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Abstract 

 

The Multi-Dimensional Scaling (MDS) method is used in statistics to detect hidden interrelations among multi-

dimensional data and it has a wide range of applications. The method’s input is a matrix that describes the 

similarity/dissimilarity among objects of unknown dimension. The objects are generally reconstructed as points of a 

lower dimensional space to reveal the geometric configuration of the objects. The original MDS method uses Euclidean 

distance, for measuring both the distance of the reconstructed points and the bias of the reconstructed distances from the 

original similarity values. In this paper, these distances are distinguished, and distances other than Euclidean are also 

used, generalizing the MDS method. Two different distances may be used for the two different purposes. Therefore the 

instances of the generalized MDS model are denoted as         model, where the first distance is the type of distance of 

the reconstructed points and the second one measures the bias of the reconstructed distances and the similarity values. 

In the case of     and     distances mixed-integer programming models are provided. The computational experiences 

show that the generalized model can catch the key properties of the original configuration, if any exist. 

 
Keywords: Multivariate Analysis; Multi-Dimensional Scaling; Optimization; Mixed Integer Linear Programming; Statistics. 
 

1. Introduction 

A crucial function of statistics is to analyze data to interpret relationships of a number of variables. One method for 

accomplishing this is to map the data into a lower-dimensional space, allowing the interrelation among the investigated 

objects to become visible. Multi-Dimensional Scaling (MDS) and factor analysis are well-known methods for 

performing such analyses. 

Multidimensional scaling explores the similarities or dissimilarities in the measures of objects [2]. The data used in 

MDS can be referred to by several names (dissimilarities, similarities, distances, or proximities). However, the terms 

“dissimilarity” and “similarity”, are the most common. In general, it is assumed that the similarity values are 

nonnegative and symmetric. The objects are completely identical if the similarity value is zero. A higher (dis)similarity 

value means higher dissimilarity between the objects. 

The same method can be used to reconstruct the geometric configuration of many finite points. Reconstruction consists 

of finding proper positions in the plane or in space for the points [7], but the results of the reconstruction must not be 

geometrically identical to the original structure. Depending on the distance matrix for a set of points, if there is any 

clear underlying geometric structure, the results of the reconstruction will reflect the structure, as well. Thus, only the 

relative positions of points in the space are determined.  

The traditional MDS method assumes Euclidean distance, i.e., the Euclidean distances between the reconstructed points 

are compared to the similarity values of the objects. It minimizes the total quadratic error that is, it measures the 

“distance” between the similarity matrix and the matrix formed by the distances of the reconstructed points on a 

Euclidean way. If the objects are in Euclidean space and MDS maps the objects into that same dimensional Euclidean 

space, then MDS provides a perfect reconstruction in the sense that the obtained geometric configuration is congruent, 

i.e., with appropriate rotation and shifting the new configuration can cover the original one. 

http://creativecommons.org/licenses/by/3.0/
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MDS has applications in facility layout problems [7], as well as in the medical [3], psychological [5] and economic [4] 

domains, in addition to others. In the case of facility layout problems [7], the authors reconstructed the Kra30a problem 

[1] from the Quadratic Assignment Problem [8] Library (QAPLIB) [6], using the MDS method. This problem is in 3-

dimensional space with weighted    distances but the weights are unknown in the source of the problem. The 

reconstruction was performed in 2 and 3-dimensions. In both configurations of points, there were some symmetry and 

regularity properties. 

The main purpose of this paper was to generalize the MDS method. Distances different from    are used for both the 

distances of objects and for measuring the total error. A problem is of type                    if the distance of 

the reconstructed objects is of    type and the total error is measured in   . Thus, the traditional MDS method is of type 

        type. In the case of    and    distances, integer programming models described the problem correctly.   

2. Types of distances used in reconstruction models 

The reconstruction models can be used for different types of distances such as   ,    and    distances. While    is the 

Manhattan distance between points,     is used to show the Euclidian distance between two points, which is a special 

case of    distance, and    is the maximum absolute difference between the coordinates of a pair of points. 

To find the proper positions of the points, the types of distances between the reconstructed points should be determined 

in the reconstruction model. Usually this distance is of   ,    or    type. Additionally, the bias or tolerance of these 

distances from those of the similarity matrix should be calculated and minimized. This tolerance (bias) can be the same 

for all pairs of points. In this case, the bias is of    type. In other cases, the bias of each pair of points is different if type  

            distance is used in the reconstruction model. 

3. General reconstruction model 

The two main parts of the reconstruction model are the constraints, which are discussed first, and the objective function, 

which is the measure of error that must be minimized. The models are elaborated 2-dimensionally. The generalizations, 

however, are straightforward. The constraints and objective function can be introduced for   ,            and    

types of distances, separately. Therefore, there will be 3 types of constraints sets and 3 types of objective functions, 

which are introduced below. 

 

3.1.    Type constraints 
 

A mixed-integer linear programming model is discussed here for the case of 2 dimensions which includes the points on 

the plane. 

