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Abstract
We consider the fractional cable equation. For solution of fractional Cable equation involving Caputo fractional
derivative, a new difference scheme is constructed based on Crank Nicholson difference scheme. We prove that the

proposed method is unconditionally stable by using spectral stability technique.
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1. Introduction

In this study, we consider the following time fractional cable equation;

ngfvt) :62753(52’” —pPu(z,t) + f(2,t),(0<z<1,0<t<1),
u(z,0) =r(z), 0 <z <1, (1)

w(0,8) =0, u(l,t)=0, 0<t<1.

Here, the term % denotes a-order Caputo derivative with the formula:

ou(x,t) 1 /tut(x,T)

n (t—m7)

d h 1 2
o Ti—a) T, where 0 < a < 1, (2)
0

where I'(.) is the Gamma function.

2. Discretization of Problem

We introduce the basic ideas for the numerical solution of the Time Fractional Cable equation by Crank-
Nicholson difference scheme.

For some positive integers M and N, the grid sizes in space and time for the finite difference algorithm are
defined by h = 1/M and 7 = 1/N, respectively. The grid points in the space interval [0,1] are the numbers
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xz; = jh, 7 =0,1,2,..., M, and the grid points in the time interval [0,1] are labeled ¢, = k7,k =0,1,2,..., N. The
values of the functions u and f at the grid points are denoted u;“ = u(z;,t;) and f;C = f(xj,tx), respectively. Let
w(x,t), us(z,t) and us(x,t) are continuous on [0, 1].

As in the classical Crank-Nicholson difference scheme, a discrete approximation to the fractional derivative

W at (x;,1;, 1) can be obtained by the following approximation[12]:

0%u(zj,ty41) = (Uk+1 - “]‘C)
g = win® + Y (W1 — Weem) U™ — wiu® + 0 ol—a : ®)
m=1
+O(T*7 ).

Where 0 = ﬁ% and w; = o ((j +1/2)'7* — (j — 1/2)'=*) In addition for k = 0 there is no these terms
wiuy and wiug. On the other hand, we have

2, (0 k+1 k1, kel k ko ok
Fulwj, tyy1) 1 luj_H =2ui HuiTy uiy - 2uf ful o), )

Ox? 2 h? h?

3. The Proposed Difference Scheme

Using these approximations (3) and (4) into (1), we obtain the following difference scheme for (1) which is
accurate of order O(72~% + h?);
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0<k<N-1,1<j<M-1,

UQ:’I’(IJ‘), ISJSMa
uggzo, uk, =0, 0<k<N.
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— flajte+ %), 0<k<N—-1,1<j<M-—1,

We can arrange the system above to obtain
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3.1. Spectral Stability of the Difference Method

The difference scheme above (5) can be written in matrix form:

T .
DUj+1 + EUJ + DUj—l = @5 where Y = [90939031790?77()0?[} a(p? = r(£j)7@§ = f(sztk-i-%)al S ) S M

k< N,and U; = [U9,U},U2,..,UN]".
Here D ) vina0d E(yi1)x(n+1)are the matrices of the form

1 1
1 1
1
D= (-——
(~5)
L 1 1_
_ ) _
b a
—w1 b+ wy a
E= —ws wWg — Wi b+ wy a
| "WN-1 WN-1— WN-2 wy—w1 b+wr a |
Whereazz%a—k%-i-”;,b:_y%_kﬁ_,_#;

Using the idea on the modified Gauss-Elimination method, we can convert into the following form:
Uj = wj+1Uj+1 + Nj+17j = M? () 27 ]-7 0.

Then, we write

D + Evjp1 + D41 =0,

Epjpq + Dyjuir + Duy = @j, where 1 < 5 < M.

So, we obtain the following pair of formulas:

’(/Jj+1 = — (E -+ Dl/)j)il D, /LjJrl = (E —+ DT,ZJj)il (QDJ — D‘LLJ) ; where ]. Sj § M
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We will prove that p (¢;) < 1,1 < j < M , by induction. Since 9, is a zero matrix p (¥1) = 0 < 1.Moreover,

7@EUlpUh)p(EUﬂ‘ .

~ — 2
21—a+h%+%
0
" 1/h?
- 2
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— * * o 1, p2
,l/)Q_ 2(21f04+h72+7)

o= ﬁ% > 0, therefore, p (1) < 1.

Now, assume p (1;) < 1. We find that
Vit = —(E+Dy;)"' D
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and we already know that Ej; = 5:%+ + 75 + “72 and v, = p () for 2<r <M +1:
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Since 0 < p (¢;) < 1, it follows that p (¢;41) < 1. So, p(¥;) < 1 for any j, where 1 < j < M.

3.2. Numerical Example
Consider this problem,

0%u(t,x) _ 2=~

) = D80 oyt z) + 25— (1~ 2) sin(z) + 26 [eos(x) + (1 — ) sin(x))]

0<zx<l,0<t<],
u(0,2) =0,0< 2 <1,
u(t,0) =0, u(t,1)=0, 0<¢t<1.

Exact solution of this problem is u(t,x) = t?(1 — z) sin(x). The errors for some M and N are given in figure 1. The

errors when solving this problem are listed in the tablel for various values of time and space nodes.

Table 1: The errors for some values of M, N and «

a=0.3 a=0.5 a=0.28
N M Error(a,7) FErr. rate Error(a,7) FErr. rate Error(a,7) Err. rate
8 32 0.001811212 - 0.001688126 - 0.001265365 -
16 32 0.000449950 4.02 0.000409875 4.1 0.000301407 4.1
32 32 0.000111687 4.02 0.000099150 4.1 0.000086960  3.46
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Figure 1: The errors when t=1 for some M and N

Conclusion

In this work, O(72=% + h?) order approximation for the Caputo fractional derivative based on the Crank-

Nicholson difference scheme was successfully applied to solve the time-fractional cable equation. It is proven that
the time-fractional Crank-Nicholson difference scheme is unconditionally stable by spectral stability analysis.
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