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Abstract

In the present paper, the new iterative method proposed by Daftardar-Gejji and Jafari (NIM or DJM) [V. Daftardar-
Gejji, H. Jafari, An iterative method for solving non linear functional equations, J. Math. Anal. Appl. 316
(2006) 753-763] is used for solving linear and nonlinear wave and diffusion equations. In this iterative method
the solution is obtained in the series form that converge to the exact solution with easily computed compo-
nents. The results demonstrate that the method has many merits such as being derivative-free, overcome the
difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposi-
tion Method (ADM). It does not require to calculate Lagrange multiplier as in Variational Iteration Method
(VIM) and no needs to construct a homotopy and solve the corresponding algebraic equations as in Homotopy
Perturbation Method (HPM). A comparison with some existing techniques such as ADM, HPM and VIM also
presented, which shows that the DJM is effective and convenient to use and overcomes the difficulties aris-
ing in existing techniques. The results show that the present method is very effective and simple and pro-
vide the analytic solutions. The software used for the calculations in this study was MATHEMATICA r 8.0.
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1. Introduction

A variety of problems in physics, chemistry and biology have their mathematical setting as linear and nonlinear
ordinary or partial differential equations. Many methods have been developed to solve differential equations,
especially nonlinear, which are receiving increasing attention.

Many of the phenomena that arise in mathematical physics and engineering fields can be described by partial
differential equations (PDEs). In physics for example, the heat flow and the wave propagation phenomena are
well described by partial differential equations. Moreover, most physical phenomena of fluid dynamics, quantum
mechanics, electricity, plasma physics, propagation of shallow water waves, and many other models are formulated
by partial differential equations [1].

Due to these huge applications, there is a demand on the development of accurate and efficient analytic or
approximate methods able to deal with the PDEs.

Many fields of science, engineering and physical problems can be described by initial boundary value problems
(IBVP). Except for a few number of these problems, we encounter difficulties in finding their exact analytical
solutions.
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Many attempts have been made to develop analytic and approximate methods to solve the linear and nonlinear
wave and diffusion equations, see [2, 3, 4, 5]. Although such methods have been successfully applied but some
difficulties have appeared, for examples, in calculating Adomian polynomials to handle the nonlinear terms in ADM
[2], calculate Lagrange multiplier in VIM [3, 4, 5], construct a homotopy and solve the corresponding algebraic
equations in HPM [5].

Recently, Daftardar-Gejji and Jafari [6] have proposed a new technique for solving linear/nonlinear functional
equations namely new iterative method (NIM) or (DJM). The DJM has been extensively used by many researchers
for the treatment of linear and nonlinear ordinary and partial differential equations of integer and fractional order,
see [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. The method converges to the exact solution if it exists through successive
approximations. However, for concrete problems, a few approximations can be used for numerical purposes with
high degree of accuracy. The DJM is simple to understand and easy to implement using computer packages and
yields better results and does not require any restrictive assumptions for nonlinear terms as required by some
existing techniques.

In this paper, the applications of the DJM for the linear and nonlinear wave and diffusion equations will be
presented. For wave equations, the analytic solutions are obtained for problems in bounded and unbounded domains.
Also, for diffusion problems the exact solutions are developed for some diffusion processes of power law diffusitivies.

The results obtained in this paper are compared with those obtained by other iterative methods such as ADM
[2], VIM [3, 4, 5], and HPM [5]. Comparisons show that the DJM is effective and convenient to use and overcomes
the difficulties arising in others existing techniques.

The present paper has been organized as follows. In section 2 is devoted to the description the new iterative
method (NIM or DJM) and its convergence. In section 3 the linear and nonlinear wave and diffusion equations are
solved by DJM and finally in section 4 the conclusion is presented.

