Right Circulant Matrices With Geometric Progression

Aldous Cesar F. Bueno
Department of Mathematics and Physics, Central Luzon State Univeristy
Science City of Muñoz 3120, Nueva Ecija, Philippines
E-mail: aldouz_cezar@yahoo.com

Abstract

In this paper, the right circulant matrix $\operatorname{RCIRC}_{n}(\vec{g}) \in M_{n x n}(\mathbb{R})$ with circulant vector $\vec{g}=\left(a, a r, a r^{2}, \ldots, a r^{n-1}\right)$, where $a \neq 0$ and $r \neq 0,1$, was investigated and its inverse $\operatorname{RCIRC}_{n}{ }^{-1}(g)$ was obtained. The eigenvalues, determinant, Euclidean norm, and spectral norm of both $\operatorname{RCIRC} C_{n}(\vec{g})$ and $\operatorname{RCIRC}_{n}{ }^{-1}(\vec{g})$ were determined. Some examples were provided to illustrate the obtained results.

Keywords: Determinant, Eigenvalue, Euclidean norm, Right circulant matrix with geometric progression, Spectral norm

1 Introduction

A matrix $C \in M_{n x n}(\mathbb{R})$ is said to be a right circulant matrix if it is of the form

$$
C=\left(\begin{array}{cccccc}
c_{0} & c_{1} & c_{2} & & c_{n-2} & c_{n-1} \\
c_{n-1} & c_{0} & c_{1} & \ldots & c_{n-3} & c_{n-2} \\
c_{2} & \vdots & c_{3} & c_{4} & \ddots & \\
c_{1} & c_{2} & c_{3} & \cdots & c_{0} & c_{1} \\
c_{n-1} & c_{0}
\end{array}\right)
$$

The matrix C has the following structure:

1. Each row is a right cyclic shift of the row above it. Thus, C is determined by the first row

$$
\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n-1}\right)
$$

2. $c_{k}=c_{i, j}$ whenever $\mathrm{i}-\mathrm{j}=\mathrm{k}(\bmod \mathrm{n})$

Definition 1.1

1. Let $\vec{c}=\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n-1}\right)$ then the right circulant matrix $C \in$ $M_{n x n}(\mathbb{R})$ is denoted by $\operatorname{RCIRC}_{\boldsymbol{n}}(\overrightarrow{\boldsymbol{c}})$
2. The vector $\overrightarrow{\boldsymbol{c}}=\left(\boldsymbol{c}_{\mathbf{0}}, \boldsymbol{c}_{1}, \boldsymbol{c}_{\mathbf{2}}, \ldots, \boldsymbol{c}_{\boldsymbol{n}-\mathbf{1}}\right)$ is called the circulant vector
3. $\operatorname{RCIRC}_{\boldsymbol{n}}(\mathbb{R})=\left\{\boldsymbol{R C I R C}_{\boldsymbol{n}}(\overrightarrow{\boldsymbol{c}}) \mid \overrightarrow{\boldsymbol{c}} \in \mathbb{R}^{\boldsymbol{n}}\right\}$

Properties of RCIRC $_{\boldsymbol{n}}(\overrightarrow{\boldsymbol{c}})$

1. The eigenvalues of $\boldsymbol{\operatorname { C I R C }} \boldsymbol{n}(\overrightarrow{\boldsymbol{c}})$ are just the Discrete Fourier Transform of the circulant vector \vec{c}. That is

$$
\lambda_{m}=\sum_{k=0}^{n-1} c_{k} \omega^{-m k}
$$

where $\omega=e^{2 \pi i / n}$ and $\mathrm{m}=0,1, \ldots, \mathrm{n}-1$
2. The eigenvectors of $\boldsymbol{\operatorname { R C I R C }} \boldsymbol{n} \boldsymbol{(} \boldsymbol{\boldsymbol { c }})$ are the columns of the Fourier matrix F. That is

$$
v_{m}=\frac{1}{\sqrt{n}}\left(1, \omega^{m}, \omega^{2 m}, \ldots, \omega^{(n-1) m}\right)
$$

