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Abstract

We make use of the properties of the class of extended ABS (EABS) algorithms to present an efficient class of
algorithms for computing the search directions of the primal-dual infeasible interior point methods (IIPMs) for
solving convex quadratic programming problems (CQPs), when when the number of variables and constraints are
equal. We show that, in this case, the parameters of the FABS algorithms for computing a search direction can
always be chosen so that a part of the search vectors of the corresponding member of the class of EABS algorithms
does not change in various iterations of the ITPMs.
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1. Introduction

Consider the CQP,

1
Min §xTQx +clx st. Ax =0, x>0,
where ¢,z € R", Q € R™* "™ is symmetric positive semidefinite, A € R™*" and b € R™. Here, we assume that
rank(A) = m and m < n. In the kth iteration of an ITPM for solving CQPs, the search direction is computed by
solving the (2n 4+ m) x (2n + m) system of linear equations [3],

-Q AT I, Azk —ré“
A 0 0 Ayk | = -k, (1)
Sk 0 Xk Ask —rk

where Tf, rl’f and r’;S are given by

r{f = AzF — b, Tf = ATyk + sF — ¢ — QaF, ris = X*S*e — oppure,

with (2, ¥, s*) the kth iterate of the IIPM, X* and S* the diagonal matrices with its diagonal elements being
the components of the vectors z* and s, respectively, and e = (1,--- ,1)T € R™. Moreover, o, € (0,1) and
pr = (¥)T's* /n are termed as centering parameter and duality gap, respectively.
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The major computational work in every iteration of an ITPM for solving CQPs, affecting stability and robustness
of the method, is due to the computation of the search direction as the solution of the linear system (1). Here,
we present an efficient approach for reducing the original system (1), using the class of extended ABS (EABS)
algorithms. We first explain the class of ABS and EFABS algorithms. ABS algorithms, introduced by Abaffy,
Broyden and Spedicato [1], are a class of direct iteration type methods for solving a linear system where the point
computed at the ith iteration solves the first ¢ equations of the linear system. Therefore, a system of m equations
is solved in at most m iterations. Let al denote the ith row of the coefficient matrix A in the linear system
Az = b and m; denote the rank of the first ¢ rows of A. Chen et al. [2] introduced a generalization of the ABS
algorithms, called extended ABS (EABS) class of algorithms, which differs from the ABS algorithms only in its
updating of the Abaffian matrices H;. In the EFABS algorithms, the Abaffian matrices H;, with rank j;, are updated
as H;y1 = G;H;, where G; € R7+1*Ji is such that we have G;z = 0 if and only if 2 = aH;a;, for some o € R.
Note that in the EABS algorithms we can set G; = I — HiaiwiT, where wZTHZ-aZ- = 1. Therefore, the class of EABS
algorithms contains the class of ABS algorithms. It is observed that, like the basic ABS algorithm, an EABS
algorithm solves a new equation at each iteration. Thus, at most m iterations are needed to find a solution. Some
properties of the FABS algorithms are noted next (see [1, 2] for the proofs). 1. H;a; = s; = 0 if and only if a; is
linearly dependent on ay,as, -+ ,a;—1. 2. The rows of H;11 generate the null space of the first ¢ rows of A (note that
this implies AHL +1 =0). 3. If the first i equations has a solution, then the general solution for the first i equations
is written as z;41 + Hﬁ_ls, for s € R™. 4. Let * = ;41 + Hﬂ_ls* be a special solution of the system Az = b and
Z = (His1ai41,+ yHiv1am)T, riv1 = b— Ax;y1. Then, s* is the solution of the linear system Zy = (ris1)m—i,
where (7;41)m_i denotes the last m — i components of the vector 7;4;. Moreover, we have s* = Z7d, where d is
a solution of the linear system ZZ7d = (r;11)m_s. If A has full row rank, then the rows of Z are nonzero and
linearly independent (see [1]) and hence ZZ7 is symmetric and positive definite. 5. If z; = 0, then the solution of
the system is ,,4+1 = P1, where P = (py, -+ ,pm) and 7 = (7, - - ,Tm)T. 6. If rank(A) = n < m, then H,,1; is
the zero matrix. Now, we explain our basic idea. Starting with z; as the zero vector, let p;, 1 <@ < 2n+m, be the
search vectors obtained by an application of an FABS algorithm to the coefficient matrix in (1). Then, by property

T
5, the solution of the system can be obtained by (Aka,AykT,AskT> = P7* where P = (p1,p2, - ,Pantm)

and 7% = (7f, 75, .- ,T§n+m)T with Tjk, 1 < j < 2n + m, as the step sizes. Note that if the search vectors p;,

1 <i < 2n+m, are independent of the iteration number k, then in every iteration of the IIPM, using this fact, the
solution of the linear system (1), that is, the search direction, can efficiently be computed merely by determining
the step sizes of the corresponding EABS algorithm. We name such search vectors as iteration—free search vectors.
In Section 2, we discuss iteration—free search vectors of the FABS algorithm for solving (1). In Section 3, we show
how we can use these iteration—free search vectors to characterize the EABS solutions of (1).

