P1(x), . . . , Pn(x) will be called interpolating elements. In this dissertation, the interpolating
function ψn will be assumed to be the interpolating polynomial

ψn(x) =

n∑
j=0

βjPj(x) (5)

where Pj are Legendre polynomials of degree j, n is the number of Legendre polynomials, and βj are unknown
parameters, to be determined.

The coefficients βj are obtained by multiplying both sides of Eq. (5) by Pm,m 6 n (as weight functions), and
integrating the resulting equation with respect to x over the interval [−1, 1] to obtain∫ 1

−1
Pm(x)ψn(x)dx =

n∑
j=0

βj

∫ 1

−1
Pm(x)Pj(x)dx = βm

2

2m+ 1

Therefore,

βm =
2m+ 1

2

∫ 1

−1
Pm(x)ψn(x)dx (6)
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Here the integrand Pmψn is a polynomial of degree n+m 6 2n then its integration in (6) can exactly be obtained
from just n+ 1 point Gauss-Legendre method, by using the following formula

βm =
2m+ 1

2

n∑
j=0

wjPm(xj)ψ(xj) (7)

where wj , j = 0, . . . , n are the (n+ 1)-point Gauss-Legendre weights.
The n+1 grid points (xi ) of Gauss Legendre integration in formula (7) giving us the exact integral of an integrand

polynomial of degree n+m 6 2n can be obtained as the zeros of the n+ 1-th-degree Legendre polynomial. Then,
given the n + 1 grid point xi, we can get the corresponding weight wi of the i point Gauss Legendre integration
formula by solving the system of linear equations. Now, the interpolating polynomial ψn can be written as:

ψn(x) =

n∑
m=0

(2m+ 1

2

n∑
j=0

wjPm(xj)ψ(xj)
)
Pm(x)

=

n∑
j=0

(
wj

n∑
m=0

2m+ 1

2
Pm(xj)Pm(x)

)
ψ(xj) (8)

Using (3) and (8) we get

φj(x) = wj

n∑
m=0

2m+ 1

2
Pm(xj)Pm(x), j = 0, . . . , n (9)

Substituting ψn into Eq. (1) and collocating at the points xi, we obtain:

ψ(xi)−
n∑
j=0

ψ(xj)

∫ 1

−1
K(xi, y)φj(y)dy = f(xi), i = 0, . . . , n (10)

To simplify the presentation let us define

ai,j =

∫ 1

−1
K(xi, y)φj(y)dy (11)

Then a (n+ 1)× (n+ 1) linear system is obtained:

(Id−A)ψ = F (12)

where A = (ai,j)(i,j)∈[[0,n]]2 is square matrix, ψ = (ψ(x0), . . . , ψ(xn))t and F = (f(x0), . . . , f(xn))t, where t
indicate the transpose. Obviously, the system (12) has a unique solution if the determinant of the matrix Id − A
is nonzero, which also depends on the choice of collocation point. Substituting (9) into (11) we obtain

ai,j = wj

n∑
k=0

2k + 1

2
Pk(xj)uk(xi)

where uk(xi), (i, k) ∈ [[0, n]]2 are defined

uk(xi) =

∫ 1

−1
ln |xi − y|Pk(y)dy

The constants uk(xi), (i, k) ∈ [[0, n]]2, can be evaluated from the recurrence relation:

(k + 3)uk+2(xi) = (2k + 3)xiuk+1(xi)− kuk(xi), k > 1
u0(xi) = (1 + xi) ln |1 + xi|+ (1− xi) ln |1− xi| − 2

u1(xi) = 1
2 (1− x2i ) ln

∣∣∣ 1+xi

1−xi

∣∣∣− 2

u2(xi) = xiu1(xi) + 2
3
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4. Chebyshev collocation method

Like Legendre Methods, here we will use the Chebyshev polynomials Tn of the first kind. The polynomial Tn+1 has
n+ 1 zeros in the interval [−1; 1], which are located at the points

xk = cos(
2k + 1

2n+ 2
π), k ∈ [[0, n]] (13)

