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Abstract
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1 Introduction and preliminaries

The fixed point theory is one of the most rapidly growing topicof nonlinear functional
analysis. It is a vast and interdisciplinary subject whose study belongs to several mathe-
matical domains such as: classical analysis, functional analysis, operator theory, topology
and algebraic topology, etc. This topic has grown very rapidly perhaps due to its interesting
applications in various fields within and out side the mathematics such as: integral equa-
tions, initial and boundary value problems for ordinary andpartial differential equations,
game theory, optimal control, nonlinear oscillations, variational inequalities, complemen-
tary problems, economics and others.

Existence of fixed points in ordered metric spaces has been initiated by Ran and Reur-
ings [1] and further studied by Nieto and López [2]. They studied existence and uniqueness
of fixed points on partially ordered metric spaces and applied their results to boundary value
problems for ordinary differential equations. Subsequently, several interesting and valuable
results have appeared in this direction see for examples [3]-[9].

Integral equation methods are very useful for solving many problems in several applied
fields like mathematical economics and optimal control theory, because these problems are
often reduced to integral equations. Since these equationsusually cannot be solved explic-
itly, so it is necessary to get different numerical techniques. There are numerous advanced
and efficient methods, which have been focusing on the solution of integral equations.
Many papers have been appeared on the problem of existence and uniqueness of solutions
of nonlinear integral equations and the results are established by applying various fixed
point techniques, see e.g., [10]-[17].
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In 2006, Mustafa and Sims [18,19], introduced the concept ofaG-metric andG-metric
space, which is a generalization of metric space. After thispioneering work,G-metric
spaces and particularly fixed points of various maps onG-metric spaces have been inten-
sively studied, see, e.g., [20]-[23].

Definition 1.1. [19] Let X be a nonempty set and let G: X3 → [0,∞) be a function satisfy-
ing:

(G1) G(x,y,z) = 0 if x = y= z,

(G2) 0< G(x,x,y), for all x,y∈ X, with x 6= y,

(G3) G(x,x,y)≤ G(x,y,z),∀x,y,z∈ X, with z 6= y,

(G4) G(x,y,z) = G(x,z,y) = G(y,z,x) = . . . , (symmetry in all three variables),

(G5) G(x,y,z)≤ G(x,a,a)+G(a,y,z),∀x,y,z,a∈ X, (rectangle inequality).

Then the function G is called a G-metric on X, and the pair(X,G) is called a G-metric
space.

Definition 1.2. [19] Let (X,G) be a G-metric space, a sequence(xn) is said to be

(i) G-convergent if for everyε > 0, there exists an x∈ X, and k∈ N such that for all
m,n≥ k,G(x,xn,xm)< ε.

(ii) G-Cauchy if for everyε >0, there exists an k∈N such that for all m,n, p≥ k,G(xm,xn,xp)<
ε, that is G(xm,xn,xp)→ 0 as m,n, p→ ∞.

(iii) A space(X,G) is said to be G-complete if every G-Cauchy sequence in(X,G) is
G-convergent.

Proposition 1.3. [19] Every G-metric space(X,G) will define a metric space(X,dG) by

dG(x,y) = G(x,y,y)+G(y,x,x), ∀x,y∈ X.

Lemma 1.4. [19] Let (X,G) be a G-metric space. Then the following are equivalent:

(i) {xn} is G-convergent to x.

(ii) dG(xn,x)→ 0, as n→ ∞ (that is,{xn} converges to x relative to the metric dG).

(iii) G(xn,xn,x)→ 0 as n→ ∞,

(iv) G(xn,x,x)→ 0 as n→ ∞,

(v) G(xn,xm,x)→ 0 as n,m→ ∞,

Lemma 1.5. [19] Let (X,G) be a G-metric space. Then the following are equivalent:

(i) The sequence(xn) is G-Cauchy,

(ii) for everyε > 0, there exists k∈ N such that G(xn,xm,xm)< ε for m,n≥ k.
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Lemma 1.6. [19] Let (X,G) be a G-metric space. Then the function G(x,y,z) is jointly
continuous in all three of its variables.

Definition 1.7. [19] A G metric space X is symmetric if G(x,y,y) = G(y,x,x) for all x,y∈
X.

