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Abstract

We make use of the properties of the class of extended ABS (EABS) algorithms to present an efficient class of
algorithms for computing the search directions of the primal–dual infeasible interior point methods (IIPMs) for
solving convex quadratic programming problems (CQPs), when when the number of variables and constraints are
equal. We show that, in this case, the parameters of the EABS algorithms for computing a search direction can
always be chosen so that a part of the search vectors of the corresponding member of the class of EABS algorithms
does not change in various iterations of the IIPMs.
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1. Introduction

Consider the CQP,

Min
1
2
xT Qx + cT x s.t. Ax = b, x ≥ 0,

where c, x ∈ Rn, Q ∈ Rn×n is symmetric positive semidefinite, A ∈ Rm×n and b ∈ Rm. Here, we assume that
rank(A) = m and m ≤ n. In the kth iteration of an IIPM for solving CQPs, the search direction is computed by
solving the (2n + m)× (2n + m) system of linear equations [3],


−Q AT In

A 0 0
Sk 0 Xk







∆xk

∆yk

∆sk


 =




−rk
c

−rk
b

−rk
xs


 , (1)

where rk
c , rk

b and rk
xs are given by

rk
b = Axk − b, rk

c = AT yk + sk − c−Qxk, rk
xs = XkSke− σkµke,

with (xk, yk, sk) the kth iterate of the IIPM, Xk and Sk the diagonal matrices with its diagonal elements being
the components of the vectors xk and sk, respectively, and e = (1, · · · , 1)T ∈ Rn. Moreover, σk ∈ (0, 1) and
µk = (xk)T sk/n are termed as centering parameter and duality gap, respectively.
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The major computational work in every iteration of an IIPM for solving CQPs, affecting stability and robustness
of the method, is due to the computation of the search direction as the solution of the linear system (1). Here,
we present an efficient approach for reducing the original system (1), using the class of extended ABS (EABS)
algorithms. We first explain the class of ABS and EABS algorithms. ABS algorithms, introduced by Abaffy,
Broyden and Spedicato [1], are a class of direct iteration type methods for solving a linear system where the point
computed at the ith iteration solves the first i equations of the linear system. Therefore, a system of m equations
is solved in at most m iterations. Let aT

i denote the ith row of the coefficient matrix A in the linear system
Ax = b and πi denote the rank of the first i rows of A. Chen et al. [2] introduced a generalization of the ABS
algorithms, called extended ABS (EABS) class of algorithms, which differs from the ABS algorithms only in its
updating of the Abaffian matrices Hi. In the EABS algorithms, the Abaffian matrices Hi, with rank ji, are updated
as Hi+1 = GiHi, where Gi ∈ Rji+1×ji is such that we have Gix = 0 if and only if x = αHiai, for some α ∈ R.
Note that in the EABS algorithms we can set Gi = I −Hiaiw

T
i , where wT

i Hiai = 1. Therefore, the class of EABS
algorithms contains the class of ABS algorithms. It is observed that, like the basic ABS algorithm, an EABS
algorithm solves a new equation at each iteration. Thus, at most m iterations are needed to find a solution. Some
properties of the EABS algorithms are noted next (see [1, 2] for the proofs). 1. Hiai = si = 0 if and only if ai is
linearly dependent on a1, a2, · · · , ai−1. 2. The rows of Hi+1 generate the null space of the first i rows of A (note that
this implies AHT

m+1 = 0). 3. If the first i equations has a solution, then the general solution for the first i equations
is written as xi+1 + HT

i+1s, for s ∈ Rn. 4. Let x∗ = xi+1 + HT
i+1s

∗ be a special solution of the system Ax = b and
Z = (Hi+1ai+1, · · · ,Hi+1am)T , ri+1 = b − Axi+1. Then, s∗ is the solution of the linear system Zy = (ri+1)m−i,
where (ri+1)m−i denotes the last m − i components of the vector ri+1. Moreover, we have s∗ = ZT d, where d is
a solution of the linear system ZZT d = (ri+1)m−i. If A has full row rank, then the rows of Z are nonzero and
linearly independent (see [1]) and hence ZZT is symmetric and positive definite. 5. If x1 = 0, then the solution of
the system is xm+1 = Pτ , where P = (p1, · · · , pm) and τ = (τ1, · · · , τm)T . 6. If rank(A) = n ≤ m, then Hm+1 is
the zero matrix. Now, we explain our basic idea. Starting with x1 as the zero vector, let pi, 1 ≤ i ≤ 2n + m, be the
search vectors obtained by an application of an EABS algorithm to the coefficient matrix in (1). Then, by property