3. The Fourier matrix F is a simultaneous, unitary, diagonalizing matrix for $\operatorname{RCIRC}_{n}(\vec{c})$. That is, for any $\operatorname{RCIRC}_{n}(\vec{c})$

$$
\operatorname{RCIRC}_{n}(\vec{c})=F \mathrm{DF}^{-1}
$$

where $\mathrm{D}=\operatorname{diag}\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{\mathrm{n}-1}\right)$ and $F F^{*}=I$.
4. The determinant of $\operatorname{RCIRC}_{n}(\vec{c})$ denoted by $\left|R \operatorname{CIR} C_{n}(\vec{c})\right|$ is given by

$$
\left|\operatorname{RCIRC}_{n}(\vec{c})\right|=\prod_{m=0}^{n-1} \lambda_{m}=\prod_{m=0}^{n-1}\left(\sum_{k=0}^{n-1} c_{k} \omega^{-m k}\right)
$$

where $\omega=e^{2 \pi i / n}$ and $\mathrm{m}=0,1, \ldots, \mathrm{n}-1$

Inversion of $\boldsymbol{R C I R C}_{\boldsymbol{n}}(\overrightarrow{\boldsymbol{c}})$

From the circulant vector we can obtain the eigenvalues of $\operatorname{RCIRC} C_{n}(\vec{c})$ through Discrete Fourier Transform (DFT). Furthermore, through the Inverse Discrete Fourier Transform (IDFT) of the eigenvalues of $\operatorname{RCIRC} C_{n}(\vec{c})$ the circulant vector can be obtained and hence $\operatorname{RCIRC}_{n}(\vec{c})$ itself.
Note that if $\lambda \neq 0$ is an eigenvalue of an invertible matrix A, then λ^{-1} is also an eigenavlue of the matrix A^{-1}. With the help of this concept we can derive the matrix $\operatorname{RCIRC}_{n}{ }^{-1}(\vec{c})$, the inverse of $\operatorname{RCIRC}_{n}(\vec{c})$.
The flowchart of finding $\operatorname{RCIRC} C_{n}{ }^{-1}(c)$ is as given below.

RCIRC ${ }_{n}(\mathrm{c})$ Apply DFT to the circulant vector Eigenvalues Find the reciprocal of the eigenvalues (all must be non-zero) Inverse of eigenvalues Apply IDFT RCIRC $_{\mathrm{n}}{ }^{-1}(\mathrm{c})$

Given $\operatorname{RCIRC}_{n}(\vec{c})$ with eigenvalues $\lambda_{m}=\sum_{k=0}^{n-1} c_{k} \omega^{-m k} \neq 0$ where $\mathrm{m}=0,1, \ldots$, $\mathrm{n}-1$, then $\operatorname{RCIRC}_{n}{ }^{-1}(\vec{c})$ is given by

$$
\operatorname{RCIRC}_{n}^{-1}(\vec{c})=\left(\begin{array}{cccccc}
\mathcal{C}_{0} & \mathcal{C}_{1} & \mathcal{C}_{2} & \ldots & \mathcal{C}_{n-2} & \mathcal{C}_{n-1} \\
\mathcal{C}_{n-1} & \mathcal{C}_{0} & \mathcal{C}_{1} & & \mathcal{C}_{n-3} & \mathcal{C}_{n-2} \\
& \vdots & & \ddots & & \vdots \\
\mathcal{C}_{2} & \mathcal{C}_{3} & \mathcal{C}_{4} & \ldots & \mathcal{C}_{0} & \mathcal{C}_{1} \\
\mathcal{C}_{1} & \mathcal{C}_{2} & \mathcal{C}_{3} & & \mathcal{C}_{n-1} & \mathcal{C}_{0}
\end{array}\right)
$$

where $\mathcal{C}_{k}=\frac{1}{n} \sum_{m=0}^{n-1} \lambda_{m}{ }^{-1} \omega^{m k}$ and $\left(\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots, \mathcal{C}_{n-1}\right)$ is the circulant vector.
As an example, consider the matrix

$$
\left(\begin{array}{llll}
1 & 2 & 4 & 8 \\
8 & 1 & 2 & 4 \\
4 & 8 & 1 & 2 \\
2 & 4 & 8 & 1
\end{array}\right)
$$

