Some results of a class of univalent functions with negative coiffitions

Mustafa Abbas Fadhel ${ }^{1}$, , Rafid Habib Buti ${ }^{2}$
${ }^{1}$ Department of General Sciences, College of Basic Education, University of Al-Muthanna, Iraq
${ }^{2}$ Department of Mathematics and Computer Applications, College of Sciences, University of Al-Muthanna, Iraq
*Corresponding author E-mail: mustaffa8@hotmail.com

Copyright © 2014 Mustafa Abbas Fadhel, Rafid Habib Buti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we study a new subclass of univalent analytic functions with positive coefficients in the unit disk; we obtain main result, distortion theorem and some properties of this subclass.

Keywords: Univalent Functions, Distortion Theorem, Linear Combination.

1. Introduction

Let R denote the class of functions of the form:
$f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$
Which are analytic and univalent in the unit $\operatorname{disk} U=\{z \in C:|z|<1\}$?
Let R^{*} be a subclass of a class H consisting of functions of the form:
$f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad a_{n} \geq 0$.
A function $f \in R^{*}$ is said to be starlike function of order γ if and only if
$\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\gamma, \quad(0 \leq \gamma<1 ; z \in U)$.

Definition 1: A function $f \in H^{*}$ is said to be in the class $R M(B, \tau, \theta)$ if f satisfies the condition:

$$
\begin{equation*}
\left|\frac{\left\lvert\,\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)(\tau+\theta)+B\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right.}{(1-\theta)+\theta\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)}\right|<1, \tag{4}
\end{equation*}
$$

Where, $0 \leq B \leq 1,0 \leq \theta<1,0 \leq \tau \leq 1$.
In the following theorem, we obtain a sufficient condition for the function f to be in the class $R M(B, \tau, \theta)$.
Theorem 1: A function f defined by (2) be in the class $R M(B, \tau, \theta)$ if
$\sum_{n=2}^{\infty}[(n-2) \theta+1+(n-1)(\tau+\theta+B)] a_{n} \leq 1-\varepsilon$.
The result is sharp.

Proof: For $|z|=1$, we have $\mid\left[z f^{\prime}(z)-f(z)(\tau+\theta)+B\left(z f^{\prime}(z)-f(z)\right)\right]$
$-\left|f(z)(1-\theta)+\theta\left(z f^{\prime}(z)-f(z)\right)\right|$
$=\left|\sum_{n=2}^{\infty}(n-1)(\tau+\theta+B) a_{n} z^{n}\right|$
$-\left|z(1-\theta)+\sum_{n=2}^{\infty}[(n-2) \theta+1] a_{n} z^{n}\right|$
$=\sum_{n=2}^{\infty}\left[(n-2) \theta+1+(n-1)(\tau+\theta+B] a_{n}-(1-\theta) \leq 0\right.$.
This by maximum modulus theorem $f \in R M(B, \tau, \theta)$
The result is sharp for the function f given by the form
$f_{n}(z)=z+\frac{1-\theta}{[(n-2) \theta+1+(n-1)(\tau+\theta+B)]} z^{n}$
There are many authors who have studied the various interesting properties of the classes, H. Silvrerman [4], H. J. A. Hussein and R. H. Buti[3], K. K. Dixit and Y.K. Mishra[2] , N. E. Cho , S. H. Lee and S. Owa [1].
In the next, we obtain distortion theorem for the class $R M(B, \tau, \theta)$.