2. The new iterative method (NIM or DJM)

Consider the following general functional equation:

u = N(u) + f, (1)

where N is a nonlinear operator from a Banach space B → B and f is a known function[6, 7, 8, 9, 10]. We are
looking for a solution u of Eq.(1) having the series form:

u =

∞∑
i=0

ui. (2)

The nonlinear operator N can be decomposed as

N(

∞∑
i=0

ui) = N(u0) +

∞∑
i=1

{N(

i∑
j=0

uj)−N(

i−1∑
j=0

uj)}. (3)

From Eqs.(2) and (3), Eq.(1) is equivalent to

∞∑
i=0

ui = f +N(u0) +

∞∑
i=1

{N(

i∑
j=0

uj)−N(

i−1∑
j=0

uj)}. (4)

We define the recurrence relation:

G0 = u0 = f,
G1 = u1 = N(u0),
Gm = um+1 = N(u0 + · · ·+ um)−N(u0 + · · ·+ um−1), m = 1, 2, ...

(5)

Then

(u1 + ...+ um+1) = N(u1 + ...+ um), m = 1, 2, ..., (6)



108 International Journal of Applied Mathematical Research

and

u(x) = f +

∞∑
i=1

ui. (7)

The m-term approximate solution of Eq.(2) is given by u = u0 + u1 + ...+ um−1.

2.1. Convergence of the DJM

We present below the condition for convergence of the series
∑
ui. For more details we refer the reader to [17].

Theorem 3.1.1 :[17]

If N is C(∞) in a neighbourhood of u0 and ‖ N (n)(u0) ‖≤ L, for any n and for some real L > 0 and ‖ ui ‖≤M < 1
e ,

i = 1, 2, ..., then the series
∞∑

n=0
Gn is absolutely convergent and moreover, ‖ Gn ‖≤ LMnen−1(e− 1), n = 1, 2, ...

Theorem 3.1.2 : [17]

If N is C(∞) and ‖N (n)(u0)‖ ≤M ≤ e−1, ∀n, then the series
∞∑

n=0
Gn is absolutely convergent.

3. Solution of wave and diffusion equations by using DJM

In this section the DJM will be applied to solve the linear and nonlinear wave and diffusion equations independently.

3.1. Wave equations

The linear and nonlinear wave equations in bounded and in an unbounded domains are given by [3]:

utt = uxx + f(u), 0 < x < L, t > 0, (8)

utt = uxx + F (u) + g(x, t), 0 < x < L, t > 0, (9)

utt =
x2

2
uxx, 0 < x < L, t > 0, (10)

utt = uxx, −∞ < x <∞, t > 0, (11)

respectively. The functions f(u), F (u) and g(x, t) are linear, nonlinear and source functions, respectively. The wave
equation plays an important role in various physical problems. Study of the wave equation is needed in diverse
areas of engineering and scientific applications [3].

The DJM will be applied to four physical models to illustrate the strength of the method and to obtain exact
solutions for these models.
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3.1.1. The homogeneous wave equation

Let us consider the homogeneous wave equation [3]:

utt = uxx − 3u, 0 < x < π, t > 0, (12)

with initial condition:

u(x, 0) = 0, ut(x, 0) = 2 cosx, (13)

and the boundary conditions

u(0, t) = sin 2t, u(π, t) = − sin 2t. (14)

It is worth to mention that an additional term −3u is added to the standard wave equation. This term arises
when each element of the string is subject to an additional force which is proportional to its displacement.
Eq.(15) can be written in an operator form as

Lttu = uxx − 3u, (15)

where Ltt = ∂2

∂t2 . Let us assume the the inverse operator L−1tt exists and it can be take with respect t from 0 to t,
i.e.