The    distance between points         and         is defined as 

                                   

                                                          

If the reconstruction of   points on a plane is needed, let               be the    distance between reconstructed     

and     points in a square                           where    . This value must be at least the highest distance 

among the known distances of the similarity matrix.  

The first set of constraints for each pair of cells will be used to force the four above-mentioned sums to be less than or 

equal to the reconstructed    distance between the pair of points: 

                                                                                                                                                              (3.1.1) 

                                                                                                                                                              (3.1.2) 

                                                                                                                                                              (3.1.3) 

                                                                                                                                                              (3.1.4) 

       ) 

In the second set of constraints, the opposite inequalities are claimed. At least one of the above-mentioned quantities on 

the left-hand sides must be greater than or equal to the reconstructed    distance between two points. Let   be a large 

number,      is then a proper choice. The constraints are 

                                                                                                                                                     (3.1.5) 

                                                                                                                                                     (3.1.6) 

                                                                                                                                                     (3.1.7) 

                                                                                                                                                     (3.1.8) 

         

with 
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                                                                                                                                                 (3.1.9) 

      Is used as a correction value of     inequality for the above set of constraints. If       , then the     inequality 

automatically is satisfied. To obtain the    distance, at least one of the constraints must be satisfied without using the 

correction term. Thus, the cut 

                                                                                                                                                        (3.1.10) 

must be applied. 

The obvious set of constraints is to force the points to be in the square of  : 

                                                                                                                                                            (3.1.11) 

 

3.2.    Type constraints 
 

The    distance between points         and         is defined as 

                                                                           

Assume then that the problem is to reconstruct   points in the above-mentioned square by using    distance between 

reconstructed points. The constraint logic is similar to the    case. For each pair of points, the first set of constraints 

claims that all four of the above terms are less than or equal to the reconstructed     distance: 

                                                                                                                                                                         (3.2.1) 

                                                                                                                                                                         (3.2.2) 

                                                                                                                                                                         (3.2.3) 

                                                                                                                                                                         (3.2.4) 

         
In the second set of constraints, with the help of binary variables, at least one of the above-mentioned quantities is 

greater than or equal to the reconstructed    distance. Using a large number with estimation of     , the constraints 

are: 

                                                                                                                                                                (3.2.5) 

                                                                                                                                                                (3.2.6) 

                                                                                                                                                                (3.2.7) 

                                                                                                                                                                (3.2.8) 

         

where 

                                                                                                                                                  (3.2.9) 

If       , using      , the     inequality automatically is satisfied. The     and     points are positioned properly, if 

at least one of the above-mentioned constraints is satisfied without using the correction term. Thus the cut 

 

                                                                                                                                                        (3.2.10) 

must be applied. 

Additionally, the points are limited to fall in the square of 

 :                                                                                                                                                        (3.2.11) 

 

3.3.    Type constraints 
 

The    distance between points         and         is defined as 

                            
         

  
  

The nonnegative             distance can be expressed by a single equation:  

       
         

     
                                                                                                                                     (3.3.1) 

                                                                                                                                                                               (3.3.2) 

The points also should be positioned in the square of  : 

                                                                                                                                                              (3.3.3) 

Of course, the well-known case of    distance is the Euclidean distance if    .  

 

3.4.    Type of objective function 
 

Before identification of the objective function, the bias between the reconstructed distances and the elements of the 

similarity matrix for each pair of points should be calculated, e.g.,     for points   and   . Therefore, in    type of 

objective function, this bias is separately defined for each pair of points and calculated by the following set of 

constraints:  
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                                                                                                                                                                        (3.4.1) 

                                                                                                                                                                        (3.4.2) 

Therefore the objective function will minimize the sum of all tolerances as follows: 

        
 
     

   
                                                                                                                                                       (3.4.3) 

 

3.5.    Type of objective function 
 

In this type of objective function, the same tolerance of   is considered for the reconstructed distance and the related 

element of the similarity matrix for each pair of points. Thus, using the following set of constraints, the tolerance is 

calculated and subsequently minimized: 

                                                                                                                                                                         (3.5.1) 

                                                                                                                                                                         (3.5.2) 

                                                                                                                                                                                (3.5.3) 

 

3.6.    Type of objective function 
 

In    type of objective function, the different biases between the reconstructed distance and the distance from the 

similarity matrix for each pair of points are first calculated. Next the sum of     power for all tolerances is minimized 

by use of the following set of constraints and the objective function: 

                                                                                                                                                                        (3.6.1) 

                                                                                                                                                                        (3.6.2) 

        
  

     
   
                                                                                                                                                     (3.6.3) 

 

3.7. Problem types 
 

Each type of objective function can be used with all types of constraints. This means that 9 possible reconstruction 

models may be considered.  

The general notation of       is used to reference the utilized model. The first element of the notation signifies the type 

of constraints and the second element shows the type of objective function that is used in the reconstruction model.   