Its eigenvalues are $\lambda_{0}=15, \lambda_{1}=-3+6 i, \lambda_{2}=-3-6 i, \lambda_{3}=-5$ with inverses $\frac{1}{15}, \frac{-1}{15} \pm \frac{2}{15} i, \frac{-1}{2}$ respectively. Performing the IDFT to each we will obtain the following: $\mathcal{C}_{0}=-\frac{1}{15}, \mathcal{C}_{1}=\frac{2}{15}, \mathcal{C}_{2}=\mathcal{C}_{3}=0$.

Thus the inverse is given by $\left(\begin{array}{cccc}-\frac{1}{15} & \frac{2}{15} & 0 & 0 \\ 0 & -\frac{1}{15} & \frac{2}{15} & 0 \\ 0 & 0 & -\frac{1}{15} & \frac{2}{15} \\ \frac{2}{15} & 0 & 0 & -\frac{1}{15}\end{array}\right)$.
Furthermore

$$
\left(\begin{array}{llll}
1 & 2 & 4 & 8 \\
8 & 1 & 2 & 4 \\
4 & 8 & 1 & 2 \\
2 & 4 & 8 & 1
\end{array}\right)\left(\begin{array}{cccc}
-\frac{1}{15} & \frac{2}{15} & 0 & 0 \\
0 & -\frac{1}{15} & \frac{2}{15} & 0 \\
0 & 0 & -\frac{1}{15} & \frac{2}{15} \\
\frac{2}{15} & 0 & 0 & -\frac{1}{15}
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

2 The Right Circulant Matrix $\operatorname{RCIRC}_{\mathrm{n}}(\overrightarrow{\mathbf{g}})$

Let $\vec{g}=\left(a \operatorname{ar} \ldots a r^{n-1}\right)$ be the circulant vector of a right circulant matrix where $a \neq 0, r \neq 0,1$. Then the right circulant matrix with geometric progression denoted by $\operatorname{RCIRC}_{n}(\vec{g})$ is the matrix of the form

$$
\boldsymbol{\operatorname { C I F P C }}_{\boldsymbol{n}}(\overrightarrow{\boldsymbol{g}})=\left(\begin{array}{cccccc}
a & a r & a r^{2} & \ldots & a r^{n-2} & a r^{n-1} \\
a r^{n-1} & a & a r & \ldots & a r^{n-3} & a r^{n-2} \\
& \vdots & & \ddots & \vdots & \vdots r \\
a r^{2} & a r^{3} & a r^{4} & \ldots & a & a r \\
a r & a r^{2} & a r^{3} & & a r^{n-1} & a
\end{array}\right)
$$

Now, for the rest of the paper the following notations will be used:
$\overrightarrow{\boldsymbol{g}}=\left(a \operatorname{ar} \ldots a r^{n-1}\right)$: circulant vector with geometric sequence whose first term is $\mathrm{a} \neq 0$ and whose common ratio is $\mathrm{r} \neq 0,1$
$\boldsymbol{R C I R C}_{\boldsymbol{n}}(\overrightarrow{\boldsymbol{g}})$: right cicrulant matrix with geometric sequence with dimension nxn $\left|\boldsymbol{R C I R C}_{\boldsymbol{n}}(\overrightarrow{\boldsymbol{g}})\right|$: determinant of $\operatorname{RCIRC}_{n}(\vec{g})$
$\left\|\boldsymbol{R C I R C}_{\boldsymbol{n}}(\overrightarrow{\boldsymbol{g}})\right\|_{\boldsymbol{E}}$: Euclidean norm of $\operatorname{RCIRC}_{n}(\vec{g})$
$\left\|\boldsymbol{R C I R C}_{\boldsymbol{n}}(\overrightarrow{\boldsymbol{g}})\right\|_{2}$: Spectral norm of $\operatorname{RCIRC}_{n}(\vec{g})$
$\boldsymbol{R C I R C}_{\boldsymbol{n}}{ }^{-\mathbf{1}}(\overrightarrow{\boldsymbol{g}})$: inverse of $\operatorname{RCIRC}_{n}(\vec{g})$