L−1tt (.) =

t∫
0

t∫
0

(.)dtdt (16)

Then, by taking the inverse operator L−1tt to both sides of the Eq.(15) and using the initial condition, leads to

u(x, t) = 2t cosx+ L−1tt (uxx − 3u). (17)

By applying the DJM for Eq.(17) the following recurrence relation for the determination of the components
un+1(x, t) are obtained:

u0(x, t) = 2t cosx, (18)

u1(x, t) = N(u0) = L−1tt ((u0)xx − 3u0) = −4

3
t3 cosx = − (2t)3

3!
cosx, (19)

u2(x, , t) = N(u1 + u0)−N(u0) = L−1tt ((u1 + u0)xx − 3(u1 + u0))− u1 =
4

15
t5 cosx =

(2t)5

5!
cosx, (20)

u3(x, t) = N(u2 + u1 + u0)−N(u1 + u0) = L−1tt ((u2 + u1 + u0)xx − 3(u2 + u1 + u0))−

−L−1tt ((u1 + u0)xx − 3(u1 + u0)) = − 2

315
t7 cosx = − (2t)7

7!
cosx, (21)

and so on.
Continuing in this manner, the (n + 1)th approximation of the exact solutions for the unknown functions u(x, t)
can be achieved as:
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un+1 = N(u0 + · · ·+ un)−N(u0 + · · ·+ un−1) = L−1tt ((u0 + · · ·+ un)xx − 3(u0 + · · ·+ un))−
−L−1tt ((u0 + · · ·+ un−1)xx − 3(u0 + · · ·+ un−1)), n = 1, 2, ... (22)

Based on the DJM, we constructed the solution u(x, t) as:

u(x, t) =

n∑
k=0

uk(x, t) n ≥ 0. (23)

Therefore, according to Eq.(23), we get:

un(x, t) = cosx
(

(2t)− (2t)3

3!
+

(2t)5

5!
− (2t)7

7!
+ · · ·

)
This has the closed form

u(x, t) = cosx sin 2t. (24)

which is the exact solution of the problem and it is the same results obtained by VIM [3].

3.1.2. The inhomogeneous wave equation

We next consider the inhomogeneous nonlinear wave equation [3]:

utt = uxx + u+ u2 − xt− xt2, 0 < x < π, t > 0, (25)

with initial condition:

u(x, 0) = 0, ut(x, 0) = x, (26)

and the boundary conditions

u(0, t) = 0, u(π, t) = πt. (27)

According to the DJM, we achieve the following components:

u0(x, t) = xt, (28)

u1(x, t) = N(u0) = L−1tt ((u0)xx + (u0) + (u0)2 − xt− xt2) = 0, (29)

u2(x, t) = N(u1 + u0)−N(u0) = L−1tt ((u1 + u0)xx + (u1 + u0) + (u1 + u0)2 − xt− xt2)− u1 = 0, (30)

u3(x, t) = N(u2 + u1 + u0)−N(u1 + u0) = L−1tt ((u2 + u1 + u0)xx + (u2 + u1 + u0) + (u2 +

+u1 + u0)2 − xt− xt2)− L−1tt ((u1 + u0)xx + (u1 + u0) + (u1 + u0)2 − xt− xt2) = 0, (31)

and so on. In fact, we have un(x, t) = 0, for n ≥ 1.
Therefore, according to Eq.(23), we get:

u(x, t) = xt. (32)

which is the exact solution of the problem and it is the same results obtained by VIM [3].
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3.1.3. The wave-like equation

We now consider the wave-like equation [3]:

utt =
x2

2
uxx, 0 < x < 1, t > 0, (33)

with initial condition:

u(x, 0) = 0, ut(x, 0) = x2, (34)

and the boundary conditions

u(0, t) = 0, u(π, t) = sinh t. (35)

By applying the DJM, the following recurrence relation for the determination of the components un+1(x, t) are
obtained:

u0(x, t) = x2t, (36)

u1(x, t) = N(u0) = L−1tt (
x2

2
(u0)xx) = x2

t3

3!
, (37)

u2(x, t) = N(u1 + u0)−N(u0) = L−1tt (
x2

2
(u1 + u0)xx)− u1 = x2

t5

5!
, (38)

u3(x, t) = N(u2 + u1 + u0)−N(u1 + u0) = L−1tt (
x2

2
(u2 + u1 + u0)xx)− L−1tt (

x2

2
(u1 + u0)xx) = x2

t7

7!
, (39)

and so on.
Continuing in this manner, the (n + 1)th approximation of the exact solutions for the unknown functions u(x, t)
can be achieved as:

un+1 = N(u0 + · · ·+ un)−N(u0 + · · ·+ un−1) = L−1tt (
x2

2
(u0 + · · ·+ un)xx)−

−L−1tt (
x2

2
(u0 + · · ·+ un−1)xx), n = 1, 2, ... (40)

