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Abstract

The aim of this article is to present an efficient numerical procedure for solving Lane–Emden type equations. We
present two practical matrix method for solving Lane–Emden type equations with mixed conditions by Bernstein
polynomials operational matrices (BPOMs) on interval [a, b]. This methods transforms Lane–Emden type equations
and the given conditions into matrix equation which corresponds to a system of linear algebraic equations. We
also give some numerical examples to demonstrate the efficiency and validity of the operational matrices for solving
Lane–Emden type equations(LEEs).
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1. Introduction

Lane–Emden type equation is an ordinary differential equation which describes the equilibrium density distribution
in self-gravitating sphere of polytrophic isothermal gas and has a singularity at the origin. Many real life phe-
nomena in mathematical physics and astrophysics can be modeled by Lane–Emden type equations such as thermal
explosions [1], stellar structure [2], and the thermal behavior of a spherical cloud of gas, isothermal gas spheres and
thermionic currents [3].
In recent years, Many powerful methods have been presented for solving of Lane–Emden type equations. For in-
stance, the homotopy perturbation method [4, 6], the Legendre wavelets [7], the variational iteration method [8, 9],
the B-spline method [10], the Adomian decomposition method [11], the Bessel collocation method [12], the Pade
series method [13], the rational Legendre pseudospectral method [14], the nonperturbative approximate method
[15], the Hermite functions collocation method [16], and the variational approach method [17].
Continuous or piecewise polynomials are incredibly useful mathematical tools as they are precisely defined, calcu-
lated rapidly on a modern computer system and can represent a great variety of functions. They can be differentiated
and integrated without difficulty. The aim of the present paper is to apply Bernstein operational matrices to pro-
pose a reliable numerical technique for solving linear and nonlinear Lane-Emden equations. Some special cases of
the problem are solved to show its validity and efficiency in comparison with other existing numerical methods.
The approximate solution obtained by the proposed method shows its superiority on the other existing numerical
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solution.
In this work we used that operational matrices for numerical solution of nonlinear Lane-Emden equation,

u′′(x) +
α

x
u′(x) + f(x, u) = g(x), α, x ≥ 0, (1)

under the mixed conditions

1∑
k=0

(
aiku

(k)(a) + biku
(k)(b)

)
= λi, i = 0, 1, (2)

where aik, bik, λi and α are constant. f(x, u) is a nonlinear function of x and u(x), whereas u(x) is unknown.
The aim of this study is to find the solution of the problem as the truncated Bernstein series defined by

u(x) =

N∑
n=0

unBn,N (x), a ≤ x ≤ b, (3)

where Bn,N (x), n = 0, 1, 2, . . . , N denotes the Bernstein polynomials; un, 0 ≤ n ≤ N are unknown Bernstein
coefficients, and N is any positive integer chosen such that N ≥ 2. To find a numeric solution in the form (3) of
the problem (1), we use the collocation points defined by

xi = a+
b− a

2N − 1
i, i = 0, 1, . . . , N. (4)

The Bernstein basis polynomials of degree N are defined by:

Bn,N (x) =

(
N

n

)
(x− a)n(b− x)N−n

(b− a)N
, a ≤ x ≤ b, n = 0, 1, ..., N. (5)

The Bernstein polynomials Bn,N (x) in the matrix form as follows

Φ(x) = [B0,N (x), B1,N (x), ..., BN,N (x)]. (6)

This paper is organized as follows: first, we introduce Lane–Emden type equations and Bernstein polynomials. In
Section 2 we apply Bernstein polynomials approximation and their operational matrices together with collocation
method to reduce the Lane–Emden type equation to a system of nonlinear or linear equations. Section 3 exhibits
the final system. Section 4 we present a special case. Section 5 illustrates some numerical examples to show the
accuracy of this method. Finally Section 6 concludes the paper.