Proposition 1.8. [19] Let (X,G) be a G-metric space. Then for any x,y,z, and a∈ X, it
follows that

(i) if G(x,y,z) = 0 then x= y= z,

(ii) G(x,y,z)≤ G(x,x,y)+G(x,x,z),

(iii) G(x,y,y)≤ 2G(x,x,y),

(iv) G(x,y,z)≤ G(x,a,z)+G(a,y,z),

(v) G(x,y,z)≤ 2
3(G(x,y,a)+G(x,a,z)+G(a,y,z)),

(vi) G(x,y,z)≤ G(x,a,a)+G(y,a,a)+G(z,a,a),

Proposition 1.9. [19] A G-metric space(X,G) is G-complete if and only if(X,dG) is a
complete metric space.

Corollary 1.10. [19] If Y is a non-empty subset of a G-complete metric space(X,G), then
(Y,G|Y) is complete if and only if Y is G-closed in(X,G).

Definition 1.11. [25] A functionψ : [0,∞)→ [0,∞) is called altering distance function if

(i) ψ is increasing and continuous,

(ii) ψ(t) = 0 if and only if t= 0.

Definition 1.12. [21] Let X be a nonempty set. Then(X,�,G) is called an ordered G-
metric space if(X,G) is a G- metric space and(X,�) is a partial order set.

Definition 1.13. Let (X,�) be a partial ordered set. Then two points x,y∈ X are said to
be comparable if x� y or y� x.

Definition 1.14. [26] Let (X,�) be a partially ordered set. A mapping f is called weak
annihilator of g if f gx� x for all x∈ X.

Definition 1.15. [26] Let (X,�) be a partially ordered set. A mapping f on X is called
dominating if x� f x for all x∈ X.

For examples illustrating the above definitions are given in[26].

Definition 1.16. A subset W of a partially ordered set X is said to be well ordered if every
two elements of W are comparable.

In this paper, we discuss two applications for the solutionsof nonlinear Volterra-Hammerstein
integral equations in partially orderedG-metric space and Urysohn integral equations inG-
metric space.

3



2 Solutions of nonlinear integral equations

The following two theorems 2.1 and 2.2 were proved by Rashwanet.al [8], [23] respec-
tively.

Theorem 2.1. [8] Let (X,�,G) be an ordered G-metric space and let f,g,h,S,T and R be
self-maps on X satisfying the following condition

G( f x,gy,hz)≤ kM(x,y,z), (2.1)

where k∈ [0, 1
2) and

M(x,y,z) =max{G(Sx,Ty,Rz),G( f x, f x,Sx),G(gy,gy,Ty),G(hz,hz,Rz),

(gy,gy,Sx),G(Ty,hz,hz),G(Rz, f x, f x)},

for all comparable elements x,y,z∈ X. Suppose that

(i) f (X)⊆ T(X), g(X)⊆ R(X), h(X)⊆ S(X),

(ii) dominating maps f, g, h are weak annihilators of T, R, S respectively,

(iii) one of S(X) , T(X) or R(X) is a G-complete subspace of X.

If, for a non-decreasing sequence{xn} with xn � yn for all n and yn → q implies that xn � q,
then f,g,h,S,T and R have a common fixed point. Moreover, the set of common fixed points
of f,g,h,S,T and R is well ordered if and only if f,g,h,S,T and R have one and only one
common fixed point.

Theorem 2.2. [23] Let (X,G) be a complete G-metric space and f,g and h be self maps
on X satisfying inequality

ψ(G( f x,gy,hz))≤ ψ(M(x,y,z))−ϕ(M(x,y,z)), (2.2)

where

M(x,y,z) = max{G(x,y,z),G(x,y,gy),G(y,z,hz),G(z,x, f x),

αG( f x,x,gy)+(1−α)G(y,gy,hz)},

for all x,y,z∈ X, where0 < α < 1, ψ is an altering distance function, andϕ : [0,∞)→
[0,∞) is a continuous function withϕ(t) = 0 if and only if t= 0.. Then f,g, and h have a
unique common fixed point in X.