Therefore, according to Eq.(23), we get:

u(x, t) = x2
(
t+

t3

3!
+
t5

5!
+
t7

7!
+ · · ·

)
(41)

This has the closed form

u(x, t) = x2 sinh t. (42)

which is the exact solution of the problem and it is the same results obtained by VIM [3].
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3.1.4. The wave equation in unbounded domain

We consider the wave equation in an unbounded domain [3]:

utt = uxx, −∞ < x <∞, t > 0, (43)

with initial condition:

u(x, 0) = sinx, ut(x, 0) = 0, (44)

Proceeding as before, the recurrence relation

u0(x, t) = sinx, (45)

u1(x, t) = N(u0) = L−1tt ((u0)xx) = − t
2

2!
, (46)

u2(x, t) = N(u1 + u0)−N(u0) = L−1tt ((u1 + u0)xx)− u1 =
t4

4!
, (47)

u3(x, t) = N(u2 + u1 + u0)−N(u1 + u0) = L−1tt ((u2 + u1 + u0)xx)− L−1tt ((u1 + u0)xx) = − t
6

6!
, (48)

and so on.
Continuing in this manner, the (n + 1)th approximation of the exact solutions for the unknown functions u(x, t)
can be achieved as:

un+1 = N(u0 + · · ·+ un)−N(u0 + · · ·+ un−1) = L−1tt ((u0 + · · ·+ un)xx)−
−L−1tt ((u0 + · · ·+ un−1)xx), n = 1, 2, ... (49)

Therefore, according to Eq.(23), we get:

u(x, t) = sinx
(

1− t2

2!
+
t4

4!
− t6

6!
+ · · ·

)
(50)

This has the closed form

u(x, t) = sinx cos t. (51)

which is the exact solution of the problem and it is the same results obtained by VIM [3].

3.2. Diffusion equations

In this work we aim to investigate the following diffusion equations [2, 4, 5]:

ut = uxx + f(u), 0 < x < L, t > 0, (52)

ut = uxx + g(x, t), 0 < x < L, t > 0, (53)

ut = (D(u)ux)x, 0 < x < L, t > 0, (54)

The functions f(u) and g(x, t) are linear and source functions, respectively. D(u) is the diffusion term, which plays
an important role in wide range of applications in the diffusion processes. D(u) appears in several functional forms,
such as power law and exponential forms [2, 4, 5].
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3.2.1. The homogeneous linear diffusion equation

We first consider the homogeneous linear diffusion equation [4]

ut = uxx − u, 0 < x < π, t > 0, (55)

with initial condition:

u(x, 0) = sinx, , (56)

and the boundary conditions

u(0, t) = 0, u(π, t) = 0. (57)

The homogeneous equation (55) represents a heat equation with a lateral heat loss. This can be attributed to
the additional term −u(x, t) [4].
Eq.(55) can be written in an operator form as

L̃tu = uxx − u, (58)

where L̃t = ∂
∂t . Let us assume the the inverse operator L̃−1t exists and it can be take with respect t from 0 to t, i.e.