The Chebyshev polynomials of the first kind of degree n, Tn, satisfy discrete orthogonality relationships on the
grid of the (n+ 1) zeros of Tn+1(which are referred to as the Chebyshev nodes):

N∑
k=0

Ti(xk)Tj(xk) =


0 : i 6= j

N + 1 : i = j = 0
N+1
2 : i = j 6= 0

(14)

For an arbitrary interval [a, b], we can find a mapping that transform [a, b] into [−1,+1]:

yk =
b− a

2
xk +

a+ b

2
=
b− a

2
cos(

2k + 1

2n+ 2
π) +

a+ b

2
, k ∈ [[0, n]]

and the Chebyshev nodes defined by Eq (13) are actually zeros of this Chebyshev polynomial. Based on the discrete
orthogonality relationships of the Chebyshev polynomials, various methods of solving linear and nonlinear ordinary
differential equations see [3] (The solution of linear ordinary differential systems, with polynomial coefficients, can
be approximated by a finite polynomial or a finite Chebyshev series. The computation can be performed so that
the solution satisfies exactly a perturbed differential system, the perturbations being computed multiples of one
or more Chebyshev polynomials) and integral differential equations, see [15] were devised at about the same time
and were found to have considerable advantage over finite-differences methods. Since then, these methods have
become standard [16]. They rely on expanding out the unknown function in a large series of Chebyshev polynomials,
truncating this series, substituting the approximation in the actual equation, and determining equations for the
coefficients. In our approach we follow closely the procedures like Legendre Method. Let us say, that similar
procedures can be applied for a second grid given by the extremas of Tn as nodes. It is important to stress that our
goal is not to approximate a function f on the interval [−1; 1], but rather to approximate the values of the function
f corresponding to a given discrete set of points like those given in equation (13).

Here, let (T0, T1, T2, . . . , Tn) the interpolating elements. The equation (5) becomes

ψn(x) =

n∑
j=0

′

βjTj(x) (15)

where the prime indicates that the first term is to be halved (which is convenient for obtaining a simple formula
for all the coefficients βj). The function ψn interpolates ψ at the n + 1 Chebyshev nodes, we have at these nodes
ψ(xk) = ψn(xk). Hence, using the discrete orthogonality relation (14) we get

βj =
2

n+ 1

n∑
k=0

ψ(xk)Tj(xk), j = 0, 1, . . . , n (16)

ψn(x) =

n∑
j=0

′

βjTj(x)

=

n∑
j=0

′

2

n+ 1

n∑
k=0

ψ(xk)Tj(xk)Tj(x)

=

n∑
k=0

2

n+ 1

( n∑
j=0

′

Tj(xk)Tj(x)
)
ψ(xk) (17)
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Using (3) and (17) we get:

φk(x) =
2

n+ 1

n∑
j=0

′

Tj(xk)Tj(x) (18)

Now,the same system like (12) is obtained with

aij =
2

n+ 1

n∑
j=0

′

vk(xi)Tk(xj)

where vk(xi), (i, k) ∈ [[0, n]]2 are defined

vk(xi) =

∫ 1

−1
ln |xi − y|Tk(y)dy

The constants vk(xi), (i, k) ∈ [[0, n]]2, can be evaluated from the recurrence relation:(
1 + 1

m+1

)
vm+1(xi) −2xivm(xi) + (1− 1

m−1 )vm−1(xi)

=
2

1−m2

(
(1− xi) ln |1− xi| −(−1)m(1 + xi) ln |1 + xi|

)
− 6 (1−(−1)m)

(m2−1)(m2−4)

with the starting values:

v0(xi) = (1 + xi) ln |1 + xi|+ (1− xi) ln |1− xi| − 2

v1(xi) = xi(u0(xi) + 1) + 1
2

(
(1− xi)2 ln |1− xi| − (1 + xi)

2 ln |1 + xi|
)

v2(xi) = 4xiv1(xi)− (2x2i + 1)v0(xi) + 2
3

(
(1− xi)3 + (1 + xi)