2. Iteration—free search vectors

In the kth iteration of an IIPM for solving CQPs, the search direction is computed by solving the linear system
(1). We start the EABS algorithm with 21 = 0 € R>"™™ and H; = Iz, m, where Iy, 1, is the identity matrix of
dimension 2n + m.

Theorem 2.1 For 1 <i<n, let z; = w; = (0,0, ef)T € R?"™ where the first two zeros are of dimensions n and
m, respectively, and e; is the ith column of the identity matrix I,, and the Abaffian matrices are updated as in Step
5 of a basic ABS algorithm. Then, in the ith iteration of the EABS algorithm for solving (1), we have

0 In 0 3ii4e]
Pi = O 5 Hi+1 = O Im — 23:1‘1463‘6? s (2)
€i 0 0 I,—>_ ejef

where q; is the jth column of the matriz Q7.

Proof: First of all, we note that for 4, 1 < i < n, the ith row of the coefficient matrix of system (1) is @, =

i

(—qF, eI AT el'). We proceed by induction. Since Hy = Isnim, for i = 1 we have ai H{ & = 1 # 0. Thus, we

can choose wy = 21 = €; = (O, 0, ef)T, and the corresponding search vector p;, and the Abaffian matrix Hy are
computed as:

0 — L 0 qef
p1L = Hszl = 0 , Ho=H; — | Ae (O,O,elT) = 0 I, —Aeel
el el 0 0 1, — ele?
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Suppose that (2) is true for ¢ =1,2,--- ,t — 1, (¢t < n). For i = ¢, we have

t—1
I, 0 Zj:l qJ‘@f —qt
0,0,¢f)| 0 I, —X7) Aejel Ae; | =eley=140.
0 0 Ii—Y'Tieel et

Therefore, we can choose z; = wy = (O, 0, etT)T, and by doing simple algebraic calculations, we obtain

0 I, 0 22:1 gel
Pt = H;T,Zt = O ; Ht-‘rl = Ht — Htat’thHt = O Im — Z;:l Aejef
et o 0 I,- 23:1 eje?

So, by induction, (2) is true for 1 < i < n and the proof is complete.
Note that, by Theorem 2.1, after n iterations we have

L 0 Y qe] L, 0 QT
Hn+1 = 0 Ip _Z?ﬂ aj@? = 0 I, —A . (3)
0 0 0 0 0 0

Now, let al’, 1 <1 < m, denote rows of the matrix A, and | consider the linear system Az = 0. Applying the EABS
algorithm with j;11 = n — ¢ to this system, starting with H; = I,, and 7; = 0 € R", in the ¢th iteration, choose z;
so that E?F@ # 0, and let p;, = ﬁ?z Af‘Ler computing z;41, choose G, € R(n=i)x(n—=itl) g5 that Gz = 0 if and
only if x = aH;a;, for some o« € R, and let H;; = G;H;. The following theorem establishes the FABS parameters
for the (n 4 4)th, 1 <i < m, iteration of the algorithm for solving (1).

Theorem 2.2 Fori, 1 <i<m, let

Z; él 0 0
Znyi=| 0 | € RV, Guii=| 0 I, 0 | eRrm,
0 0o 0 I,

where the Z; and G; are obtained by the application of an EABS algorithm to the linear system Ax = 0. Then, in
the (n+1)th iteration of the EABS algorithm, with the same parameters for the first n iterations as in Theorem 2.1
applied to solve (1), we have

D; Hiyn 0 HipQF
Pn+i = 0 3 Hn+i+1 = 0 Im —A 5 1 S ) S m. (4)
Qp; 0 0 0

Proof: We observe that, for 1 <4 < m, the (n + ¢)th row of the coefficient matrix of system (1) is (azT, 0,0). We
proceed by induction. For ¢ = 1, using (3), we have

ai I, 0 QT ai -
(21,0,0)H,y1 | O | =(z{,0,00| 0 I, -A 0 | =zTHya, #0.
0 0 0 0 0
Moreover, since
él 0 0 ay o
0o I, O 0 =Giag
0o o0 I, 0

and G is chosen so that Gz = 0 if and only if 2 = aH ay, for some a € R, therefore the choice of G, is valid.
Thus, by choosing G,,+1 as above and 2,41 = (ElT, 0, ())T, we will have