L̃−1t (.) =

t∫
0

(.)dt (59)

Then, by taking the inverse operator L̃−1t to both sides of the Eq.(55) and using the initial condition, leads to

u(x, t) = sinx+ L̃−1t (uxx − u). (60)

By using the DJM, we achieve the following components:

u0(x, t) = sinx, (61)

u1(x, t) = N(u0) = L̃−1t ((u0)xx − u0) = −2t sinx, (62)

u2(x, t) = N(u1 + u0)−N(u0) = L̃−1t ((u1 + u0)xx − (u1 + u0))− u1 = 2t2 sinx, (63)

u3(x, t) = N(u2 + u1 + u0)−N(u1 + u0) = L̃−1t ((u2 + u1 + u0)xx − (u2 + u1 + u0))−

−L̃−1t ((u1 + u0)xx − (u1 + u0)) = −4

3
t3 sinx, (64)

and so on. Therefore, according to Eq.(23), we get:

un(x, t) = sinx
(
− (2t) +

(2t)2

2!
− (2t)3

3!
+

(2t)4

4!
+ · · ·

)
This has the closed form

u(x, t) = sinxe−2t. (65)

which is the exact solution of the problem and it is the same results obtained by VIM [4].
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3.2.2. The inhomogeneous linear diffusion equation

We consider the inhomogeneous linear diffusion equation [4]

ut = uxx + cosx, 0 < x < π, t > 0, (66)

with initial condition:

u(x, 0) = 0, (67)

and the boundary conditions

u(0, t) = 1− e−t, u(π, t) = −1 + e−t. (68)

According to the DJM, we achieve the following components:

u0(x, t) = t cosx, (69)

u1(x, t) = N(u0) = L̃−1t ((u0)xx) = −1

2
t2 cosx, (70)

u2(x, t) = N(u1 + u0)−N(u0) = L̃−1t ((u1 + u0)xx)− u1 =
1

6
t3 cosx, (71)

u3(x, t) = N(u2 + u1 + u0)−N(u1 + u0) = L̃−1t ((u2 + u1 + u0)xx)− L−1tt ((u1 + u0)xx) =

= − 1

24
t4 cosx, (72)

and so on. Therefore, according to Eq.(23), we get:

un(x, t) = cosx
(
t− t2

2!
+
t3

3!
− t4

4!
+ · · ·

)
This has the closed form

u(x, t) = cosx(1− e−t). (73)

which is the exact solution of the problem and it is the same results obtained by VIM [4].

3.2.3. Fast diffusion processes

This process is described by a diffusion term of the form [2, 4, 5]:

D(u) = un, n < 0, (74)

For n = −0.5, Eq. (54) models the plasma diffusion and thermal expulsion of liquid helium [2, 4, 5]. For n = −1, Eq.
(54) appears in the thermal limit approximation of Carlemans model of the Boltzman equation and the expansion
into a vacuum of a thermalized electron cloud described by the isothermal Maxwellian distribution [2, 4, 5] and
references therein. For n = −2, Eq. (54) is considered as a model of diffusion in high-polymeric systems.
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First we consider a fast diffusion process when n = −1, Eq.(54) becomes [2, 5]:

ut = (u−1ux)x, (75)

subject to the initial condition of

u(x, 0) =
2c

(a+ x)2
, (76)

where a and c 6= 0 are arbitrary constants.
By using the DJM, we achieve the following components:

u0(x, t) =
2c

(a+ x)2
, (77)

u1(x, t) = N(u0) = L̃−1t (u−10 (u0)x)x =
2t

(a+ x)2
, (78)

u2(x, t) = N(u1 + u0)−N(u0) = L̃−1t ((u1 + u0)−1(u1 + u0)x)x − u1 = 0, (79)

and so on. In fact, we have un(x, t) = 0, for n ≥ 2.
Therefore, according to Eq.(23), we get:

u(x, t) =
2(c+ t)

(a+ x)2
. (80)

which is the exact solution of the problem and it is the same results obtained by ADM [2], VIM and HPM in [5].