3 ln |1 + xi|
)
− 4

9 (1 + 3x2i )

v3(xi) = 2xi(3 + 2x2i )v0(xi)− 3(4x2i + 1)v1(xi)− 6xiv2(xi)
+(1− xi)4 ln(1− xi) + (1 + xi)

4 ln(1 + xi) + 2xi(1 + x2i )

5. Smoothing transformation

Monegato and Scuderi (1998) introduce a simple smoothing change of variable to solve one-dimensional linear
weakly singular integral equations on bounded intervals, with input functions which may be smooth or not. In
both cases either the input function is smooth or non-smooth, they define the smoothing transformation κ using
piecewise Hermite interpolation polynomial Hm, so we will call this transformation as the Hermite transformation.
The Fredholm integral equation of the second kind with logarithmic Kernel will be solved using a smmooth trans-
formation. In our case we will present the Hermite smoothing transformation which reduce a second kind Fredholm
integral equation with a weakly singular kernel, for both smooth and non-smooth input functions, to an equivalent
equation with smoother solution. We choose a nonlinear transformation: κ : [−1, 1] → [−1, 1] is a sufficiently
smooth monotone function having as fixed points x0 = −1 < x1 < x2 < . . . < xn+1 = 1 and vanishing derivative
at these points. An example of this mapping function is the Hermite interpolation polynomial and its is define in
each subinterval by the conditions

j ∈ {k, k + 1}, Hn(xj) = xj , H
(i)
n (xj) = 0, i = 0, 1, . . . , αj − 1, αj > 2

The integers αk, k = 0, . . . , n, are chosen accordingly to the smoothing effect that ought to produce at the points
xk, k = 0, . . . , n. Notice that the smoothness of κ itself does not depend on the choice of α0 and αn.

A predecious choice is, ∀k = 0, . . . , n:

Hk(t) = xk + (xk+1 − xk)2−αk−αk+1
(αk + αk+1 − 1)!

(αk − 1)!(αk+1 − 1)!

∫ t

xk

(z − xk)αk−1(xk − z)αk+1−1d z.

Now, using the Hermite interpolation polynomial to solve the Fredholm integral equation (in our case is nothing
but the system of integral equation).

Fixing ` ∈ {1, . . . ,m} and putting x = κ(t) = Hn(t) in the following system of Fredholm integral equation
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ψ`(Hm(t))− δτ

2

1∫
−1

ln |Hm(t)− y|ψ`(y)dy = F `(Hm(t)) (19)

a simple change of variable y = Hm(s), then (19) becomes:

ψ`(Hm(t))− δτ

2

1∫
−1

ln |Hm(t)−Hm(s)|ψ`(Hm(s))H
′

m(s)d s = F `(Hm(t)) (20)

Multiplying both sides of (20) by H
′

m(t) and setting ψ`(Hm(t))H
′

m(t) = η`(t) and F `(Hm(t))H
′

m(t) = ζ`(t) we
obtain:

η`(t)− δτ

2

1∫
−1

ln |Hm(t)−Hm(s)|H
′

m(t)η`(s)d s = ζ`(t)

Using

ln |Hm(t)−Hm(s)| = ln

∣∣∣∣Hm(t)−Hm(s)

t− s

∣∣∣∣+ ln |t− s|

for simplicity we define:

θ(t, s) =


ln
∣∣∣Hm(t)−Hm(s)

t−s

∣∣∣H ′

m(t), if t 6= s

ln
∣∣∣H ′

m(t)
∣∣∣H ′

m(t), if t = s

Putting t = xi, i = 1, . . . , n

η`(xi)−
δτ

2

1∫
−1

(
θ(xi, s) + ln |xi − s|H

′

m(xi)
)
η`(s)d s = ζ`(xi) (21)

The function H
′

m(xi)η
`(s) and θ(xi, s)η

`(s) are continuous as functions of s,
Now we will approximate the function χ`1(s) = H

′

m(xi)η
`(s) and χ`2(s) = θ(xi, s)η

`(s) by the nth degree inter-
polating polynomials

χ`1(s) =

n∑
j=0

H
′

m(xi)η
`(xj)φj(s), χ

`
2(s) =

n∑
j=0

θ(xi, xj)η
`(xj)φj(s) (22)

which interpolates χ`1(s) and χ`2(s) at xi, i = 1, . . . , n and φj(s) is given by (9) (if we use Legendre polynomial)
and (18) (for Chebyshev polynomial). Substituting (22) into (21) we get:

η`(xi)−
δτ

2

n∑
j=0

χ`1(xj)

1∫
−1

φj(s)d s+ χ`2(xj)

1∫
−1

φj(s) ln |xi − s|d s

 η`(xj) = ζ`(xi), i = 1, . . . , n (23)

Equation (23) can be written as the (n+ 1)× (n+ 1) linear system

(Id− δτ

2
A)η` = ζ`

where
η` =

(
η`(xi)

)
i=1,...,n

, ζ` =
(
ζ`(xi)

)
i=1,...,n

A =

(
Ai,j =

(
χ`1(xj)

1∫
−1
φj(s)d s+ χ`2(xj)

1∫
−1
φj(s) ln |xi − s|d s

))
i,j=1,...,n
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The coefficient
1∫
−1
φj(s) ln |xi− s|d s used in the matrix A can be computed using the sections 3 and 4 while the

second coefficient
1∫
−1
φj(s)d s can be computed as follows:

1. Using Legendre collocation method: substituting (9) into
1∫
−1
φj(s)d s and a simple computation gives

∫ 1

−1
Pm(x)dx =

{
2 if m = 0
0 if m > 1

Now we get
1∫
−1

φj(s)d s = wj

n∑
m=0

2m+ 1

2
Pm(xj)

∫ 1

−1
Pm(x)dx = wj

.

2. Using Chebychev collocation method: substituting (18) into
1∫
−1
φj(s)d s and simple computation gives

∫ 1

−1
Tm(x)dx =

{
2

1−m2 if m even

0 if m odd

In this case we have

1∫
−1
φj(s)d s = 2

n+1

∑n
j=0

′

Tj(xk)
1∫
−1
Tj(s)d s

= 2
n+1

∑bn/2c
j=0

′

T2j(xk) 2
1−4j2

= 2
n+1

∑bn/2c
j=0

′

cos( jπ(2k+1)
n+1 ) 2

1−4j2

where bn/2c is the greatest integer less than or equal to n/2.

6. Numerical Implementation

In this section, to achieve the validity, the accuracy and support our theoretical discussion of the proposed method,
we give some computational results. The computations, associated with the example, are performed by MATLAB
7. Practically, the error function en at step n is computed as ψN − ψn where un is the result with n used in the
approximation and N is large enough so that ψN is much closer to the (discrete) solution η∞ than the numerical
tolerance ε = 10−12. We consider the solution with n = 128, and we compute the error between the solution for
different value at different value of n and the η128. In our computation, we consider f(x) = x. The method of
smoothing the kernel used to solve Volterra-Fredholm integral equation with:

• Legendre approximation with α0 = α1 = 2, we get Fig. 1. It’s clear that the error is deceasing function for
different value of t. We call this method ”LASK”.

• Chebychev approximation, with α0 = α1 = 2, we get Fig. 1. It’s clear that the error is deceasing function
for different value of t. We call this method ”CASK”.

• Table 1 shows the ||ψ − ψn||∞ with respect the variation of n (number of term used in our approximation).
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Figure 1: LASK (left figure) and CASK (right figure)

Table 1: Infinity norm of the error for different value of n.

n ||ψ − ψn||∞,LASK ||ψ − ψn||∞,CASK
32 1.8625e-2 2.7312e-2
64 3.3217e-3 2.4245e-3
128 5.5560e-4 3.771e-4
256 8.9868e-5 7.019e-5

7. Conlusion

• An advantage of the integration method is that it can be used to calculate integrals with singularities.

• The Legendre and Chebychev polynomials basis has been developed to solve singular Fredholm integral
equations.

• Numerical results have been obtained with great accuracy.

• This method may be applied to solve Volterra Fredholm integral equations with singular Kernels and a
nonlinear Volterra integral equation.

• Other type of singular Kernels can be investigate using the same method.
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