5, the solution of the system can be obtained by
(
∆xkT

, ∆ykT
, ∆skT

)T

= Pτk, where P = (p1, p2, · · · , p2n+m)

and τk = (τk
1 , τk

2 , · · · , τk
2n+m)T with τk

j , 1 ≤ j ≤ 2n + m, as the step sizes. Note that if the search vectors pi,
1 ≤ i ≤ 2n + m, are independent of the iteration number k, then in every iteration of the IIPM, using this fact, the
solution of the linear system (1), that is, the search direction, can efficiently be computed merely by determining
the step sizes of the corresponding EABS algorithm. We name such search vectors as iteration–free search vectors.
In Section 2, we discuss iteration–free search vectors of the EABS algorithm for solving (1). In Section 3, we show
how we can use these iteration–free search vectors to characterize the EABS solutions of (1).

2. Iteration–free search vectors

In the kth iteration of an IIPM for solving CQPs, the search direction is computed by solving the linear system
(1). We start the EABS algorithm with x1 = 0 ∈ R2n+m and H1 = I2n+m, where I2n+m is the identity matrix of
dimension 2n + m.

Theorem 2.1 For 1 ≤ i ≤ n, let zi = wi =
(
0, 0, eT

i

)T ∈ R2n+m, where the first two zeros are of dimensions n and
m, respectively, and ei is the ith column of the identity matrix In and the Abaffian matrices are updated as in Step
5 of a basic ABS algorithm. Then, in the ith iteration of the EABS algorithm for solving (1), we have

pi =




0
0
ei


 , Hi+1 =




In 0
∑i

j=1 qje
T
j

0 Im −∑i
j=1 Aeje

T
j

0 0 In −
∑i

j=1 eje
T
j


 , (2)

where qj is the jth column of the matrix QT .

Proof: First of all, we note that for i, 1 ≤ i ≤ n, the ith row of the coefficient matrix of system (1) is aT
i =(−qT

i , eT
i AT , eT

i

)
. We proceed by induction. Since H1 = I2n+m, for i = 1 we have aT

1 HT
1 e1 = 1 6= 0. Thus, we

can choose w1 = z1 = e1 =
(
0, 0, eT

1

)T , and the corresponding search vector p1, and the Abaffian matrix H2 are
computed as:

p1 = HT
1 z1 =




0
0
e1


 , H2 = H1 −



−q1

Ae1

e1


(

0, 0, eT
1

)
=




In 0 q1e
T
1

0 Im −Ae1e
T
1

0 0 In − e1e
T
1


 .
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Suppose that (2) is true for i = 1, 2, · · · , t− 1, (t ≤ n). For i = t, we have

(
0, 0, eT

t

)



In 0
∑t−1

j=1 qje
T
j

0 Im −∑t−1
j=1 Aeje

T
j

0 0 In −
∑t−1

j=1 eje
T
j






−qt

Aet

et


 = eT

t et = 1 6= 0.

Therefore, we can choose zt = wt =
(
0, 0, eT

t

)T , and by doing simple algebraic calculations, we obtain

pt = HT
t zt =




0
0
et


 , Ht+1 = Ht −Htatw

T
t Ht =




In 0
∑t

j=1 qje
T
j

0 Im −∑t
j=1 Aeje

T
j

0 0 In −
∑t

j=1 eje
T
j


 .

