
International Journal of Applied Mathematical Research, 3 (4) (2014) 572-578
c©Science Publishing Corporation
www.sciencepubco.com/index.php/IJAMR
doi: 10.14419/ijamr.v3i4.3743
Research Paper

Numerical solution of Schrodinger equation

using compact finite differences method

and the cubic spline functions
Behnam Sepehrian 1,∗, Marzieh Karimi Radpoor 2,3

1Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
2Young Researchers Club, Hamedan Branch, Iran

3 Islamic Azad University, Hamedan, Iran
*Corresponding author E-mail: b-sepehrian@araku.ac.ir

Copyright c©2014 Sepehrian and Radpoor. This is an open access article distributed under the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

Abstract

In this paper, a high-order method for solving the Schrodinger equation is introduced. We apply a compact finite
difference approximation for discretizing spatial derivatives and we use the C1-cubic spline collocation method for
the time integration of the resulting linear system of ordinary differential equations. The proposed method has
fourth-order accuracy in both space and time variables. We can obtain both pointwise approximations at the all
mesh points and, a cubic spline solution in each space step by the method. Numerical results show that the method
is an efficient technique for solving the one-dimensional Schrodinger equation.
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1. Introduction

Consider the Schrodinger equation

−i
∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + w(x)u(x, t), (x, t) ∈ [a, b]× [0, T ], (1)

with initial condition

u(x, 0) = ϕ(x),

and the boundary conditions

u(a, t) = ψ1(t), u(b, t) = ψ2(t), t ≥ 0. (2)

In Eq. (1), u(x, t) is the wave function in continuous domain and w(x) is an arbitrary potential function and
i =

√−1. The Schrodinger equation (1) is a fundamental equation of physics for describing quantum mechanical
behavior. It is often called the Schrodinger wave equation, and is a partial differential equation that describes how
the wave function of a physical system evolves over time. According to Dehghan and Shokri [4] this equation appears
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in electromagnetic wave propagations, in underwater acoustics (paraxial approximation of the wave equations) or
also in optic [9] and design of certain optoelectronic devices [5] as it models an electromagnetic wave equation
in a two-dimensional weakly guiding structure. It has also found its application in various quantum dynamics
calculations [5,6]. For these reasons, the construction of efficient numerical schemes for solving Scrodinger equation
represents an important task.

This equation is of interest from the numerical point of view, because in general, analytical solutions are not
available. Dehghan and Shokri developed a numerical scheme for two-dimensional Schrodinger equation using
collocation and radial basis functions [4]. A compact finite difference method was used for solving two-dimensional
Schrodinger equation using boundary value method by Mohebbi and Dehghan [11], which has fourth-order accurate
in both time and space variables. However their method only gives pointwise approximations. Meshless local
boundary integral equation method was developed in [3]. Finite difference schemes based on the second order
discretization of spatial derivatives and first or second order discretization of time derivatives have been investigated
in [2,16]. Abdur et al. in [1] proposed a Chebyshev spectral collocation method for two-dimensional Schrodinger
equation. Kalita et al. in [7] introduced an implicit semi-discrete higher order compact scheme with an averaged
time discretization for Schrodinger equation which is second-order accurate in time and fourth-order accurate in
space.

Recently, because of their high accuracy, compactness and high resolution, the high-order compact difference
schemes have seen increasing popularity in computational fluid dynamics [15], computational acoustics [8] and
electromagnetic [14]. In [10] the scheme have been applied for numerical solution of heat and advection-diffusion
equations.

The purpose of this paper is to propose a method for solving Eq. (1) using cubic spline functions. We use the
compact finite difference approximation of fourth-order for discretizing spatial derivatives of Schrodinger equation
and the C1-cubic spline collocation method for the resulting linear system of ordinary differential equations. The
method has fourth-order accuracy in both space and time components, and in each space step gives a closed form
approximation for the solution. C1-cubic spline collocation technique is an A-stable method and has fourth-order
accuracy [12,13].

The paper is organized as follows: In Section 2 we propose a compact finite difference scheme for Schrodinger
equation. In Section 3, we present a method based on fourth-order discretization of spatial derivatives of Eq. (1)
and C1-cubic spline collocation technique for the time integration. In this section, the stability conditions for the
introduced method are investigated. Numerical results that illustrate the efficiency of the proposed method are
reported in Section 4.