3 Main Results

Theorem 3.1

$$
\left|\operatorname{RCIRC}_{n}(\stackrel{\rightharpoonup}{g})\right|=a^{n}\left(1-r^{n}\right)^{n-1}
$$

Proof:

$$
\begin{aligned}
\boldsymbol{\operatorname { C I I R C }}_{\boldsymbol{n}}(\overrightarrow{\boldsymbol{g}}) & =\left(\begin{array}{cccccc}
a & a r & a r^{2} & \ldots & a r^{n-2} & a r^{n-1} \\
a r^{n-1} & a & a r & & a r^{n-3} & a r^{n-2} \\
& \vdots & & \ddots & \vdots & a r \\
a r^{2} & a r^{3} & a r^{4} & \ldots & a & a r \\
a r & a r^{2} & a r^{3} & \ldots & a r^{n-1} & a
\end{array}\right) \\
& =a\left(\begin{array}{ccccccc}
1 & r & r^{2} & & r^{n-2} & r^{n-1} \\
r^{n-1} & 1 & r & \cdots & r^{n-3} & r^{n-2} \\
& \vdots & & \ddots & \vdots & \\
r^{2} & r^{3} & r^{4} & \ldots & 1 & r \\
r & r^{2} & r^{3} & \cdots & r^{n-1} & 1
\end{array}\right)
\end{aligned}
$$

Now let $K=\left(\begin{array}{cccccc}1 & r & r^{2} & \ldots & r^{n-2} & r^{n-1} \\ r^{n-1} & 1 & r & & r^{n-3} & r^{n-2} \\ & \vdots & & \ddots & \vdots & \\ r^{2} & r^{3} & r^{4} & \ldots & 1 & r \\ r & r^{2} & r^{3} & & r^{n-1} & 1\end{array}\right)$
Note that $|\mathrm{cA}|=c^{n}|\mathrm{~A}|$ so $|\boldsymbol{R C I R C}(\overrightarrow{\boldsymbol{n}})|=a^{n}|K|$
$K=\left(\begin{array}{cccccc}1 & r & r^{2} & \ldots & r^{n-2} & r^{n-1} \\ r^{n-1} & 1 & r & & r^{n-3} & r^{n-2} \\ & \vdots & & \ddots & & \vdots \\ r^{2} & r^{3} & r^{4} & \cdots & 1 & r \\ r & r^{2} & r^{3} & & r^{n-1} & 1\end{array}\right)$
$\sim\left(\begin{array}{cccccc}1 & r & r^{2} & & r^{n-2} & r^{n-1} \\ 0 & -\left(r^{n}-1\right) & -r\left(r^{n}-1\right) & \cdots & -r^{n-3}\left(r^{n}-1\right) & -r^{n-2}\left(r^{n}-1\right) \\ & \vdots & & \ddots & & \vdots \\ & 0 & 0 & 0 & \cdots & -\left(r^{n}-1\right) \\ & 0 & 0 & 0 & & 0\end{array}\right)$
by applying the row operation $-r^{n-k} R_{1}+R_{k+1} \rightarrow R_{k+1}$ where $\mathrm{k}=1,2,3, \ldots, \mathrm{n}-1$
From the equivalent lower diagonal matrix we get $|\mathrm{K}|=\left(1-r^{n}\right)^{n-1}$.
Thus $\left|\boldsymbol{R C I R C}_{\boldsymbol{n}}(\overrightarrow{\boldsymbol{g}})\right|=a^{n}\left(1-r^{n}\right)^{n-1}$