In this section, we present an application of Theorem 2.1 to study the existence and
uniquence of solution for a system of nonlinear Volterra-Hammerstein integral equation
in G-metric spaces. LetX = (L[0,∞),R) be the space of real valued functions that are
measurable on[0,∞) and letd : X×X → R+ be defined by

d(x,y) =

∞
∫

0

|x(t)−y(t)|dt,
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for all x,y∈ X. EquipX with theG-metric given by

G(x,y,z) = max{d(x,y),d(y,z),d(z,x)}

for all x,y,z∈X. Clearly,(X,G) is a completeG-metric space. We endowX with the partial
ordered� given by

x� y ⇐⇒ x(t)≤ y(t) (2.3)

for all t ∈ [0,∞). Motivated by the work in [16], we apply Theorem 2.1 to prove the exis-
tence of solution in partially orderedG-metric space(X,G) of the following simultaneous
Volterra-Hammerstein nonlinear integral equations:

x(t) = p1(t)− p2(t)+λ
t

∫

0

m(t,s)g1(s,x(s))ds+µ
∞
∫

0

k(t,s)h2(s,x(s))ds,

x(t) = p1(t)− p2(t)+λ
t

∫

0

m(t,s)g2(s,x(s))ds+µ
∞
∫

0

k(t,s)h3(s,x(s))ds, (2.4)

x(t) = p1(t)− p2(t)+λ
t

∫

0

m(t,s)g3(s,x(s))ds+µ
∞
∫

0

k(t,s)h1(s,x(s))ds,

for all t ∈ [0,∞), wherep1, p2 ∈ X are known withp1(t)≥ p2(t), m(t,s), k(t,s), gi(s,x(s))
andhi(s,x(s)), i = 1,2,3 are real valued functions that are measurable both int ands on
[0,∞) andλ , µ are real numbers. These functions satisfy the following conditions:

(C0)
∞
∫

0
sup

s∈[0,∞)

|m(t,s)|dt = M1 <+∞,

(C1)
∞
∫

0
sup

s∈[0,∞)

|k(t,s)|dt = M2 <+∞,

(C2) gi(s,x(s)) ∈ X, i = 1,2,3 for all x ∈ X and there existsK1 > 0 such that for alls∈
[0,∞)

|gi(s,x(s))−g j(s,y(s))| ≤ K1|x(s)−y(s)|, ∀x,y∈ X, i = 1,2,3

(C3) hi(s,x(s)) ∈ X, i = 1,2,3 for all x ∈ X and there existsK2 > 0 such that for alls∈
[0,∞)

|hi(s,x(s))−h j(s,y(s))| ≤ K2|x(s)−y(s)|, ∀x,y∈ X, i = 1,2,3.

The existence and uniqueness theorem can be formulated as follows:

Theorem 2.3.Under the assumptions (C0)–(C3), if the following conditions are also satis-
fied:
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(a)

µ
∞
∫

0
k(t,s)h2(s,λ

s
∫

0
m(s, r)g1(r,x(r))dr+ p1(s)− p2(s))ds= 0,

µ
∞
∫

0
k(t,s)h3(s,λ

s
∫

0
m(s, r)g2(r,x(r))dr+ p1(s)− p2(s))ds= 0,

µ
∞
∫

0
k(t,s)h1(s,λ

s
∫

0
m(s, r)g3(r,x(r))dr+ p1(s)− p2(s))ds= 0,

(b) for all x∈ X,

x(t)≤ λ
t

∫

0

m(t,s)gi(s,x(s))ds− p2(t), i = 1,2,3,

(c) for all x∈ X,

λ
t
∫

0
m(t,s)g1(s,x(s)− p1(t)−µ

∞
∫

0
k(t, r)h2(r,x(r))dr)ds− p2(t)≤ x(t),

λ
t
∫

0
m(t,s)g2(s,x(s)− p1(t)−µ

∞
∫

0
k(t, r)h3(r,x(r))dr)ds− p2(t)≤ x(t),

λ
t
∫

0
m(t,s)g3(s,x(s)− p1(t)−µ

∞
∫

0
k(t, r)h1(r,x(r))dr)ds− p2(t)≤ x(t).

Then the system of simultaneous Volterra-Hammerstein nonlinear integral equation(2.4)
has a unique solution in X for each pair of real numbersλ , µ with |µ|K2M2 < 1 and
|λ |K1M1

1−|µ|K2M2
<

1
2.

