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Abstract

The main aim of this paper is to prove that the existence amguancess of so-
lutions of systems of simultaneous Volterra Hammersteih @drysohn nonlinear in-
tegral equations iG-metric spaces setting by using common fixed point theorems
satisfying generalized contractive conditions.
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1 Introduction and preliminaries

The fixed point theory is one of the most rapidly growing topfcnonlinear functional
analysis. It is a vast and interdisciplinary subject whaselys belongs to several mathe-
matical domains such as: classical analysis, functionallyais, operator theory, topology
and algebraic topology, etc. This topic has grown very figgdrhaps due to its interesting
applications in various fields within and out side the matates such as: integral equa-
tions, initial and boundary value problems for ordinary gadtial differential equations,
game theory, optimal control, nonlinear oscillations jatonal inequalities, complemen-
tary problems, economics and others.

Existence of fixed points in ordered metric spaces has béaiéad by Ran and Reur-
ings [1] and further studied by Nieto and Lopez [2]. Theydsal existence and uniqueness
of fixed points on partially ordered metric spaces and agphieir results to boundary value
problems for ordinary differential equations. Subseqyes¢veral interesting and valuable
results have appeared in this direction see for exampld9]3]

Integral equation methods are very useful for solving maoplems in several applied
fields like mathematical economics and optimal control thgdmecause these problems are
often reduced to integral equations. Since these equaigusadly cannot be solved explic-
itly, so it is necessary to get different numerical techegjul here are numerous advanced
and efficient methods, which have been focusing on the soluwf integral equations.
Many papers have been appeared on the problem of existedeeaueness of solutions
of nonlinear integral equations and the results are estaddi by applying various fixed
point techniques, see e.g., [10]-[17].



In 2006, Mustafa and Sims [18,19], introduced the concepi@imetric andG-metric
space, which is a generalization of metric space. After pidmeering work,G-metric

spaces and particularly fixed points of various map$emetric spaces have been inten-
sively studied, see, e.g., [20]-[23].

Definition 1.1. [19] Let X be a nonempty set and let:&® — [0, ») be a function satisfy-
ing:

(G1) G(x,y,2=0ifx=y=2

(G2) 0< G(x,xYy), forall x,y € X, with Xy,

(G3) G(x,x,Y) < G(X,Y,2),VX,Y,z€ X, with z£Yy,

(Ga) G(X,Y,2) =G(x,2zy) = G(Y,z,X) = ...,(symmetry in all three variables)
(Gs) G(x,Y,2) < G(x,aa)+G(ay,2),vxYy,zac X, (rectangle inequality)

Then the function G is called a G-metric on Xnd the pair(X,G) is called a G-metric
space.

Definition 1.2. [19] Let (X, G) be a G-metric space, a sequer(eg) is said to be

(i) G-convergent if for everg > 0, there exists an x X, and ke N such that for all
m,n > k, G(X, X, Xm) < €.

(i) G-Cauchy ifforeveryg > 0, there exists an k N such that for all mn, p > k, G(Xm, Xn, Xp) <
g, that is G Xm, Xn,Xp) = 0as mn, p — .

(iii) A space(X,G) is said to be G-complete if every G-Cauchy sequeno&iits) is
G-convergent.

Proposition 1.3.[19] Every G-metric spacéX, G) will define a metric spacéX,dg) by
da(x,y) = G(X,V,Y) + G(Y, X, X), X,y € X.
Lemma 1.4.[19] Let (X,G) be a G-metric space. Then the following are equivalent:
(i) {Xn} is G-convergent to.x

(i) dg(xn,X) — 0, as n— oo (that is,{xn} converges to x relative to the metrig)
(iii) G (Xn,Xn,X) — 0as n— oo,
(iv) G(Xn,X%,X) — 0as n— oo,
(V) G(Xn,Xm,X) = 0asnm— o,
Lemma 1.5.[19] Let (X, G) be a G-metric space. Then the following are equivalent:
() The sequencéx,) is G-Cauchy,

(i) for everye > 0, there exists k& N such that Gxp, Xm, Xm) < € for m,n > k.



Lemma 1.6. [19] Let (X,G) be a G-metric space. Then the functio(x@, z) is jointly
continuous in all three of its variables.

Definition 1.7. [19] A G metric space X is symmetric if(§y,y) = G(y, X, x) for all X,y €
X.

