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Abstract

We investigate the spatiotemporal dynamics of two dimensional lo-

gistic maps over a complex network. The complex network is an one

dimensional dynamic random network. The local on site map is chosen

as the fully chaotic two species logistic map. Species of different nodes

interact with symbiosis, predator-prey and competition. We study syn-

chronization behaviour of the ring network under the above three types

of interactions. We investigated the effect of coupling strength keeping

rewiring probability p fixed. Interesting observations are presented with

figures.
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1 Introduction

In recent years, complex networks have provided an increasingly challeng-
ing framework for the study of collective behaviors in complex systems, based
on the interplay between the wiring architecture and the dynamical properties
of the coupled units [1]. In recent years it has become evident that modelling
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large interactive systems by finite dimensional lattices on one hand, and fully
random networks on the other, is inadequate, as various networks, ranging
from collaborations of scientists to metabolic networks, do not fit in either
paradigm [2]. In fact many systems of biological, technological and physical
significance are better described by randomizing some fraction of the regular
links [3]. In this paper, we will study the spatiotemporal dynamics of coupled
map latices(CMLs), with some of its coupling connections rewired randomly[5].

R. Lopez Ruiz et.al. [4] had assumed that two species (xn, yn) are living
on an island and the island has not any contact with the exterior world. They
also assumed that for living species there is no possibility to migrate to a new
land with affordable resources. Each species evolves following a logistic type
dynamics,

xn+1 = µx(yn)xn(1 − xn)

yn+1 = µy(xn)yn(1 − yn) (1)

The interaction between species causes the growth rate µ(z) to vary with
time, and µ(z) depends on the population size of the others and on a positive
constant λ which measures the strength of the mutual interaction. They choose
the growth rate as a linear increasing µ1 or decreasing µ2 function expanding at
the parameter interval where the logistic map shows nonvanishing population,
that is µ ∈ (1, 4). They assumed

µ1(z) = λ(3z + 1)

µ2(z) = λ(−3z + 4) (2)

They proposed the following three types of coupling. Firstly, the symbiosis be-
tween species, it was modelled by the symmetrical coupling meaning a mutual
interacting benifit, with µx = µy = µ1. Secondly, the predator-prey inter-
action, it is based on the benifit / damage relationship established between
the predator and prey, respectively, then µx = µ1 and µy = µ2. Lastly, the
competition between species causes the contrary symmetrical coupling, then
µx = µy = µ2.

In this work, we assume that population of different islands can diffuse
i.e. some fraction of population can migrate from one island to other islands
with time. We have investigated the synchronization behaviour of the coupled
two dimensional logistic maps over a ring network under different coupling
strengths. We have also investigated the effects of different type of random
connections in the network on synchronization property of the network. We
consider logistic maps with symbiosis, predator-prey and competition interac-
tions.
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2 Model

Specifically, we consider an one dimensional ring of coupled two dimensional
logistic maps. The sites are denoted by integers i = 1, 2, ..., N , where N is the
linear size of the lattice. On each site a continuous state variable denoted by
xn(i), yn(i), is defined which corresponds to the physical variable of interest.
The evolution of this lattice, under standard nearest neighbour interactions,
in discrete time n is given by

xn+1(i) = (1 − ǫ)f(xn(i), yn(i)) +
ǫ

2
{xn(i + 1) + xn(i − 1)}

yn+1(i) = g(xn(i), yn(i)) (3)

The strength of coupling is given by ǫ. Now we will consider the above system
with its coupling connections rewired randomly in varying degrees, and try
to determine what dynamical properties are significantly affected by the way
connections are made between elements. In our study, at every update we
will connect a fraction p of randomly chosen sites in the lattice, to two other
random sites, instead of their nearest neighbours. That is, we will replace a
fraction p of nearest neighbour links by random connections. That is, with
probability p the dynamical equations of the system are

xn+1(i) = (1 − ǫ)f(xn(i), yn(i)) +
ǫ

2
{xn(ξ) + xn(η)}

yn+1(i) = g(xn(i), yn(i)) (4)

where ξ and η are random integers drawn from a uniform distribution in the set
of integers {1, 2, 3, ..., N}, and with (1 − p) probability the dynamical equatn
of the systems are

xn+1(i) = (1 − ǫ)f(xn(i), yn(i)) +
ǫ

2
{xn(i + 1) + xn(i − 1)}

yn+1(i) = g(xn(i), yn(i)) (5)

The case of p = 0 corresponds to the usual nearest neighbour interaction, while
p = 1 corresponds to completely random coupling . This scenario is much like
small world networks at low p.