Theorem 3.2

The eigenvalues of $\operatorname{RCIRC}_{n}(\vec{g})$ are $\lambda_{0}=S_{n}$ and $\lambda_{m}=\frac{a\left(r^{n}-1\right)}{r e^{-2 \pi i m / n-1}}$ where $\mathrm{m}=1,2, . ., \mathrm{n}-1$

Proof:

Note that $\lambda_{m}=\sum_{k=0}^{n-1} c_{k} e^{-2 \pi i m k / n}$
For $\mathrm{m}=0$, we have

$$
\lambda_{0}=\sum_{k=0}^{n-1} c_{k}=\sum_{k=0}^{n-1} a r^{k}=\frac{a\left(r^{n}-1\right)}{r-1}=S_{n}
$$

For $m \neq 0$, we have

$$
\begin{aligned}
& \lambda_{m}=\sum_{k=0}^{n-1} c_{k} e^{-2 \pi i m k / n} \\
&=\sum_{k=0}^{n-1} a r^{k} e^{-\frac{2 \pi i m k}{n}}=a \sum_{k=0}^{n-1} r^{k} e^{-2 \pi i m k / n}=\frac{a\left(r^{n} e^{-2 \pi i m}-1\right)}{r e^{-2 \pi i m / n}-1} \\
&=\frac{a\left(r^{n}-1\right)}{r e^{-2 \pi i m / n}-1}
\end{aligned}
$$

Theorem 3.3

$$
\left\|\boldsymbol{R C I R C}_{\boldsymbol{n}}(\overrightarrow{\boldsymbol{g}})\right\|_{\boldsymbol{E}}=|a| \sqrt{\frac{n\left(1-r^{2 n}\right)}{1-r^{2}}}
$$

Proof:

$$
\begin{aligned}
\left\|\boldsymbol{R C I R C}_{\boldsymbol{n}}(\overrightarrow{\boldsymbol{g}})\right\|_{E} & =\sqrt{\sum_{i, j=0}^{n-1} a_{i j}^{2}}=\sqrt{\sum_{k=0}^{n-1} n\left(a r^{k}\right)^{2}}=\sqrt{a^{2} n \sum_{k=0}^{n-1} r^{2 k}} \\
& =|a| \sqrt{\frac{n\left(1-r^{2 n}\right)}{1-r^{2}}}
\end{aligned}
$$

Theorem 3.4

$$
\left\|\boldsymbol{R C I R C}_{\boldsymbol{n}}(\overrightarrow{\boldsymbol{g}})\right\|_{2}=\max \left\{\left|S_{n}\right|, \frac{\left|a\left(r^{n}-1\right)\right|}{\sqrt{r^{2}-2 r \cos \frac{2 \pi m}{n}+1}}\right\}
$$

Proof:

For $m=0,\left|\lambda_{0}\right|=\left|S_{n}\right|$
For $\mathrm{m} \neq 0$, we have

$$
\begin{gathered}
\left|\lambda_{m}\right|=\left|\frac{a\left(r^{n}-1\right)}{r e^{\frac{2 \pi i m}{n}}-1}\right|=\frac{\left|a\left(r^{n}-1\right)\right|}{\left|r\left(\cos \frac{2 \pi i m}{n}+i \sin \frac{2 \pi i m}{n}\right)-1\right|} \\
=\frac{\left|a\left(r^{n}-1\right)\right|}{\sqrt{\left(r \cos \frac{2 \pi i m}{n}-1\right)^{2}+r^{2} \sin ^{2} \frac{2 \pi i m}{n}}} \\
=\frac{\left|a\left(r^{n}-1\right)\right|}{\sqrt{r^{2}-2 r \cos \frac{2 \pi m}{n}+1}}
\end{gathered}
$$