Proof. We define, for everyx∈ X

f x(t) = −p2(t)+λ
t

∫

0

m(t,s)g1(s,x(s))ds,

gx(t) = −p2(t)+λ
t

∫

0

m(t,s)g2(s,x(s))ds,

hx(t) = −p2(t)+λ
t

∫

0

m(t,s)g3(s,x(s))ds,

Sx(t) = (I −A)x(t), Tx(t) = (I −B)x(t), Rx(t) = (I −C)x(t),
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whereI is the identity operator onX and

Ax(t) = p1(t)+µ
∞
∫

0

k(t,s)h1(s,x(s))ds,

Bx(t) = p1(t)+µ
∞
∫

0

k(t,s)h2(s,x(s))ds,

Cx(t) = p1(t)+µ
∞
∫

0

k(t,s)h3(s,x(s))ds.

We see thatx is a solution to (2.4) if and only ifx is a common fixed point off , g, h, S, T,
andR. To prove the existence of such a point, we shall use Theorem 2.1. So, we have to
check that all the hypotheses of Theorem 2.1 are satisfied.

We shall show that eachf , g, h, S, T, R, A, B, andC are operators fromX into itself.

| f x(t)| ≤ |λ |
∞
∫

0

|m(t,s)g1(s,x(s))|ds+ |p2(t)| ≤ |λ | sup
0≤s<∞

|m(t,s)|

∞
∫

0

|g1(s,x(s))|ds+ |p2(t)|,

applying conditions (C0) and (C2), we have

∞
∫

0

| f x(t)|dt ≤ |λ |
∞
∫

0

sup
0≤s<∞

|m(t,s)|dt

∞
∫

0

|g1(s,x(s))|ds+

∞
∫

0

|p2(t)|dt <+∞.

Hencef ∈ X. Similarly g, h∈ X.

For mappingA we apply conditions (C1) and (C3) as following:

∞
∫

0

|Ax(t)|dt ≤ |µ|
∞
∫

0

sup
0≤s<∞

|k(t,s)|dt

∞
∫

0

|h1(s,x(s))|ds+

∞
∫

0

|p1(t)|dt <+∞.

ThusA∈ X, similarly B, C∈ X. we conclude thatS, T, R∈ X.

Now, we show the condition (i) of Theorem 2.1 is hold. We provethat f (X) ⊆ T(X).
For allx∈ X, by using hypothesis (a), we get

T( f x(t)+ p1(t)) = (I −B)( f x(t)+ p1(t))

= f x(t)−µ
∞
∫

0

k(t,s)h2(s, f x(s)+ p1(s))ds

= f x(t)−µ
∞
∫

0

k(t,s)h2(s,−p2(s)+λ
s

∫

0

h(s, r)g1(r,x(r))dr+ p1(s))ds

= f x(t).

Hencef (X)⊆ T(X). Similarly g(X)⊆ R(X), h(X)⊆ S(X).
From condition (b) we conclude thatx(t) ≤ f x(t) and hencex� f x. Similarly we get

x � gx andx � hx. That is f , g, h are dominating operators. Also from condition (c) we
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obtain

f Tx(t) = λ
t

∫

0

m(t,s)g1(s,x(s)− p1(t)−µ
∞
∫

0

k(t, r)h2(r,x(r))dr)ds− p2(t)≤ x(t).

Thus f Tx� x Similarly we havegRx� x andhSx� x. Hence the ordered pairs( f ,T),
(g,R) and(h,S) are weak annihilators. Therefore the condition (ii) of Theorem 2.1 is valid.

Further, we show the condition (iii) of Theorem 2.1. Suppose{xn}⊆X such thatxn→ x
asn→ ∞ andSxn → y asn→ ∞ we want to prove thaty∈ S(X) andy= S(x). From(C3)
we conclude that

d(Axn,Ax) =

∞
∫

0

|Axn(t)−Ax(t)|dt

=

∞
∫

0

|µ
t

∫

0

k(t,s)[h1(s,xn(s))−h1(s,x(s))]ds|dt

≤

∞
∫

0

|µ| sup
0≤s<∞

|k(t,s)|dt

∞
∫

0

|h1(s,xn(s))−h1(s,x(s))|ds

≤ |µ|M2K2

∞
∫

0

|xn(s)−x(s)|ds

= |µ|M2K2d(xn,x)→ 0 as n→ ∞.