Proposition 1.8. [19] Let (X,G) be a G-metric space. Then for anyyxz, and ac X, it
follows that

(i) ifG(xy,2) =0thenx=y=12
(i) G(x,Y,2) <G(XXY)+G(X X, 2),
(i) G(xY,Y) < 2G(x,X,Y),

(iv) G(xY,2) < G(x,a,2)+G(a,y,2),
(v) G(x,¥,2) < 3(G(x,y,a) +G(x,a,2) +G(a,y,2)),
(vi) G(x,y,2) < G(x,a,a)+G(y,a,a) +G(za,a),

Proposition 1.9. [19] A G-metric spacegX,G) is G-complete if and only ifX,dg) is a
complete metric space.

Corollary 1.10. [19] If Y is a non-empty subset of a G-complete metric SgXc6&), then
(Y,G|y) is complete if and only if Y is G-closed (K, G).

Definition 1.11. [25] A functiony : [0,0) — [0, ) is called altering distance function if
(i) g isincreasing and continuous,
(i) w(t)=0ifandonlyift=0.

Definition 1.12. [21] Let X be a nonempty set. ThéKX,=<,G) is called an ordered G-
metric space if X, G) is a G- metric space anX, <) is a partial order set.

Definition 1.13. Let (X, <) be a partial ordered set. Then two pointg/x X are said to
be comparable if x y ory=<x.

Definition 1.14. [26] Let (X, <) be a partially ordered set. A mapping f is called weak
annihilator of g if fgx=<x for all x € X.

Definition 1.15. [26] Let (X, <) be a partially ordered set. A mapping f on X is called
dominating if x< fx for all x € X.

For examples illustrating the above definitions are giveji2j.

Definition 1.16. A subset W of a partially ordered set X is said to be well ordérevery
two elements of W are comparable.

In this paper, we discuss two applications for the solutafmonlinear Volterra-Hammerstein
integral equations in partially order&metric space and Urysohn integral equation&4in
metric space.



2 Solutions of nonlinear integral equations

The following two theorems 2.1 and 2.2 were proved by Rashetal [8], [23] respec-
tively.

Theorem 2.1.[8] Let (X, <,G) be an ordered G-metric space and legfh,S T and R be
self-maps on X satisfying the following condition

G(fx,gy,hz) <kM(x,y,2), (2.1)
where ke [0,3) and
M(x,y,z) =max{G(Sx Ty,R2),G(fx, fx,SX,G(gy,gy,Ty),G(hzhz R2),
(9y.9Y%, SX, G(Ty,hz hz),G(Rz fx, fX)},
for all comparable elementsy z € X. Suppose that
(i) f(X) S T(X), g(X) S R(X), h(X) C S(X),
(i) dominating maps fg, h are weak annihilators of IR, S respectively,
(iii) one of §X), T(X) or R(X) is a G-complete subspace of X

If, for a non-decreasing sequenf®g, } with x, <y, forallnand y, — q implies that x < q,
then f,g,h,S T and R have a common fixed point. Moreover, the set of comneaipidnts
of f,g,h,S T and R is well ordered if and only if,§,h,S T and R have one and only one
common fixed point.

Theorem 2.2.[23] Let (X,G) be a complete G-metric space andyfand h be self maps
on X satisfying inequality

lI/(G(fX, ay, hZ)) < l[J(M(X,y, Z)) - ¢(M(X7y7 Z))? (22)
where

M(x,y,z) = max{G(x.y,2), G(X,Y,ay), G(Y, z, hz),G(zX, fx),
aG(fx,x,gy) + (1—a)G(y,gy.h2)},

for all x,y,z€ X, whereO < a < 1, ¢ is an altering distance function, angl : [0, ) —
[0,00) is a continuous function wittp(t) = 0 if and only if t= 0.. Then fg, and h have a
unique common fixed point in. X

In this section, we present an application of Theorem 2.ltudysthe existence and
uniquence of solution for a system of nonlinear Volterraxi@erstein integral equation
in G-metric spaces. LeX = (L[0,»),R) be the space of real valued functions that are
measurable ofD,«) and letd : X x X — R" be defined by

[oe]

d(xy) = [ ) -y(ldt,

0



for all X,y € X. EquipX with the G-metric given by

G(x,y,2) = max{d(xy),d(y;2),d(zx)}

forall x,y,ze X. Clearly,(X,G) is a complet&-metric space. We endo¥with the partial
ordered= given by
X2y <= X({t)<vyt) (2.3)

for all t € [0,). Motivated by the work in [16], we apply Theorem 2.1 to prove #xis-
tence of solution in partially orderg@-metric spacéX,G) of the following simultaneous
\olterra-Hammerstein nonlinear integral equations:

t

X0 = palt)—Pat)+A [ mt9gus x(e)ds+ p [kt 9ha(s x(s)ds
0 0
t

X0 = Put)=pa(t) +A [ mit,9ga(s x(9)ds+ 1 [KtIMals x(s)ds  (2.4)
0 0
t

X0 = pat) = pelt) 1A [ mit,9s(sX(S)ds+ H [kt 9hu(s x(9)ds
0 0

for all't € [0,), wherepy, p2 € X are known withpy(t) > p2(t), m(t,s), K(t,s), gi(s,X(s))
andhi(s,x(s)), i = 1,2,3 are real valued functions that are measurable bottaimls on
[0,00) andA, u are real numbers. These functions satisfy the followingldans:

(Co) | sup |m(t,s)|dt=M; < +oo,
0 sc[0,0)

(Cy) [ sup |k(t,s)|[dt= M, < 4o,
0 s€[0,)

(C2) gi(s,x(s)) € X, i=1,2,3 for all x e X and there exist&; > 0 such that for alk €
[0, )

19i(SX(8)) —9i(s,¥(8))| < Ki[x(s) —¥(5), ~ WxyeX,i=123

(C3) hi(s,x(s)) € X, i=1,2,3 for all x e X and there exist&, > 0 such that for alk €
[0, )

[hi(s,x(s)) —hj(s,¥(s))| < Kalx(s) —y(s)|,  ¥xyeX,i=123

The existence and uniqueness theorem can be formulatetassfo

Theorem 2.3.Under the assumptions ¢§=-(Cs), if the following conditions are also satis-
fied:



(@)

Hgk(t,s)hz(&)\ gm(s, r)g1(r,X(r))dr + pa(s) — pz(s))ds=0,

00 S

uofk(t,s)hs(s,A Ofm(s, F)g2(r,X(r))dr + p1(s) — pz(s))ds=0,

() S

ng(t7s)hl(s7)‘ gm(s, F)g3(r,x(r))dr + p1(s) — pz(s))ds=0,

(b) forallx e X,
t
X0 <A [mt9a(sx(E)ds—pa(t), =123,
0

(c) forallxe X,

[ee]

m(t,$)g1(S, X(s) — pa(t) — ugk(t, F)ha(r,x(r))dr)ds— pa(t) < x(t),

[oe]

m(t, $)g2(S,X(S) — Pa(t) — ugk(t, F)ha(r,x(r))dr)ds— pa(t) < x(t),

A

A

[ee]

m(t,s)ga(s, x(s) — pa(t) — Hgk(ta rha(r,x(r))dr)ds— pa(t) < X(t).

A

O v O— ~ O— ~

Then the system of simultaneous Volterra-Hammersteinmeanlintegral equation(2.4)

has a unique solution in X for each pair of real numbérsu with |u|KoM, < 1 and
|A K1 My <1
1-[pu[KMp ™ 2

Proof. We define, for everx € X

t

X(t) = —pe(t)+2 [ mt.9au(sx(s)ds
0
t

gx(t) = —pz(t)+)\/m(t,s)gz(s,x(s))ds
0
t

(1) = ~pelt)+2 [ mit,s)ga(sX(s)ds
0

SXt) = (I —A)X(t), Txt)=(—-B)x(1), Rxt)=(-C)X(t),



wherel is the identity operator oK and

[ee]

AXU) = pa(t) + [ Kt Shu(s.X(8))ds
0

[oe]

BX(1) = Pu(t)+H [ Kt 9ha(s.x(9))ds
0

[oe]

Cx(t) = pult)+H [ kit 9hs(sX(5))ds
0

We see thax is a solution to (2.4) if and only ik is a common fixed pointof, g, h, S T,
andR. To prove the existence of such a point, we shall use Theor&dmS, we have to
check that all the hypotheses of Theorem 2.1 are satisfied.

We shall show that each g, h, S T, R, A, B, andC are operators frornX into itself.

[x(t)| < I/\\/Im(t,S)gl(S,X(S))IdSJr\pz( ) <A Sup Im(t, S\ \91 $,X(s))|ds+[p2(t)],
0

<S<

applying conditions@) and C»), we have

/|fx(t)|dt§ |)\|/ sup |m(t,s) |dt/|91 s x(s |ds-|—/|p2 )|dt < +oo,
0 0

<S<0

Hencef € X. Similarly g, h € X.
For mappingA we apply conditions@;) and C3) as following:

/\Ax(t)\dt < |m/ sup [K(t.s \dt |h1 S X(S |ds+/\p1 )]dt < +co.
0 o 0ss<=
ThusA € X, similarly B, C € X. we conclude tha®, T, R< X.
Now, we show the condition (i) of Theorem 2.1 is hold. We pravat f(X) C T(X).
For allx € X, by using hypothesis (a), we get

T(Ix®) +p(t)) = (1 =B)(fx(t) + pa(t))

00

= fx(t)—u/k(t,s)hz(s,fx(S)+p1(S))ds
0

= (O~ [kt 9hels —pa(9)+ ) [h(sg(rX(r)dr+ pu(s)ds
0 0

= fx(t).
Hencef(X) C T(X). Similarly g(X) C R(X), h(X) C §(X).