2. A fourth-order compact finite difference scheme

The basic approach for high-order compact difference methods is to introduce the standard compact difference ap-
proximations to the differential equations and then by repeated differentiation and associated compact differencing,
a new high-order compact scheme will be developed that incorporates the effect of the leading truncation error
terms in the standard method [15]. In this section we state the fourth-order compact finite difference scheme for
the spatial derivatives of Eq. (1).

Consider the following partial differential equation

∂2u

∂x2
= Q(x, t). (3)

Denote the central difference schemes of order two for second derivatives of u as

δ2
xu =

∂2u

∂x2
+

h2

12
∂4u

∂x4
+ O

(
h4

)
. (4)

By Eqs. (3) and (4) at each point xr we get

δ2
xur − τr = Qr, (5)

in which

τr =
h2

12

(
∂4u

∂x4

)

r

+ O
(
h4

)
. (6)
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Eq. (3) gives

∂4u

∂x4
|x=xr

=
∂2Q

∂x2
|x=xr

. (7)

By (5), (6) and (7) we get

δ2
xur =

(
1 +

h2

12
δ2
x

)
Qr + O

(
h4

)
. (8)

This relation is a fourth-order compact finite difference scheme for Eq. (3)(see also [11]).

3. The proposed method

For positive integers n let h = b−a
n denotes the step size of spatial derivatives and ∆t for step size of time variable

t. We define
xr = rh , r = 0, 1, · · · , n,
tk = k∆t , k = 0, 1, · · · , N.

Now, we rewrite (1) in the following form

−i
∂u

∂t
(x, t)− w(x)u(x, t) =

∂2u

∂x2
(x, t). (9)

By fourth-order scheme (8), Eq. (9) in each point xr gives

i

(
1 +

h2

12
δ2
x

)
u′r(t) = −δ2

xur(t)−
(

1 +
h2

12
δ2
x

)
wrur(t), r = 1, 2, . . . , n− 1 (10)

where ur(t) ≈ u(xr, t) , wr = w(xr) and u′r(t) ≈ d
dtu(xr, t). If we use δ2

x(wrur) =
(
δ2
xwr

)
ur + 2(δxwr)(δxur) +

wr

(
δ2
xur

)
in which δxur and δ2

xur are respectively the central difference schemes of order two for first and second
derivatives of u at x = xr, and put δxw = H1 and δ2

xw = H2 then we can rewrite the right-hand side of (10) as
follows

− 1
h2

(ur−1 − 2ur + ur+1)− wrur(t)− h2

12
(
δ2
xwr

)
ur(t)− 2h2

12
(δxwr) (δxur)− h2

12
wr

(
δ2
xur

)

= − 1
h2

(ur−1 − 2ur + ur+1)− wrur(t)− h2

12
H2

r ur(t)− h2

6
H1

r

(
ur+1 − ur−1

2h

)
− h2

12
wr

(
ur−1 − 2ur + ur+1

h2

)

= ur−1

(
− 1

h2
+

hH1
r

12
− wr

12

)
+ ur

(
2
h2
− 5

6
wr − h2

12
H2

r

)
+ ur+1

(
− 1

h2
− hH1

r

12
− wr

12

)
,

and therefore we can rewrite Eq. (10) as follows

i

[
1
2
u′r−1 + 5u′r +

1
2
u′r+1

]
= ur−1

(
− 6

h2
+

hH1
r

2
− wr

2

)
+ ur

(
12
h2
− 5wr − h2

2
H2

r

)
+

ur+1

(
− 6

h2
− hH1

r

2
− wr

2

)
.