So, by induction, (2) is true for 1 ≤ i ≤ n and the proof is complete.
Note that, by Theorem 2.1, after n iterations we have

Hn+1 =




In 0
∑n

j=1 qje
T
j

0 Im −∑n
j=1 âje

T
j

0 0 0


 =




In 0 QT

0 Im −A
0 0 0


 . (3)

Now, let aT
i , 1 ≤ i ≤ m, denote rows of the matrix A, and consider the linear system Ax = 0. Applying the EABS

algorithm with ji+1 = n− i to this system, starting with H1 = In and x1 = 0 ∈ Rn, in the ith iteration, choose zi

so that zT
i Hiai 6= 0, and let pi = H

T

i zi. After computing xi+1, choose Gi ∈ R(n−i)×(n−i+1) so that Gix = 0 if and
only if x = αHiai, for some α ∈ R, and let Hi+1 = GiHi. The following theorem establishes the EABS parameters
for the (n + i)th, 1 ≤ i ≤ m, iteration of the algorithm for solving (1).

Theorem 2.2 For i, 1 ≤ i ≤ m, let

zn+i =




zi

0
0


 ∈ R2n+m, Gn+i =




Gi 0 0
0 Im 0
0 0 In


 ∈ R2n+m,

where the zi and Gi are obtained by the application of an EABS algorithm to the linear system Ax = 0. Then, in
the (n+ i)th iteration of the EABS algorithm, with the same parameters for the first n iterations as in Theorem 2.1
applied to solve (1), we have

pn+i =




pi

0
Qpi


 , Hn+i+1 =




Hi+1 0 Hi+1Q
T

0 Im −A
0 0 0


 , 1 ≤ i ≤ m. (4)

Proof: We observe that, for 1 ≤ i ≤ m, the (n + i)th row of the coefficient matrix of system (1) is
(
aT

i , 0, 0
)
. We

proceed by induction. For i = 1, using (3), we have

(
zT
1 , 0, 0

)
Hn+1




a1

0
0


 =

(
zT
1 , 0, 0

)



In 0 QT

0 Im −A
0 0 0







a1

0
0


 = zT

1 H1a1 6= 0.

Moreover, since



G1 0 0
0 In 0
0 0 In







a1

0
0


 = G1a1

and G1 is chosen so that G1x = 0 if and only if x = αH1a1, for some α ∈ R, therefore the choice of Gn+1 is valid.
Thus, by choosing Gn+1 as above and zn+1 =

(
zT
1 , 0, 0

)T
, we will have

pn+1 = HT
n+1




z1

0
0


 =




H
T

1 0 0
0 Im 0

QH
T

1 −AT 0







z1

0
0


 =




z1

0
Qz1


 =




p1

0
Qp1


 ,
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and, by doing simple algebraic calculations, we have

Hn+2 = Gn+1Hn+1

=




G1 0 0
0 In 0
0 0 In







H1 0 H1Q
T

0 Im −A
0 0 0




=




G1H1 0 G1H1Q
T

0 Im −A
0 0 0


 =




H2 0 H2Q
T

0 Im −A
0 0 0


 .

Note that we have assumed H1 = In. Suppose that (4) holds for i = 1, 2, · · · , t− 1, (t ≤ m) and consider the case
i = t. We have

(
zT

t , 0, 0
)
Hn+t




at

0
0


 =

(
zT

t , 0, 0
)



Ht 0 HtQ
T

0 Im −A
0 0 0







at

0
0


 = zT

t Htat 6= 0.

Therefore, by choosing zT
n+t = (zT

t , 0, 0), we will have

pn+t = HT
n+tzn+t =




H
T

t 0 0
0 Im 0

QH
T

t −AT 0







zt

0
0


 =




H
T

t zt

0
QH

T

t zt


 =




pt

0
Qpt


 .

From



Gt 0 0
0 In 0
0 0 In







at

0
0


 = Gtat

and the fact that Gt is chosen so that Grx = 0 if and only if x = αHtat, for some α ∈ R, the choice of Gn+t is then
valid. Moreover, we can write

Hn+t+1 =




GtHt 0 GtHtQ
T

0 Im −A
0 0 0


 =




Ht+1 0 Ht+1Q
T

0 Im −A
0 0 0


 .