Corollary 3.5

$$
\left|\operatorname{RCIRC}_{\boldsymbol{n}}{ }^{-1}(\overrightarrow{\boldsymbol{g}})\right|=\frac{1}{a^{n}\left(1-r^{n}\right)^{n-1}}
$$

Corollary 3.6

The eigenvalues of $\boldsymbol{\operatorname { R C I R C }}{ }_{\boldsymbol{n}}{ }^{\mathbf{1}}(\overrightarrow{\boldsymbol{g}})$ are $\lambda_{0}{ }^{-1}=\frac{1}{s_{n}}$ and $\lambda_{m}{ }^{-1}=\frac{r e^{-2 \pi i m / n}-1}{a\left(r^{n}-1\right)}$ where $\mathrm{m}=1,2, \ldots, \mathrm{n}-1$

Corollary 3.7

$$
\left\|\operatorname{RCIRC}_{\boldsymbol{n}}{ }^{-1}(\stackrel{\rightharpoonup}{\boldsymbol{g}})\right\|_{E} \geq \frac{1}{|a| \sqrt{\frac{n\left(1-r^{2 n}\right)}{1-r^{2}}}}
$$

Theorem 3.8

For $\mathrm{n} \geq 3$,

$$
\begin{aligned}
\boldsymbol{\operatorname { C I R C }}_{\boldsymbol{n}}{ }^{\mathbf{- 1}}(\stackrel{\rightharpoonup}{\boldsymbol{g}}) & =\left(\begin{array}{cccccc}
\mathcal{C}_{0} & \mathcal{C}_{1} & 0 & & 0 & 0 \\
0 & \mathcal{C}_{0} & \mathcal{C}_{1} & \ldots & 0 & 0 \\
& \vdots & & \ddots & & \vdots \\
0 & 0 & 0 & \ldots & \mathcal{C}_{0} & \mathcal{C}_{1} \\
\mathcal{C}_{1} & 0 & 0 & \cdots & 0 & \mathcal{C}_{0}
\end{array}\right) \\
& =\frac{1}{a\left(r^{n}-1\right)}\left(\begin{array}{ccccccc}
-1 & r & 0 & \ldots & 0 & 0 \\
0 & -1 & r & 0 & 0 \\
0 & \vdots & 0 & \ddots & & \vdots \\
r & 0 & 0 & \cdots & -1 & r \\
r & 0 & & & -1
\end{array}\right)
\end{aligned}
$$

where $\mathcal{C}_{0}=\frac{-1}{a\left(r^{n}-1\right)}$ and $\mathcal{C}_{1}=\frac{r}{a\left(r^{n}-1\right)}$

Proof:

Note that the first row entries of a circulant matrix which determines the matrix is just the Inverse Discrete Fourier Transform (IDFT) of its eigenvalues. From Corollary 3.6, the eigenvalues of $\boldsymbol{\operatorname { R C I R C }} \boldsymbol{n}^{-\mathbf{1}}(\overrightarrow{\boldsymbol{g}})$ are $\lambda_{0}{ }^{-1}=\frac{1}{s_{n}}$ and $\lambda_{m}{ }^{-1}=$ $\frac{r e^{-2 \pi i m / n}-1}{a\left(r^{n}-1\right)}$ where $\mathrm{m}=1,2, \ldots, \mathrm{n}-1$. By performing IDFT to them, we will get the entries of $\boldsymbol{R C I R C} \boldsymbol{n}^{-\mathbf{1}}(\overrightarrow{\boldsymbol{g}})$.

$$
\mathcal{C}_{k}=\frac{1}{n} \sum_{m=0}^{n-1} \frac{r \theta^{-m}-1}{a\left(r^{n}-1\right)} \theta^{k m} \text { where } \theta=e^{\frac{2 \pi i}{n}}
$$