3.2.4. Slow diffusion processes

We next consider a slow diffusion process when n = 1, Eq.(54) becomes [2, 5]:

ut = (uux)x, (81)

subject to the initial condition of

u(x, 0) =
1

c
x2 x > 0, (82)

where c > 0 is an arbitrary constant.
According to the DJM, we achieve the following components:

u0(x, t) =
1

c
x2, (83)

u1(x, t) = N(u0) = L̃−1t (u0(u0)x)x =
6

c2
tx2, (84)

u2(x, t) = N(u1 + u0)−N(u0) = L̃−1t ((u1 + u0)(u1 + u0)x)x − u1 =
36

c3
t2x2 +

72

c4
t3x2, (85)
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u3(x, t) = N(u2 + u1 + u0)−N(u1 + u0) = L̃−1t ((u2 + u1 + u0)(u2 + u1 + u0)x)x − L̃−1t ((u1 + u0)

(u1 + u0)x)x =
144

c4
t3x2 + · · ·, (86)

and so on. Therefore, according to Eq.(23), we get:

un(x, t) = x2
(1

c
+

6t

c2
+

36t2

c3
+

216t3

c4
+ · · ·

)
This has the closed form

u(x, t) =
x2

c− 6t
. (87)

which is the exact solution of the problem and it is the same results obtained by ADM [2], VIM and HPM in [5].

3.2.5. Other diffusion processes

Other cases of diffusion processes when D(u) = 1
1+u2 or D(u) = 1

u2−1 , Eq.(54) becomes [2, 5]:

ut = (
1

1 + u2
ux)x, (88)

subject to the initial condition of

u(x, 0) = tanx, x > 0. (89)

Proceeding as before, we achieve the following components:

u0(x, t) = tanx, (90)

u1(x, t) = N(u0) = L̃−1t ((
1

1 + u20
)(u0)x)x = 0, (91)

u2(x, t) = N(u1 + u0)−N(u0) = L̃−1t ((
1

1 + (u1 + u0)2
)(u1 + u0)x)x − u1 = 0, (92)

and so on. In fact, we have un(x, t) = 0, for n ≥ 1. Therefore, according to Eq.(23), we get:

u(x, t) = tanx. (93)

which is the exact solution of the problem and it is the same results obtained by ADM [2], VIM and HPM in [5].

When D(u) = 1
u2−1 , Eq.(54) becomes [2, 5]:

ut = (
1

u2 − 1
ux)x, (94)

subject to the initial condition of

u(x, 0) = − cothx, x > 0. (95)
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Proceeding as before, we achieve the following components:

u0(x, t) = − cothx, (96)

u1(x, t) = N(u0) = L̃−1t ((
1

u20 − 1
)(u0)x)x = 0, (97)

u2(x, t) = N(u1 + u0)−N(u0) = L̃−1t ((
1

(u1 + u0)2 − 1
)(u1 + u0)x)x − u1 = 0, (98)

and so on. In fact, we have un(x, t) = 0, for n ≥ 1. Therefore, according to Eq.(23), we get:

u(x, t) = − cothx. (99)

which is the exact solution of the problem and it is the same results obtained by ADM [2], VIM and HPM in [5].
It can also be clearly seen that the DJM is reliable and efficient for handling linear and nonlinear problems,

homogeneous or inhomogeneous, and in a bounded domain or unbounded domain, in a straightforward manner.
Unlike the Adomian decomposition method, where computational algorithms are normally used to deal with the
nonlinear terms. No needs to calculate Lagrange multiplier in VIM or construct a homotopy and solve the corre-
sponding algebraic equations in HPM. The DJM is used directly with no requirement or restrictive assumptions for
the nonlinear terms.

4. Conclusion

In this paper, the reliable iterative method namely (NIM or DJM) is implemented to obtain the exact solutions for
solving linear and nonlinear wave and diffusion equations using the initial condition only. The DJM is simple to
understand and easy to implement and does not require any restrictive assumptions as required by some existing
techniques. The obtained exact solution of applying the DJM is in full agreement with the results obtained with
those methods available in the literature such as Adomian decomposition method [2], variational iteration method
[3, 4, 5], homotopy analysis method [4] and homotopy perturbation method [5]. The method gives rapid convergent
and handles linear and nonlinear problems in a similar manner and can be easily comprehended with only a
basic knowledge of Calculus. It is economical in terms of computer power/memory and does not involve tedious
calculations. Moreover, by solving some examples, it is seems that the DJM appears to be very accurate to employ
with reliable results.
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