This completes the proof of the theorem.
Note that by Theorem 2.2, after m+n+1 iterations, we have

Hn+m+1 =




Hm+1 0 Hm+1Q
T

0 Im −A
0 0 0


 . (5)

Next, we construct the last n iterations of the EABS algorithm applied to the system (1). Consider the linear
system AT y = 0. In applying the ABS algorithm to this system, starting with Ĥ1 = Im and x̂1 = 0 ∈ Rm, in the
ith iteration we choose ẑi so that ẑT

i ĤT
i Aei 6= 0, and let p̂i = ĤT

i ẑi. Then, we choose ŵi so that ŵT
i ĤT

i Aei = 1,
and let Ĥi+1 = Ĥi − ĤiAeiŵ

T
i Ĥi. Let Πk = Sk(Xk)−1, H = Hm+1 and B0

k = 0. Define the matrices Bj
k ∈ Rn×m

according to the following formula:

Bj
k = Bj−1

k −Bj−1
k Aejŵ

T
j Ĥj + H[QT + Πk]ejŵ

T
j Ĥj , 1 ≤ j ≤ m. (6)

Remark 2.3 Note that, since by properties of ABS algorithms, Ĥm+1ai = 0, 1 ≤ i ≤ m, and ai, 1 ≤ i ≤ m, are
linearly independent, then Ĥm+1 would be the zero matrix.
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3. Computing the search directions

Here, we provide the search directions of IIPM using the search vectors obtained in Section 2 for the system (1).
The solution of the first 2m + n equations of (1) is:




∆xk

∆yk

∆sk


 =




Pλk

P̂ βk

−rk
c + QPλk −AT P̂ βk


 ,

where P = (p1, p2, · · · , pm), P̂ = (p̂1, p̂2, · · · , p̂m), λk = (λk
1 , λk

2 , · · · , λk
m), βk = (βk

1 , βk
2 , · · · , βk

m), and the ith
component of the vectors λk and βk are defined, using the properties of the EABS algorithm as:

λk
1 =

−(rk
b )T e1

aT
1 p1

, λk
i =

−(rk
b )T ei −

∑i−1
j=1 λk

j aT
i pj

aT
i pi

,

for 2 ≤ i ≤ m, and

βk
1 =

sk
1eT

1 Pλk − xk
1eT

1 rk
c + (rk

xs)T e1 + xk
1eT

1 QPλk

xk
1eT

1 AT p̂1
,

βk
i =

(rk
xs)

T ei + sk
i eT

i Pλk − xk
i eT

i (
∑i−1

j=1 βk
j AT p̂j)− xk

j eT
j rk

c + xk
j eT

j QPλk

xk
j eT

j AT p̂j
,

for 2 ≤ i ≤ m. Now, let Am and An−m denote the first m columns and the last n−m columns of A, respectively,
L = AP and L̂m = AT

mP̂ . Then, we can also compute λk and βk, by solving the linear systems Lλk = −rk
b and

L̂mβk = r̂k
m, where r̂k

m denotes the first m components of r̂k = (Xk)−1rk
xs + ΠkPλk − rk

c + QPλk. Note that L and
L̂m are nonsingular lower triangular matrices. If m = n, then the solution of (1) is at hand. Moreover, in this case
all search vectors of the EABS algorithm for solving (1) are iteration–free.

4. Conclusion

We made use of some properties of the class of EABS algorithms to show that in the EABS approach, a portion of
the search vectors of the EABS algorithm for computing the search direction of the Newton system does not change
in every iteration of the IIPM.

Acknowledgements

The author would like to thank the councl of the shiraz university of technology for supporting this work.

References

[1] Abaffy, J., Broyden, CG., Spedicato, E., Title of the BookProjection Algorithms: Mathematical Techniques for Linear
and Nonlinear Equations, Ellis Horwood, Chichester,, (1989).

[2] Chen, Z., Deng, NY., Xue., Y., ”A general algorithm for underdetermined linear systems”, The Proceedings of the First
International Conference on ABS Algorithms, (1992), pp.1-13.

[3] Dominguez, J., Gonzalez-Lima, MD., “A primal dual interior-point algorithm for quadratic programming”, Proceedings
of the conference name, Vol.42, (2006), pp.1-30.