2. Fundamental relations

2.1. Function approximation

2.1.1. Approximate of u(x)

A function u(x), square integrable in [a, b], may be expressed in terms of Bernstein basis [18]. In practice, only the
first (N + 1)-terms Bernstein polynomials are considered. Hence, if we write

u(x) '
N∑
i=0

uiBi,N (x) = Φ(x)U, (7)

where

U = [u0, u1, ..., uN ]T , (8)

then

U = Q−1
(
Φ(x), u(x)

)
, (9)
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where Q is said dual matrix of Φ(x) and is given in [18]. Now, we can write the unknown function u(x) in the
matrix form as follows

u(x) = Φ(x)U, (10)

Using the expression (5) and taking n = 0, 1, ..., N , we find the corresponding matrix relation as

Φ(x) = ∆(x)A, (11)

where

∆(x) = [1, x, . . . , xN ], (12)

and A is the (N + 1)× (N + 1) matrix. For example, on the interval [0, 1] and [−1, 1], we have

A[0,1] =



(−1)0
(
N
0

)
0 . . . 0

...
. . .

(−1)1
(
N
0

)(
N−0
1

)
(−1)0

(
N
n

) ...

...
. . . 0

(−1)N−0
(
N
0

)(
N−0
N−0

)
. . . (−1)N−n

(
N
n

)(
N−n
N−n

)
. . . (−1)0

(
N
N

)


,

A[−1,1] =



(−1)0
(
N
0

)
(−1)0

(
N−1
0

)
. . .

(
N
0

)
(−1)1

(
N
1

)
(−1)1

(
N−1
1

)
+ (−1)0

(
N−1
0

)
. . .

(
N
1

)
...

...
. . .

...

(−1)N
(
N
N

)
(−1)N−1

(
N−1
N−1

)
. . .

(
N
N

)


.

From relations (10), (6) and (11), we obtain the following matrix forms

u(x) = Φ(x)U = ∆(x)AU. (13)

2.1.2. Approximate of f(x, u)

We can also approximate the function f(x, u) by the Bernstein polynomials as

f(x, u) ' f(x,Φ(x)U) = Φ(x)H, (14)

where the unknown is

H = [h0, h1, ..., hN ]T , (15)

similarly (9), we have

H = Q−1
(
Φ(x), f(x,Φ(x)U)

)
. (16)

2.2. Matrix relations for higher order derivatives of u(x) based on ∆(x)

We consider the solution u(x) and its kth derivative u(k)(x) defined by the truncated Bernstein series (3). Then we
can write its kth derivative in the matrix form

u(k)(x) = Φ(k)(x)U, k = 1, 2, ... (17)
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and

u(k)(x) = ∆(k)(x)AU, (18)

To obtain the matrix ∆(k)(x) in terms of the matrix ∆(x), we can use the following procedure:

∆(1)(x) = ∆(x)M1,

∆(2)(x) = ∆(1)(x)M = ∆(x)M2,

...

∆(k)(x) = ∆(k−1)(x)M = ∆(x)Mk, (19)

where

M =


0 1 0 ... 0
0 0 2 ... 0
...

...
. . .

. . .
...

0 0 0 0 N
0 0 0 ... 0

 . (20)

Consequently, by substituting the matrix form (18) and (19) into (17), we have the matrix relation

u(k)(x) = ∆(x)MkAU. (21)

2.3. Matrix relations for higher order derivatives of u(x) based on Φ(x)

The differentiation of vector Φ(x) in Eq. (6) can be expressed as

Φ′(x) = Φ(x)D, (22)

where D is the (N + 1)× (N + 1) operational matrix of derivatives for Bernstein polynomials. From (11), we have
Φ(x) = ∆(x)A and then

Φ′(x) =
[
0, 1, 2x, . . . , NxN−1

]
A, (23)

Defining (N)× (N + 1) matrix V and vector ∆∗(x) as

V =


0 1 0 · · · 0
0 0 2 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 · · · N

 , ∆∗(x) =
[
1, x, x2, . . . , xN−1

]
, (24)

equation (23) may then be restated as

Φ′(x) = ∆∗(x)V A. (25)