From condition (b) we conclude thaft) < fx(t) and hencex < fx. Similarly we get
x < gxandx < hx Thatis f, g, h are dominating operators. Also from condition (c) we
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obtain

00

fTx() = A /m(t,S)gl(S,X(S)— pl(t)—u/k(t,f)hz(f,X(f))df)dS— P2(t) < x(t).
0

0

Thus fTx < x Similarly we havegRx=< x andhSx= x. Hence the ordered paifd,T),
(g,R) and(h,S) are weak annihilators. Therefore the condition (ii) of Tiesn 2.1 is valid.

Further, we show the condition (iii) of Theorem 2.1. Supppsg C X such thak, — X
asn — o andSx — y asn — c we want to prove thag € S(X) andy = S(x). From (C3)
we conclude that

d(A%,AX) = /\Axn (t)|dt
[ t
— /|u/kt s)[ha(s,xn(s)) — ha(s,x(s))]dgdt
O 0
< {11 sup |kt.9) |dt/|h1 s, %(9)) —hu(sX(s))|ds

0<s<o0

< JuMoKo / [Xa(8) —X(3)|ds

= |U|M2Kod(Xn,X) =0 asn-— oo,

Therefore
d(S%,S¥ = d((I —A)Xn, (I —A)X)
= / a(t) = X(t) — Aa(t) + AX()
0
< /oo\xn(t)—x(t)|dt+/oo\Axn(t)—Ax(t)\dt
= ::)i(xn,x)-l—d(Axn,Ax)—m asn-— oo.
Therefore

G(S»,SxSX =d(S%,S¥ —0 asn— .

This implies thatSx, — Sxasn — «. HenceS(X) is G-closed. Thus from Corollary 1.10
S(X) is complete subspace X, G). Now, we check the condition (2.1). Lety, € X such



thatx < ythen

d(fxgy) — / (1) — gy(t)dt
0

0 t
- /|A/mtsglsx ))ds— )\/mtsgz(sy())dﬁdt

0 0

0 t

- /|/\ /mt S)[91(sX(s)) — 92(s,y(s))]dsdt

O

o

< /|)\\ sup |mts\dt \91 S, X(S)) —g2(s,y(s))|ds
0<s<om
0
< AIMiKs [ [x(s) - y(s)lds

0
= |AM1K1d(x,y)
< |)\ ‘M]_K]_G(X, Y, Z)'

Hence
d(fX, gy) < ‘A |M1K16(X7y7 Z)' (25)

Similarly, we can show that
d(gy,hz) < |A|M1K1G(x,y,z) and d(hz fx) < |A|M1K1G(X,Y,2). (2.6)
Therefore from (2.5) and (2.6) we conclude that
G(fx,gy,hz) < |A|M1K1G(X,Y,2). (2.7)
Likewise, we obtain
d(Ax By) < [u[M2K2G(x,y,2), d(Bx,Cy) < |u[M2K2G(X,Y,2), d(Cx Ay) < [U[M2K2G(X,Y,2).
Therefore

d(SxTy) = d

—~

(I=A)x (1 -B)y)

[X(t) = y(t) — AX(t) +By(t)|dt

— g O —

> [ x) |dt—/|Ax (t)[dt
0

> d(x,y) —d(Ax By)

> d(x,y) - |“|M2K2G(X7y7 Z)'



Thus
d(SxTy) > (1—|u[M2K2)G(X,Y, 2). (2.8)

Similarly, we get
d(Ty,R2 > (1—|u[M2K2)G(x,y,2) and d(RzSX = (1—[u[M2K2)G(x,y,2). (2.9)
Hence from (2.8) and (2.9) we obtain
G(SxTy,R2) > (1—|u[M2K2)G(x,Y,2).

That is

G(x,y,2) < G(Sx Ty,R2. (2.10)

1
(1—|p[M2Kz)
From (2.7) and (2.10) we obtain
|A|M1Ky

(1—|pM2Ks2)
kM(x,y, 2),

G(fx,gy,hz)

IN

G(SxTy,R2)

IA

where

M(x,y,2) = max{G(SxTy,R2,G(fx, fx,Sx,G(gy,gy.Ty),G(hzhzR2),
(ay; 9y, SX,G(Ty,hz hz),G(Rz fx, fx)},

andk = Mil\l/liliz) Hence the generalized contractive condition (2.1) of TaeoR.1 is

satisfied. If{x,}, {yn} are sequences {iX, G) such thatx,} is a monotone nondecreasing
andx, =< yp for all n with y, — qasn — . From (2.3) we have

Xn-1(t) <Xn(t) <wa(t),  Vn=0.