Theorem 2: Let $f(z)$ defined by (2) be in the class $R M(B, \tau, \theta)$. Then
$|f(z)| \leq|z|+\frac{1-\theta}{[1+\tau+\theta+B]}|z|^{2}$
and
$|f(z)| \geq|z|-\frac{1-\theta}{[1+\tau+\theta+B]}|z|^{2}$.
The inequalities in (7) and (8) are attuned for the function
$f(z)=z+\frac{1-\theta}{[1+\tau+\theta+B]} z^{2}$
Proof: By using Theorem 1, we have
$\sum_{n=2}^{\infty} a_{n} \leq \frac{1-\theta}{[1+\tau+\theta+B]}$
So by using (2) and (10), we have
$|f(z)| \leq|z|+|z|^{2} \sum_{n=2}^{\infty} a_{n}$
$\leq|z|+\frac{1-\theta}{[1+\tau+\theta+B]}|z|^{2}$,
Which gives (7), we also have
$|f(z)| \geq|z|-|z|^{2} \sum_{n=2}^{\infty} a_{n}$
$\geq|z|-\frac{1-\theta}{[1+\tau+\theta+B]}|z|^{2}$
Which gives (8)?
Now, we shall prove that class $R M(B, \tau, \theta)$ is closed under convex linear combinations.
Let the function $f_{k}(k=1,2, \ldots, m)$ be defined by
$f_{k}(z)=z+\sum_{n=1}^{\infty} a_{n, k} z^{n} \quad, \quad\left(a_{n, k} \geq 0, n \geq 2\right)$.

Theorem 3: Let the function $f_{k}(z)$ defined by (11) be in the class $R M(B, \tau, \theta),(0 \leq \theta<1)$. Then the following function g defined by
$g(z)=z+\frac{1}{m} \sum_{n=2}^{\infty}\left[\sum_{k=2}^{m} a_{n, k}\right] z^{n},(k=1,2, \ldots, m)$
Is in the class $R M(B, \tau, \theta)$, where $\theta=\min _{2 \leq k \leq m}\left\{\theta_{k}\right\}$.
Proof: Since $f_{k} \in R M(B, \tau, \theta)$ for each $(k=1,2, \ldots, m)$, we note that
$\sum_{n=2}^{\infty}\left[(n-2) \theta_{k}+1+(n-1)\left(\tau+\theta_{k}+B\right)\right] a_{n, k} \leq 1-\varepsilon_{k}$.

Therefore
$\sum_{n=2}^{\infty}\left[(n-2) \theta_{k}+1+(n-1)\left(\tau+\theta_{k}+B\right)\right]\left[\frac{1}{m} \sum_{k=2}^{m} a_{n, k}\right]$
$=\frac{1}{m} \sum_{k=2}^{m}\left[\sum_{n=2}^{\infty}\left[(n-2) \theta_{k}+1+(n-1)\left(\tau+\theta_{k}+B\right)\right] a_{n, k}\right]$
$\leq \frac{1}{m} \sum_{k=2}^{m}\left(1-\theta_{k}\right) \leq(1-\theta)$.
Thus, we get
$\sum_{n=2}^{\infty}\left[(n-2) \theta_{k}+1+(n-1)\left(\tau+\theta_{k}+B\right)\right]\left[\frac{1}{m} \sum_{k=2}^{m} a_{n, k}\right] \leq 1-\theta$.
Hence, by Theorem 1, we have $g \in R M(B, \tau, \theta)$.
In the next we show that the integral operator in the class $R M(B, \tau, \theta)$.

References

[1] N. E. Cho, S. H. Lee and S. Owa, A class of meromorphic univalent functions with positive coefficients, Koebe J. Math., 4 (1987), 43-50
[2] K. K. Dixit and Y. K. Mishra, Meromorphic starlike functions with positive missing coefficients, Acta Ciencia Indica, Vol. XXV, M. No. 2(1999), 211-219.
[3] H. J. A. Hussein and R. H. Buti, Some Geometric Properties of a Class of Univalent Functions with Negative Coefficients Defined by Hadamard Product with Fractional Calculus I, I.M.Forum, Vol. 6, 2011, no. 64, 3179 - 3188.
[4] H. Silverman, Starlike and convexity properties for hypergeometric functions, J. Math. Anal. Appl. 172(1993), 574-581. http://dx.doi.org/10.1006/jmaa.1993.1044.