(11)

By Eq. (11) a system of ordinary differential equations is obtained as

Au′(t) = Bu(t) + C(t), (12)
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in which

u(t) = [u1(t), . . . , un−1(t)]T ,

A = trid

[
i

2
, 5i,

i

2

]

(n−1)

, (13)

B = trid

[
− 6

h2
+

hH1
r

2
− wr

2
,
12
h2
− 5wr − h2

2
H2

r ,− 6
h2
− hH1

r

2
− wr

2

]

(n−1)

, r = 1, 2, . . . , n− 1

C(t) =
[(
− 6

h2
+

hH1
1

2
− w1

2

)
u0(t)− i

2
u′0(t), 0, . . . , 0,

(
− 6

h2
− hH1

n−1

2
− wn−1

2

)
un(t)− i

2
u′n(t)

]T

, (14)

and trid[a1, a2, a3]n−1 denotes the (n − 1) × (n − 1) tridiagonal matrix whose each row contains the values a1, a2

and a3 on its subdiagonal, diagonal and superdiagonal, respectively. Also in (14), u0(t), u′0(t), un(t) and u′n(t) are
obtained from boundary conditions (2).

From (13), the matrix A in (12) is strictly diagonally dominant and consequently A is invertible. Define
M = A−1B and P = A−1 then (12) can be written as follows

u′(t) = Mu(t) + PC(t) = F (t, u(t)). (15)

Let U(t) be a vector that approximates u(t) such that each of its component is a cubic spline function.
Now, suppose that U(t) satisfies (15) at collocation points tj−1, tj− 1

2
and tj in the time interval [tj−1, tj ] i.e.

U ′(tl) = F (tl, U(tl)), l = j − 1, j − 1
2 , j.

From [12,13] we have the following relations

U(t) = U j−1 + ∆tT1(m)U ′j−1 + ∆tT2(m)U ′j− 1
2 + ∆tT3(m)U ′j , t ∈ [tj−1, tj ] (16)

where

T1(m) = m− 3
2m2 + 2

3m3, T2(m) = 2m2 − 4
3m3,

T3(m) = − 1
2m2 + 2

3m3, t = tj−1 + m∆t, m ∈ [0, 1].

By (15) and (16) we can write

U j = U j−1 +
∆t

6

[
MU j−1 + PCj−1 + 4MU j− 1

2 + 4PCj− 1
2 + MU j + PCj

]
, (17)

U j− 1
2 = U j−1 +

∆t

24

[
5MU j−1 + 5PCj−1 + 8MU j− 1

2 + 8PCj− 1
2 −MU j − PCj

]
, (18)

in which U j = U(tj), Cj = C(tj), U ′j = U ′(tj) and so on. After some manipulation (17) and (18) can be written
as

(
I − ∆t

6
M

)
U j =

(
I − ∆t

6
M

)
U j−1 +

2∆t

3
MU j− 1

2 +
∆t

6
P

(
Cj−1 + 4Cj− 1

2 + Cj
)

, (19)

and
(

I − ∆t

3
M

)
U j− 1

2 =
(

I − 5∆t

24
M

)
U j−1 − ∆t

24
MU j +

∆t

24
P

(
5Cj−1 + 8Cj− 1

2 − Cj
)

, (20)

respectively, where I is the (n − 1) × (n − 1) identity matrix. Multiplying both sides of (19) and (20) by(
I − ∆t

3 M
)

and 2∆t
3 M respectively, and summing resulted equations give us

(
I − ∆t

2
M +

∆t2

12
M2

)
U j =

(
I +

∆t

2
M +

∆t2

12
M2

)
U j−1 +

(
∆t

6
P +

∆t2

12
PM

)
Cj−1 +

2∆t

3
PCj− 1

2

+
(

∆t

6
P − ∆t2

12
PM

)
Cj . (21)
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The above relation is a linear system of (n− 1) equations. By solving it for U j , j = 1, 2, . . . , N , the discrete and
then by using (15), (16) and (18) a cubic spline approximation of u(xr, t) in [tj−1, tj ] can be obtained. Note that
by multiplying Eq. (21) in A2 we can avoid of any matrix inverting.

To investigate the stability of the difference scheme (21), we consider the homogeneous boundary conditions
case of it i.e.

U j = ΦU j−1 , j = 1, 2, . . . , N,

where the amplification matrix is given by

Φ =
(

I − ∆t

2
M +

∆t2

12
M2

)−1 (
I +

∆t

2
M +

∆t2

12
M2

)
. (22)

Let λ ∈ C be an eigenvalue of M and z = ∆tλ. For unconditionally stability of the method it is necessary that
the absolute values of the eigenvalues of amplification matrix Φ be less than one, i.e.