We now expand vector ∆∗(x) in terms of Φ(x). We get ∆∗(x) = Φ(x)B∗ where

B∗ =
[
A−1

[1] , A
−1
[2] , A

−1
[3] , . . . , A

−1
[N ]

]
, (26)

where A−1
[k] is the (k + 1)th row of A−1 for k = 1, 2, . . . , N . so

Φ′(x) = Φ(x)B∗V A. (27)

Therefore, we have the operational matrix of derivative as

D = B∗V A. (28)

If we approximate u(x) ' Φ(x)U , then for k ≥ 2 (k is the order of derivatives), we get

u(k)(x) ' Φ(k)(x)U = Φ(x)DkU. (29)
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2.4. Matrix relations for the mixed conditions

We obtain the corresponding matrix forms for the conditions (2) by means of the relations (21) as

1∑
k=0

[
aik∆(a) + bik∆(b)

]
MkAU = λi, i = 0, 1. (30)

Briefly, the matrix form for conditions (2) is

IiU = [λi], (31)

where

Ii =
1∑

k=0

[
aik∆(a) + bik∆(b)

]
MkA

= [zi0, zi1, ..., ziN ]. (32)

3. Methods of solution

We are now ready to construct the fundamental matrix equation corresponding to Eq. (1).

3.1. First method

In this method, we substitute and simplify the matrix relations (21) into Eq. (1), and obtain the fundamental
matrix equation

∆(x)M2AU +
α

x
∆(x)MAU +∆(x)AH = g(x). (33)

By plugging the collocation points xi defined by (4), we get the system of matrix equations

∆(xi)M
2AU +

α

xi
∆(xi)MAU +∆(xi)AH = g(xi), i = 0, 1, ..., N, (34)

or briefly the fundamental matrix equation{
∆M2A+ Γ∆MA

}
U = G−∆AH. (35)

where

∆ =


∆(x0)
∆(x1)

...
∆(xN )

 =


1 x0 x2

0 . . . xN
0

1 x1 x2
1 . . . xN

1
...

...
. . .

...
...

1 xN x2
N . . . xN

N

 , (36)

and

Γ =



α

x0

0 0 . . . 0

0
α

x
1

0 . . . 0

...
...

. . .
...

...

0 0 0 . . .
α

x
N


, G =


g(x0)
g(x1)

...
g(xN )

 , (37)

Hence, Eq. (35) can be written in the form

WU = F or [W;F ], W = [wpq], p, q = 0, 1, ..., N, (38)
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where

W = [wpq] = ∆M2A+ Γ∆MA, F = G−∆AH, (39)

Finally, to obtain the solution of Eq. (1) under the conditions (2), we replace the row matrices (32) by the last 2
rows of the matrix (38), and get the new augmented matrix

[W;F ] =



w
00

w
01

. . . w
0N

; g(x0)−∆(x0)AH
w

10
w

11
. . . w

1N
; g(x1)−∆(x1)AH

. . . . . . . . . ; . . .
w

N,0
w

N,1
. . . w

N,N
; g(xN )−∆(xN )AH

z00 z01 . . . z0N ; λ0

z10 z11 . . . z1N ; λ1


. (40)

If rankW = rank [W;F ] = N+1, then we can write U = (W)−1F ; thus, the matrix U (thereby the coefficients u
0
,

u1 , . . ., uN
) is uniquely determined. Also the Eq. (1) under the conditions (2) has a unique solution. This solution

is given by truncated Bernstein series (3). On the other hand, when
∣∣W∣∣ = 0, if rank W = rank [W;F ] < N + 1,

then we may find a particular solution. Otherwise if rank W 6= rank [W;F ] = N + 1, then there is no solution.