Sincey, — q asn — o hence{yn} is bounded, this implies thdix,} is bounded above
and so{xn(t)} is bounded above and sinde,(t)} is a monotone nondecreasing then

Xn(t) = sup{Xn(t)} andx,(t) < sup{xs(t)} < q(t). Thereforex, < q.

n n
Thus all the conditions of Theorem 2.1 are satisfied and theiso of equations (2.4) ex-
ists. Further, sincl0, ), <) is well ordered set thetX, <) is well ordered set. Therefore
the solution is unique. O

As an application of the existence and uniqueness of The@®@mwe consider the
problem of existence and uniqueness of solutions definedsygteam of Urysohn integral
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equations as follows:

b

X(t) = / L1(t,s,X(s))ds+ p(t),

a
b

X(t) = / Lo(t,5,X(3))ds+ p(t), (2.11)
b

X(t) = / La(t,s,x(5))ds+ p(t),

a

wheret € [a,b] C R™. A solution of the equation (2.11) is a functiare X = C[a, b| (the
set of real continuous functions ¢mb] ) andd : X x X — R" be defined by

d(x,y) = max |x(t) —yt)|,  xyeX,
tela,b]

with the G-metric defined by
G(xy,z) = max{d(x,y),d(y,2),d(zx)},  XY,z€X.

Clearly (X, G) is a complet&s-metric space.
Now, we state the following existence and uniqueness tnetoethe solution of (2.11).

Theorem 2.4.Consider(2.11)and assume that:
(i) x,peCla,bjand L : [a,b] x [a,b] x R— R, i =1,2,3 are continuous functions,

(i) foralls,t € [a,b] and all xy € C[a,b] we have

ILi(s,x(s)) —Lj(s,y(s))| < at,s)|x(s) = ¥(s)];

where g [a,b] x [a,b] — [0, ) is a continuous function satisfying

b
sup/|q(t,s)|dt< /\(bl_ 3’ whereA > 1.
a

Then the systelf2.11)has a solution x X.
Proof. Let f,g,h: X — X be the mappings defined by

b
fX(t) = /Ll(t,s,x(s))derp(t),

a
b

gxt) = [ Laltsx(s)ds+plt).

a
b

hxt) — / La(t, s x(s))ds+ p(t),

a

11



for all x € X and for allt € [a, b]. Obviously, the existence of a solution for (2.11) is equiva-
lent to the existence of a common fixed poinfofy andh. Now, letx,y € X, from condition
(2.2) for allt € [a,b] we obtain

Hence

A|FX(t) —

gy(t)[> <

VAN

IN

IA

IA

IN

A(d(fx,gy))?

b 2
A ( / L1<t,s,x<s>>Lz<t,s,y<s>>ds)

a

b b
p (/ 12ds) (/ La(t,s,X(S)) — Lz(t,s,y(s))zds)

a

b
Mb-a) [ a(t.9)x(s) ~y(s) Fds

b
)\(b—a)/q(t,s)d(x,y)zds

a
b

A(b—a) /q(t,s)G(x,y, 2)%ds

a

b
A(b—a)G(x,y,2) (/q )
A(b—a)M(x,y,2) (sup/qts )

M(x.y,2)?
A M(X7 Ys Z)z —A M<X7y7 2)2 + M<X7y7 2)2'

— fx(t) — gy(t)|?
tg}gﬁl X(t) —gy(t)]

< )\M(X,y,z>2—)\M(X,y,Z)2+M(X,y,z>2. (212)

Similarly, forx, y, z€ X we can show that

and

A(d(gy.h2))?

A(d(hz £x))?

= max|gy(t) - hZ(t)l2

te[ab]

= max|hzt) — fx(t)|2
tefab]

< )\M(X,y,Z)z—AM(X,y,Z)Z—f—M(X,y,Z)Z. (214)

12



Thus from (2.12), (2.13) and (2.14), we get

A(G(fx,gy:h2)* = Amax{d(fx gy)? d(gyhz)? d(hz fx)?}
< )\M(X,y,Z)Z—AM(X,y,Z)Z—f—M(X,y,Z)Z.

Taking (t) = At%, ¢(t) = (A — 1)t? in Theorem 2.2, there exists a unique common fixed
point of f, g andh, which is a solution of (2.11). O
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