∣∣∣∣∣
1 + z

2 + z2

12

1− z
2 + z2

12

∣∣∣∣∣ < 1. (23)

Let z = a + bi, z1 = 1 + z
2 + z2

12 and z2 = 1− z
2 + z2

12 . We have the following relations

|z1|2 =
(

1 +
a

2
+

a2 − b2

12

)2

+ b2

(
a

6
+

1
2

)2

,

and

|z2|2 =
(

1− a

2
+

a2 − b2

12

)2

+ b2

(
a

6
− 1

2

)2

.

As we see |z1| < |z2| iff a < 0 and |z1| ≥ |z2| if a ≥ 0. Therefore the relation (23) holds iff Reλ < 0 and z be in
the left-half complex plane. So, in this case the method is A-stable.

Also, since the amplification matrix, Φ, in (22) is the (2,2) Pade approximation of e∆tM , so the method has
fourth-order accuracy in time component.

4. Numerical experiments

We applied the method presented in this paper and solved two test problems. We performed our computations
using maple 13 software.

4.1. Test problem 1

Consider Eq. (1) with a = 0, b = 1 and w(x) = 0 and with the initial condition ϕ(x) = sin(x). The exact solution
is

u(x, t) = e−it sin(x),

and the boundary conditions can be obtained easily from exact solution. In Table 1, the maximum errors of pointwise
approximations and the experimental convergence orders obtained for Test problem 1 with different values of h and
∆t at T=1 are presented. The followings are used for the maximum error at the time T=1 and the experimental
convergence order (C − order).

‖e‖l∞ = max
1≤i≤n−1

{|uexact(xi, 1)− uapprox.(xi, 1)|} ,

and

C − order = log2 (‖e(2h, 2∆t)‖l∞/‖e(h,∆t)‖l∞) ,

in which ‖e(h, ∆t)‖l∞ means the error ‖e‖l∞ computed with mesh sizes h and ∆t.
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Table 1: Maximum errors and experimental convergence orders obtained for test problem 1 at T = 1.

Mesh sizes Real part Imaginary part
h=∆t ‖e‖l∞ C − order ‖e‖l∞ C − order
1/5 2.739× 10−6 − 2.832× 10−6 −
1/10 1.836× 10−7 3.90 2.422× 10−7 3.55
1/20 1.157× 10−8 3.99 1.279× 10−8 4.24
1/40 7.355× 10−10 3.98 9.803× 10−10 3.70
1/80 5.558× 10−11 3.73 6.113× 10−11 4.00

Table 2: Maximum errors and experimental convergence orders obtained for test problem 2 at T = 1.

Mesh sizes Real part Imaginary part
h=∆t ‖e‖l∞ C − order ‖e‖l∞ C − order
1/5 2.318× 10−4 − 7.018× 10−4 −
1/10 4.547× 10−5 2.35 2.980× 10−5 4.56
1/20 6.530× 10−6 2.80 4.314× 10−6 2.79
1/40 1.038× 10−6 2.65 7.805× 10−7 2.47
1/80 1.209× 10−7 3.10 7.513× 10−8 3.38

4.2. Test problem 2

Consider

−i
∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) +

(
1− 2

x2

)
u(x, t), (x, t) ∈ [0, 1]× [0, T ],

u(x, 0) = x2,

u(0, t) = 0, u(1, t) = eit, t ≥ 0.

The exact solution is u(x, t) = x2eit. In Table 2, the maximum errors and the experimental convergence orders
resulted for pointwise solutions of Test problem 2 at T = 1 are given.

5. Conclusion

In this paper, we proposed a class of new finite difference schemes, for solving the one-dimensional Schrodinger
equations. We applied a compact finite difference scheme to approximate the spatial derivative, and the C1-cubic
spline collocation technique for the time component to solve the Schrodinger equations. The presented method can
gives us both pointwise approximations in all mesh points, and a cubic spline solution in each space step. Also, the
method has fourth-order accuracy in both space and time variables and is suitable for long time interval problems.
The numerical results confirm the validity of the technique.
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