2.1 Symbiosis

When two species (xn, yn) interect symbiotically the spatiotemporal evolution
of the lattice, under random interactions, in discrete time n is given by the
following. With probability p the evolution equations are

xn+1(i) = (1 − ǫ)λ(3yn + 1)xn(1 − xn) +
ǫ

2
{xn(ξ) + xn(η)}

yn+1(i) = λ(3xn + 1)yn(1 − yn) (6)
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and with (1 − p) probability the dynamical equation of the systems are

xn+1(i) = (1 − ǫ)λ(3yn + 1)xn(1 − xn) +
ǫ

2
{xn(i + 1) + xn(i − 1)}

yn+1(i) = λ(3xn + 1)yn(1 − yn) (7)

2.2 Predator-Prey

Let us think now that one of the species xn be a predator and yn be a prey.
In this case, with probability p the evolution equations are

xn+1(i) = (1 − ǫ)λ(3yn + 1)xn(1 − xn) +
ǫ

2
{xn(ξ) + xn(η)}

yn+1(i) = λ(−3yn + 4)yn(1 − xn) (8)

and with (1 − p) probability equations of the systems follow the following are

xn+1(i) = (1 − ǫ)λ(3yn + 1)xn(1 − xn) +
ǫ

2
{xn(i + 1) + xn(i − 1)}

yn+1(i) = λ(−3yn + 4)yn(1 − xn) (9)

2.3 Competition

Let us suppose now two species (xn, yn) evolving under a competative interac-
tion. Then spatiotemporal evolution of the lattice are governed by the following
equations

xn+1(i) = (1 − ǫ)λ(−3yn + 4)xn(1 − xn) +
ǫ

2
{xn(ξ) + xn(η)}

yn+1(i) = λ(−3yn + 4)yn(1 − xn) (10)

and with (1 − p) probability it are the following

xn+1(i) = (1 − ǫ)λ(−3yn + 4)xn(1 − xn) +
ǫ

2
{xn(i + 1) + xn(i − 1)}

yn+1(i) = λ(−3yn + 4)yn(1 − xn) (11)

Where the positive parameter λ expresses the strength of the mutual competa-
tive interaction.

3 Results and Discussions

We draw bifurcation diagram for single simbiotic logistic map in figure-1(a).
Bifurcation diagram for the lattice of simbiotic logistic maps(λ = 1.02) with
nearest neighbour coupling is shown in figure-1(b), with random coupling with
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Figure 1: Bifurcation diagram of (a) single simbiotic logistic map,(b) the lattice
with probability p = 0.0,(c) of the lattice with probability p = 0.5,(d) of the
lattice with probability p = 1.0.
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Figure 2: Bifurcation diagram of (a) single predator prey logistic map,(b) the
lattice with probability p = 0.0,(c) of the lattice with probability p = 0.5,(d)
of the lattice with probability p = 1.0.
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Figure 3: Bifurcation diagram of (a) single competetive logistic map,(b) the
lattice with probability p = 0.0,(c) of the lattice with probability p = 0.5,(d)
of the lattice with probability p = 1.0.

randomness p = 0.5 is shown in figure-1(c) and for completely random interac-
tion is shown in figure-1(d). We observe synchronization for nearest neighbour
coupling only. We draw bifurcation diagram for single predator-prey type
logistic map in figure-2(a). Bifurcation diagram for the lattice of predator-
prey type logistic maps(λ = 1.02) with nearest neighbour coupling is shown
in figure-2(b), with random coupling with randomness p = 0.5 is shown in
figure-2(c) and for completely random interaction is shown in figure-2(d). We
observe stable co-existence of predator-prey species in this case. We draw
bifurcation diagram for single competetive logistic map in figure-3(a). Bifur-
cation diagram for the lattice of competetive logistic maps(λ = 1.01) with
nearest neighbour coupling is shown in figure-3(b), with random coupling with
randomness p = 0.5 is shown in figure-3(c) and for completely random inter-
action is shown in figure-3(d). We observe synchronization property increases
with randomness here. This type of network will be usefull to devise control
methods for spatially extended prey-predator systems. Our study suggest that
natural regularizing mechanisms in physical and biological systems occur due
to complex interactions.
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