For $\mathrm{k}=0$

$$
\begin{aligned}
& \mathcal{C}_{0}=\frac{1}{n} \sum_{m=0}^{n-1} \frac{r \theta^{-m}-1}{a\left(r^{n}-1\right)}=\frac{1}{n a\left(r^{n}-1\right)} \sum_{m=0}^{n-1}\left(r \theta^{-m}-1\right) \\
&=\frac{1}{n a\left(r^{n}-1\right)}\left[\frac{r\left(1-\theta^{n}\right)}{1-\theta}-n\right]=\frac{-1}{a\left(r^{n}-1\right)}
\end{aligned}
$$

For k=1

$$
\begin{aligned}
& \mathcal{C}_{1}=\frac{1}{n} \sum_{m=0}^{n-1} \frac{r \theta^{-m}-1}{a\left(r^{n}-1\right)} \theta^{m} \\
& \quad=\frac{1}{n a\left(r^{n}-1\right)} \sum_{m=0}^{n-1}\left(r-\theta^{m}\right)=\frac{1}{n a\left(r^{n}-1\right)}\left(r n-\frac{1-\theta^{n}}{1-\theta}\right) \\
& \quad=\frac{r}{a\left(r^{n}-1\right)}
\end{aligned}
$$

For $\mathrm{k}=2,3, \ldots, \mathrm{n}-1$

$$
\begin{aligned}
& \mathcal{C}_{k}=\frac{1}{n} \sum_{m=0}^{n-1} \frac{r \theta^{-m}-1}{a\left(r^{n}-1\right)} \theta^{k m} \\
&=\frac{1}{n a\left(r^{n}-1\right)} \sum_{m=0}^{n-1}\left(r \theta^{m(k-1)}-\theta^{k m}\right) \\
&=\frac{1}{n a\left(r^{n}-1\right)}\left[\frac{r\left(1-\theta^{(k-1) n}\right)}{1-\theta^{k-1}}-\frac{1-\theta^{k n}}{1-\theta^{k}}\right]=0
\end{aligned}
$$

which is as desired.

Remarks: For n=1, 2
(a) has inverse $(1 / a)$
$\left(\begin{array}{cc}a & a r \\ a r & a\end{array}\right)$ has inverse $\frac{-1}{a^{2}\left(r^{2}-1\right)}\left(\begin{array}{cc}-1 & r \\ r & -1\end{array}\right)$

Theorem 3.9

$$
\left\|\boldsymbol{R C I R C}_{\boldsymbol{n}}{ }^{-\mathbf{1}}(\overrightarrow{\boldsymbol{g}})\right\|_{E}=\frac{\sqrt{n\left(r^{2}+1\right)}}{\left|a\left(r^{n}-1\right)\right|}
$$

Proof:

$$
\begin{aligned}
\| \boldsymbol{R C I R C}_{\boldsymbol{n}} & \mathbf{- 1}(\overrightarrow{\boldsymbol{g}}) \|_{\boldsymbol{E}}
\end{aligned}=\sqrt{\sum_{k=0}^{n-1} n \mathcal{C}_{k}^{2}}=\sqrt{n\left(\frac{-1}{a\left(r^{n}-1\right)}\right)^{2}+n\left(\frac{r}{a\left(r^{n}-1\right)}\right)^{2}}
$$

Corollary $\mathbf{3 . 1 0}$

$$
\left\|\boldsymbol{R C I R C}_{\boldsymbol{n}}{ }^{-\mathbf{1}}(\overrightarrow{\boldsymbol{g}})\right\|_{2}=\max \left\{\frac{1}{\left|S_{n}\right|}, \frac{\sqrt{r^{2}-2 r \cos \frac{2 \pi m}{n}+1}}{\left|a\left(r^{n}-1\right)\right|}\right\}
$$

4 Examples

Consider the right circulant matrix with the circulant vector $\vec{g}=(4,12,36,108)$
Hence $\operatorname{RCIRC}_{4}(\vec{g})=\left(\begin{array}{cccc}4 & 12 & 36 & 108 \\ 108 & 4 & 12 & 36 \\ 36 & 108 & 4 & 12 \\ 12 & 36 & 108 & 4\end{array}\right)=4\left(\begin{array}{cccc}1 & 3 & 9 & 27 \\ 27 & 1 & 3 & 9 \\ 9 & 27 & 1 & 3 \\ 3 & 9 & 27 & 1\end{array}\right)$

$$
\left|\boldsymbol{R C I R C}_{4}(\overrightarrow{\boldsymbol{g}})\right|=4^{4}\left(1-4^{4}\right)^{3}=-4244832000
$$