Therefore

d(Sxn,Sx) = d((I −A)xn,(I −A)x)

=

∞
∫

0

|xn(t)−x(t)−Axn(t)+Ax(t)|dt

≤

∞
∫

0

|xn(t)−x(t)|dt+

∞
∫

0

|Axn(t)−Ax(t)|dt

= d(xn,x)+d(Axn,Ax)→ 0 as n→ ∞.

Therefore
G(Sxn,Sx,Sx) = d(Sxn,Sx)→ 0 as n→ ∞.

This implies thatSxn → Sxasn→ ∞. HenceS(X) is G-closed. Thus from Corollary 1.10
S(X) is complete subspace of(X,G). Now, we check the condition (2.1). Letx,y,∈ X such
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thatx� y then

d( f x,gy) =

∞
∫

0

| f x(t)−gy(t)|dt

=

∞
∫

0

|λ
t

∫

0

m(t,s)g1(s,x(s))ds−λ
t

∫

0

m(t,s)g2(s,y(s))ds|dt

=

∞
∫

0

|λ
t

∫

0

m(t,s)[g1(s,x(s))−g2(s,y(s))]ds|dt

≤

∞
∫

0

|λ | sup
0≤s<∞

|m(t,s)|dt

∞
∫

0

|g1(s,x(s))−g2(s,y(s))|ds

≤ |λ |M1K1

∞
∫

0

|x(s)−y(s)|ds

= |λ |M1K1d(x,y)

≤ |λ |M1K1G(x,y,z).

Hence
d( f x,gy)≤ |λ |M1K1G(x,y,z). (2.5)

Similarly, we can show that

d(gy,hz)≤ |λ |M1K1G(x,y,z) and d(hz, f x)≤ |λ |M1K1G(x,y,z). (2.6)

Therefore from (2.5) and (2.6) we conclude that

G( f x,gy,hz)≤ |λ |M1K1G(x,y,z). (2.7)

Likewise, we obtain

d(Ax,By)≤ |µ|M2K2G(x,y,z), d(Bx,Cy)≤ |µ|M2K2G(x,y,z), d(Cx,Ay)≤ |µ|M2K2G(x,y,z).

Therefore

d(Sx,Ty) = d((I −A)x,(I −B)y)

=

∞
∫

0

|x(t)−y(t)−Ax(t)+By(t)|dt

≥

∞
∫

0

|x(t)−y(t)|dt−

∞
∫

0

|Ax(t)−By(t)|dt

≥ d(x,y)−d(Ax,By)

≥ d(x,y)−|µ|M2K2G(x,y,z).
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Thus
d(Sx,Ty)≥ (1−|µ|M2K2)G(x,y,z). (2.8)

Similarly, we get

d(Ty,Rz)≥ (1−|µ|M2K2)G(x,y,z) and d(Rz,Sx)≥ (1−|µ|M2K2)G(x,y,z). (2.9)

Hence from (2.8) and (2.9) we obtain

G(Sx,Ty,Rz)≥ (1−|µ|M2K2)G(x,y,z).

That is

G(x,y,z)≤
1

(1−|µ|M2K2)
G(Sx,Ty,Rz). (2.10)

From (2.7) and (2.10) we obtain

G( f x,gy,hz) ≤
|λ |M1K1

(1−|µ|M2K2)
G(Sx,Ty,Rz)

≤ kM(x,y,z),

where

M(x,y,z) = max{G(Sx,Ty,Rz),G( f x, f x,Sx),G(gy,gy,Ty),G(hz,hz,Rz),

(gy,gy,Sx),G(Ty,hz,hz),G(Rz, f x, f x)},

andk = |λ |M1K1
(1−|µ|M2K2)

Hence the generalized contractive condition (2.1) of Theorem 2.1 is

satisfied. If{xn}, {yn} are sequences in(X,G) such that{xn} is a monotone nondecreasing
andxn � yn for all n with yn → q asn→ ∞. From (2.3) we have

xn−1(t)≤ xn(t)≤ yn(t), ∀n≥ 0.

Sinceyn → q asn → ∞ hence{yn} is bounded, this implies that{xn} is bounded above
and so{xn(t)} is bounded above and since{xn(t)} is a monotone nondecreasing then
xn(t)→ sup

n
{xn(t)} andxn(t)≤ sup

n
{xn(t)} ≤ q(t). Thereforexn � q.

Thus all the conditions of Theorem 2.1 are satisfied and the solution of equations (2.4) ex-
ists. Further, since([0,∞),≤) is well ordered set then(X,�) is well ordered set. Therefore
the solution is unique.