3.2. Second method

In this method, we substitute and simplify the matrix relations (11) and (29) into Eq. (1), and obtain the funda-
mental matrix equation

∆(x)AD2U +
α

x
∆(x)ADU +∆(x)AH = g(x), (41)

By plugging the collocation points xi defined by (4), we get the system of matrix equations

∆(xi)AD
2U +

α

xi
∆(xi)ADU +∆(xi)AH = g(xi), i = 0, 1, ..., N, (42)

or briefly the fundamental matrix equation{
∆AD2 + Γ∆AD

}
U = G−∆AH. (43)

4. Special case

4.1. Linear Lane–Emden equation

In Eq. (1), if f(x, u) = p(x)u(x) then we have a linear Lane–Emden equation as

u′′(x) +
α

x
u′(x) + p(x)u(x) = g(x), α, x ≥ 0. (44)

Similarly nonlinear Lane-Emden equation, we have the fundamental matrix equation as follows{
∆M2A+ Γ∆MA+ P∆A

}
U = G, (45)

where

P =


p(x0) 0 0 . . . 0
0 p(x1) 0 . . . 0
...

...
. . .

...
...

0 0 0 . . . p(xN )

 . (46)
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Table 1: Approximate and exact solutions for Example 1.

x Present method Present method Present method Exact solution
with N = 2 with N = 4 with N = 6

0.1 2.55744 3.27765 3.27573 3.27562
0.2 2.52077 3.33314 3.33143 3.33132
0.3 2.53269 3.42746 3.42576 3.42566
0.4 2.59322 3.56270 3.56098 3.56086
0.5 2.70234 3.74213 3.74040 3.74027
0.6 2.86006 3.97022 3.96838 3.96824
0.7 3.06637 4.25260 4.25054 4.25039
0.8 3.32129 4.59613 4.59386 4.59371
0.9 3.62480 5.00883 5.00690 5.00676
1.0 3.97691 5.49992 5.50000 5.5

5. Numerical examples

To illustrate the effectiveness of the proposed method in the present paper, several examples are presented in this
section.

Example 1. Consider the linear Lane–Emden equation [19]
u′′(x) +

2

x
u′(x)− 4u(x) = −2,

u(1) = 5.5, u′(0) = 0

(47)

where the exact solution is u(x) = 0.5 + 5
sinh (2x)

x sinh (2)
.

Numerical results for N = 2, N = 4 and N = 6 in the presented method by Bernstein operational matrices
are shown in Table 1.
As it can be observed, we have almost obtained the exact solution for N = 6 through Bernstein operational

matrices. The approximated solution for N = 2, N = 4 and N = 6 are as follows:

u2(x) = 2.642709− 1.095698x+ 2.429902x2,

u4(x) = 3.260101− 0.014183x+ 1.906748x2 − 0.148239x3 + 0.495493x4,

u6(x) = 3.257315− 0.000020x+ 1.838468x2 − 0.001711x3 + 0.373546x4 − 0.010367x5 + 0.042769x6

Since the exact solution is u(x) = 0.5 + 5
sinh (2x)

x sinh (2)
, if we write Taylor expansion, we will have:

u(x) = 0.5 + 5
sinh (2x)

x sinh (2)
' 3.257206 + 1.838137x2 + 0.367627x4 + 0.035012x6 +O

(
x8

)
As it can be observed, as N increases, the approximate solution gets closer to the exact solution.

Example 2. Consider the Linear Lane–Emden equation [19]
u′′(x) +

1

x
u′(x) =

64

(x2 − 8)
2
(ln (2) + ln (5))

,

u(1) = 0, u′(0) = 0

(48)

where the exact solution is u(x) = 2 log
10
(

7

8− x2
). Numerical results for N = 3, N = 5 and N = 7 in the presented

method by Bernstein operational matrices are shown in Table 2.
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Table 2: Approximate and exact solutions for Example 2.

x Present method Present method Present method Exact solution
with N = 3 with N = 5 with N = 7