Eigenvalues of $\boldsymbol{R C I R C}_{4}(\overrightarrow{\boldsymbol{g}})$:

$$
\begin{gathered}
\lambda_{0}=160 \\
\lambda_{1}=-32+96 i \\
\lambda_{2}=-32-96 i \\
\lambda_{3}=-80
\end{gathered}
$$

$$
\begin{gathered}
\left\|\boldsymbol{R C I R C}_{4}(\overrightarrow{\boldsymbol{g}})\right\|_{E}=|4| \sqrt{\frac{4\left(1-3^{8}\right)}{1-3^{2}}}=4 \sqrt{\frac{4(-6560)}{-8}}=8 \sqrt{820}=16 \sqrt{205} \\
\left\|\boldsymbol{R C I I R C}_{4}(\overrightarrow{\boldsymbol{g}})\right\|_{2}=\max \left\{\lambda_{m}\right\}=\lambda_{0}=160
\end{gathered}
$$

$$
\boldsymbol{R C I R C}_{4}{ }^{-\mathbf{1}}(\stackrel{\rightharpoonup}{\boldsymbol{g}})=\frac{1}{4\left(3^{4}-1\right)}\left(\begin{array}{cccc}
-1 & 3 & 0 & 0 \\
0 & -1 & 3 & 0 \\
0 & 0 & -1 & 3 \\
3 & 0 & 0 & -1
\end{array}\right)
$$

$$
=\left(\begin{array}{cccc}
\frac{-1}{320} & \frac{3}{320} & 0 & 0 \\
0 & \frac{-1}{320} & \frac{3}{320} & 0 \\
0 & 0 & \frac{-1}{320} & \frac{3}{320} \\
\frac{3}{320} & 0 & 0 & \frac{-1}{320}
\end{array}\right)
$$

$$
\left|\operatorname{RCIRC}_{4}^{-\mathbf{1}}(\vec{g})\right|=\frac{-1}{4244832000}
$$

Eigenvalues of $\mathrm{RCIRC}_{4}{ }^{-1}(\overrightarrow{\boldsymbol{g}})$

$$
\begin{gathered}
\lambda_{0}^{-1}=\frac{1}{160} \\
\lambda_{1}^{-1}=\frac{1}{-32+96 i}=\frac{-32}{10240}+\frac{96}{10240} i=\frac{-1}{320}+\frac{3}{320} i \\
\lambda_{2}^{-1}=\frac{1}{-32-96 i}=\frac{-32}{10240}-\frac{96}{10240} i=\frac{-1}{320}-\frac{3}{320} i \\
\lambda_{3}^{-1}=-\frac{1}{80} \\
\left\|\boldsymbol{R C I R C}_{4}^{-1}(\overrightarrow{\boldsymbol{g}})\right\|_{E}=\frac{\sqrt{4\left(3^{2}+1\right)}}{\left|4\left(3^{4}-1\right)\right|}=\frac{\sqrt{10}}{160} \\
\left\|\boldsymbol{R C I R C}_{4}^{-1}(\overrightarrow{\boldsymbol{g}})\right\|_{2}=\max \left\{\left|\lambda_{m}^{-1}\right|\right\}=\left|\lambda_{m}^{-1}\right|=\frac{1}{80}
\end{gathered}
$$

References

[1] M. Bahsi and S. Solak, "On the Circulant Matrices with Arithmetic Sequence", International Journal of Contemporary Matematical. Sciences, Vol. 5, 2010, no. 25, 1213 - 1222.
[2] R. M. Gray," Toeplitz and Circulant Matrices: A Review,' Technical Report, Stanford University, USA.