As an application of the existence and uniqueness of Theorem2.2, we consider the
problem of existence and uniqueness of solutions defined by asystem of Urysohn integral
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equations as follows:

x(t) =

b
∫

a

L1(t,s,x(s))ds+ p(t),

x(t) =

b
∫

a

L2(t,s,x(s))ds+ p(t), (2.11)

x(t) =

b
∫

a

L3(t,s,x(s))ds+ p(t),

wheret ∈ [a,b] ⊆ R+. A solution of the equation (2.11) is a functionx∈ X = C[a,b] (the
set of real continuous functions on[a,b] ) andd : X×X → R+ be defined by

d(x,y) = max
t∈[a,b]

|x(t)−y(t)|, x,y∈ X,

with theG-metric defined by

G(x,y,z) = max{d(x,y),d(y,z),d(z,x)}, x,y,z∈ X.

Clearly(X,G) is a completeG-metric space.
Now, we state the following existence and uniqueness theorem for the solution of (2.11).

Theorem 2.4.Consider(2.11)and assume that:

(i) x, p∈C[a,b] and Li : [a,b]× [a,b]×R→ R, i = 1,2,3 are continuous functions,

(ii) for all s, t ∈ [a,b] and all x,y∈C[a,b] we have

|Li(s,x(s))−L j(s,y(s))| ≤ q(t,s)|x(s)−y(s)|,

where q: [a,b]× [a,b]→ [0,∞) is a continuous function satisfying

sup

b
∫

a

|q(t,s)|dt <
1

λ (b−a)
, whereλ ≥ 1.

Then the system(2.11)has a solution x∈ X.

Proof. Let f ,g,h : X → X be the mappings defined by

f x(t) =

b
∫

a

L1(t,s,x(s))ds+ p(t),

gx(t) =

b
∫

a

L2(t,s,x(s))ds+ p(t),

hx(t) =

b
∫

a

L3(t,s,x(s))ds+ p(t),
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for all x∈ X and for allt ∈ [a,b]. Obviously, the existence of a solution for (2.11) is equiva-
lent to the existence of a common fixed point off , g andh. Now, letx,y∈X, from condition
(2.2) for allt ∈ [a,b] we obtain

λ | f x(t)−gy(t)|2 ≤ λ





b
∫

a

|L1(t,s,x(s))−L2(t,s,y(s))|ds





2

≤ λ





b
∫

a

12ds









b
∫

a

|L1(t,s,x(s))−L2(t,s,y(s))|
2ds





≤ λ (b−a)

b
∫

a

q(t,s)|x(s)−y(s)|2ds

≤ λ (b−a)

b
∫

a

q(t,s)d(x,y)2ds

≤ λ (b−a)

b
∫

a

q(t,s)G(x,y,z)2ds

≤ λ (b−a)G(x,y,z)2





b
∫

a

q(t,s)ds





≤ λ (b−a)M(x,y,z)2



sup

b
∫

a

q(t,s)ds





< M(x,y,z)2

= λM(x,y,z)2−λM(x,y,z)2+M(x,y,z)2
.

Hence

λ (d( f x,gy))2 = max
t∈[a,b]

| f x(t)−gy(t)|2

< λM(x,y,z)2−λM(x,y,z)2+M(x,y,z)2
. (2.12)

Similarly, for x, y, z∈ X we can show that

λ (d(gy,hz))2 = max
t∈[a,b]

|gy(t)−hz(t)|2

< λM(x,y,z)2−λM(x,y,z)2+M(x,y,z)2
, (2.13)

and

λ (d(hz, f x))2 = max
t∈[a,b]

|hz(t)− f x(t)|2

< λM(x,y,z)2−λM(x,y,z)2+M(x,y,z)2
. (2.14)

12



Thus from (2.12), (2.13) and (2.14), we get

λ (G( f x,gy,hz))2 = λ max{d( f x,gy)2
,d(gy,hz)2

,d(hz, f x)2}

< λM(x,y,z)2−λM(x,y,z)2+M(x,y,z)2
.

Takingψ(t) = λ t2, ϕ(t) = (λ −1)t2 in Theorem 2.2, there exists a unique common fixed
point of f , g andh, which is a solution of (2.11).
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