0.1 −0.113213 −0.113751 −0.114463 −0.114897
0.2 −0.109783 −0.110485 −0.111196 −0.111630
0.3 −0.104065 −0.105010 −0.105723 −0.106157
0.4 −0.096060 −0.097288 −0.098002 −0.098436
0.5 −0.085768 −0.087264 −0.087976 −0.088407
0.6 −0.073188 −0.074875 −0.075569 −0.075991
0.7 −0.058322 −0.060045 −0.060688 −0.061084
0.8 −0.041168 −0.042687 −0.043221 −0.043559
0.9 −0.021728 −0.022706 −0.023039 −0.023262
1.0 4.441× 10−16 −1.437× 10−15 −7.936× 10−16 0

As it can be observed, we have almost obtained the exact solution for N = 7 through Bernstein operational
matrices. The approximated solution for N = 3, N = 5 and N = 7 are as follows:

u3(x) = −0.114357− 6.93889× 10−18 x+ 0.114357x2,

u5(x) = −0.114835 − 0.000037x+ 0.108589x2 + 0.000348x3 + 0.006810x4 − 0.000876x5,

u7(x) = −0.115549 − 0.0000005x+ 0.108573x2 + 0.000011x3 + 0.006809x4 − 0.000043x5 + 0.000384x6

− 0.000184x7.

Since the exact solution is u(x) = 2 log
10
(

7

8− x2
), if we write Taylor expansion, we will have:

2 log
10
(

7

8− x2
) ' −0.115984 + 0.108574x2 + 0.006786x4 + 0.000565x6 +O

(
x8

)
As it can be observed, as N increases, the approximate solution gets closer to the exact solution.

Example 3. Consider the nonlinear Lane–Emden equation
u′′(x) +

2

x
u′(x) + eu(x) =

esin(x)x− sin(x)x+ 2 cos(x)

x
,

u(−1) = sin(−1), u′(1) = cos(1),

(49)

where the exact solution is u(x) = sin(x). Numerical results for N = 4, N = 6 and N = 8 in the presented method
by Bernstein operational matrices are shown in Table 3.
As it can be observed, we have almost obtained the exact solution for N = 8 through Bernstein operational

matrices. The approximated solution for N = 4, N = 6 and N = 8 are as follows:

u4(x) = −0.000118 + 0.998664x+ 0.000389x2 − 0.158528x3 − 0.001607x4,

u6(x) = 0.000005 + 0.999994x+ 0.000026x2 − 0.166624x3 − 0.000224x4 + 0.008044x5 + 0.000137x6,

u8(x) = 0.00000001 + 0.999999x+ 0.0000002x2 − 0.166667x3 − 0.000003x4 + 0.0083331x5 + 0.000007x6

− 0.000194x7 − 0.000004x8,

Since the exact solution is u(x) = sin(x), if we write Taylor expansion, we will have:

sin(x) ' 1.0x− 0.166667x3 + 0.008333x5 − 0.000198x7 +O
(
x9

)
As it can be observed, as N increases, the approximate solution gets closer to the exact solution.
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Table 3: Approximate and exact solutions for Example 3.

x Present method Present method Present method Exact solution
with N = 4 with N = 6 with N = 8

0.1 0.099594 0.099838 0.099833 0.099833
0.2 0.198359 0.198674 0.198669 0.198669
0.3 0.295223 0.295524 0.295520 0.295520
0.4 0.389223 0.389419 0.389418 0.389418
0.5 0.479395 0.479419 0.479425 0.479425
0.6 0.564771 0.564623 0.564642 0.564642
0.7 0.644377 0.644176 0.644218 0.644218
0.8 0.717238 0.717285 0.717356 0.717356
0.9 0.782374 0.783228 0.783328 0.783327
1.0 0.838801 0.841358 0.841472 0.841471

6. Conclusion

In this paper, we have proposed a numerical solution to solve Lane–Emden equation with mixed conditions by
Bernstein polynomials operational matrices. We use formula for numerical examples and it is obvious that the
numerical solution coincides with the exact solution even with a few Bernstein polynomials used in the approxi-
mation. Finally, errors show that the approximation becomes more accurate when N is increased. Therefore, for
better results, it is recommended to use a larger N .
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