% H 0 0 % % Py
Pn41 = H;l;+1 0 = 0 I, 0 0 = 0 = 0 ,
0 QH, —AT 0 0 Q%1 QP
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and, by doing simple algebraic calculations, we have

Hn+2 - Gn+1Hn+1
Gy 0 0 H, 0 HQT
= 0o I, O 0 I, —A
0o 0 I, 0 0 0
GiH;y 0 GH.Q7 Hy 0 HQT
- o I, -A 0 I, -A
0 0 0 0 0 0

Note that we have assumed H; = I,,. Suppose that (4) holds for i = 1,2,--- ,£ — 1, (¢ < m) and consider the case
i =t. We have

Q¢ Ft O FtQT a¢ -
(z/,0,0)Hyie | O | =000 0 I, -A 0 | =z'Ha; #0.
0 0 0 0 0

Therefore, by choosing 21, = (z ,0,0), we will have

—T —=T
T Ht 0 0 Z Ht Zt Dy
Pn4t = Hn_,'_th_;,_t = 0 Im 0 0 = 0 = 0
QH, -AT 0 0 QH, %, Qp,

From

ét 0 0 Qg o

0 I, O 0 = Gay

0o 0 I, 0

and the fact that G, is chosen so that G,z = 0 if and only if = a.Ha¢, for some a € R, the choice of G4t is then
valid. Moreover, we can write

G:Hy 0 GHQ" Hiyn 0 Hep Q7
H7L+t+1 = 0 Im —-A = 0 Im —-A
0 0 0 0 0 0

This completes the proof of the theorem.
Note that by Theorem 2.2, after m+n+1 iterations, we have

quLl 0 FerlQT
Hypmyr = 0 In —A - (5)
0 0 0

Next, we construct the last n iterations of the EABS algorithm applied to the e system (1). Consider the linear

system ATy = 0. In applying the ABS algorithm to this system Startlng with H1 = I, and T = 0 € R™, in the
1th iteration we choose z; so that ZTHTAel #0, and let p; = H z;. Then, we choose w; so that wTHTAel =1,

and let HZ+1 H H, iAe; ] H Let Ik = Sk(X*)~' H = H,,;, and B,c = 0. Define the matrices Bi € Rmxm
according to the following formula:

Bi = Bi71 — BiilAej@?ﬁj —‘rF[QT + Hk}ej@fﬁj, ]. S] S m. (6)

Remark 2.3 Note that, since by properties of ABS algorithms, ﬁmﬂai =0,1<i<m, and a;, 1 <i < m, are
linearly independent, then H,,+1 would be the zero matriz.
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3. Computing the search directions

Here, we provide the search directions of IIPM using the search vectors obtained in Section 2 for the system (1).
The solution of the first 2m + n equations of (1) is:

Azk Pk
Ayt | = pPpt 7
Ast —rk 4+ QPN* — ATPgE

where P = (§17§2a"' 7ﬁm>7 ﬁ = (ﬁlaﬁQa"' 7ﬁm>7 )\k = ()‘Ifa)‘lga 7>‘§1)7 ﬁk = (/6{:’557 aﬁrlz)a and the ith
component of the vectors \¥ and ¥ are defined, using the properties of the EABS algorithm as:

1
)\k (rl]f)Tel )\k _ _(Tl]f)Tei B Zl /\ka ]
= A = T
aj Py ai D;

for 2 < i <m, and

g = skeT PAF — gkeTrk 4 (rk \Te) + abeT QPAF
1 - )

kel ATpy
(rk)Te; + sFel PAF — zke f(z ﬁkAij) —akelrh +ahel QPN

g =
K3 TT b
jjA pj

for 2 < i < m. Now, let A,, and A,,_,, denote the first m columns and the last n — m columns of A, respectively,
L=AP and Ly, = AL P. Then, we can also compute A¥ and ¥, by solving the linear systems LA¥ = —rf and
mﬂk % where 7%, denotes the first m components of 7% = (X*)~1rk + TIFPAF — 7k + QPAF. Note that L and

Lm are nonsmgular lower triangular matrices. If m = n, then the solution of (1) is at hand. Moreover, in this case
all search vectors of the FABS algorithm for solving (1) are iteration—free.

4. Conclusion

We made use of some properties of the class of FABS algorithms to show that in the FABS approach, a portion of
the search vectors of the FABS algorithm for computing the search direction of the Newton system does not change
in every iteration of the IIPM.
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