And   can be selected from all above-mentioned distances, e.g.,      and    distances. For example the reconstruction 

model of         distances refers to the mathematical model, which includes    type constraints and    type objective 

functions. 

4. Computational experiments 

To perform computational experiments, some test problems were generated. These test problems originally contained 

special geometric configurations, and each test problem contained the coordinates of a limited number of points along a 

grid or circuit. Likewise a similarity matrix of each test problem was also obtained from the distance between the points 

of that test problem. The distance type of similarity matrix is different in each reconstructed model. More details of test 

problems are presented in Table 1. 

XPRESS-IVE optimization software was used to perform the calculations. This software has a high capacity for 

optimizing the linear, quadratic and nonlinear optimization models.  

The reconstruction models, even in the case of exact reconstruction, may give relative positions of points only. For 

congruent solutions, it may be necessary to rotate and/or shift the points to obtain a perfect cover. 

 

4.1. Computational experiments of the         reconstruction model 
 

To construct the         reconstruction model, the above mentioned    type constraints and    type objective function 

were chosen. The distance type of    was used in the similarity matrix. The run times were long, generally taking more 

than 2 hours except for the first and second test problems. The objective function value of the         reconstruction 

model is shown in Table 2, which illustrates the unique tolerance of the reconstructed distances from the distances of 

the similarity matrix and also the optimality status for each problem. 

The optimality of only the first four problems was proved. In contrast, the optimality was not proved by XPRESS 

software in other problems, although a positive lower bound was obtained. The structure of the reconstructed points on 

the plane has similar configuration but requires further geometric transformation to obtain exactly the original one. 

Figures 1 and 2 shows the reconstructed configuration for test problems of 9 points on a square and 11 points on a 

circuit respectively. 
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Table 1: Details of test problems used in computational experiments. 

Test No. Number of Points Original Configuration 

1 4 Square of     Points 

2 9 Square of     Points 

3 10 Boundary of Circuit 

4 11 Boundary of Circuit 

5 12 Boundary of Circuit 

6 13 Boundary of Circuit 

7 14 Boundary of Circuit 

8 15 Boundary of Circuit 

9 16 Square of     Points 

10 16 Boundary of Circuit 

11 17 Boundary of Circuit 

12 18 Boundary of Circuit 

13 19 Boundary of Circuit 

14 20 Boundary of Circuit 

15 25 Square of     Points 

 

 
Table 2: Objective function values of the         reconstruction model. 

Test No. Number of Points Objective Function Value Optimality Status 

1 4 0 optimality was proved 

2 9 0.1527 optimality was proved 

3 10 0.1553 optimality was proved 

4 11 0.1376 optimality was proved 

5 12 0.2824 optimality was not proved 

6 13 0.3755 optimality was not proved 

7 14 0.5534 optimality was not proved 

8 15 0.2489 optimality was not proved 

9 16 0.8980 optimality was not proved 

10 16 0.3477 optimality was not proved 

11 17 0.5697 optimality was not proved 

12 18 0.5570 optimality was not proved 

13 19 0.9543 optimality was not proved 

14 20 0.5296 optimality was not proved 

15 25 2.7190 optimality was not proved 

 

 

 

 
Fig. 1: The original and reconstructed structure for the second test problem 
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Fig. 2: The original and reconstructed structure for the 11-point problem on the circuit. 

 

4.2. Computational experiments of the         reconstruction model 
 

The         reconstruction model consists of    type constraints and objective function. Additionally, the    distance 

between original points is used in the similarity matrix. Table 3 shows the results of this reconstruction model that were 

obtained using XPRESS software with long CPU times. In this experiment, only the optimality of the first problem was 

proved.  

In this case the reconstructed configuration again requires some geometric transportation to obtain exactly the original 

configuration; however, the similarity is clearly recognizable. Figures 3 and 4 illustrate the problems of having 9 points 

on a square and 11 points on a circuit, respectively. 

 

 
Fig. 3: The original and reconstructed structure for the second test problem. 

 
Table 3: Objective function values of the         reconstruction model. 

Test No. Number of Points Objective Function Value Optimality Status 

1 4 0 optimality was proved 

2 9 2.3430 optimality was not proved 

3 10 2.3660 optimality was not proved 

4 11 2.7473 optimality was not proved 

5 12 5.9751 optimality was not proved 

6 13 5.8956 optimality was not proved 

7 14 11.6358 optimality was not proved 

8 15 6.9336 optimality was not proved 

9 16 16.5577 optimality was not proved 

10 16 10.1937 optimality was not proved 

11 17 11.9211 optimality was not proved 

12 18 25.6415 optimality was not proved 

13 19 12.7347 optimality was not proved 

14 20 26.3420 optimality was not proved 

15 25 59.8229 optimality was not proved 
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Fig. 4: The original and reconstructed structure for the 11-point problem on a circuit. 

 

4.3. Computational experiments of the         reconstruction model 
 

The reconstruction model of         is used in this part of the paper. This model demonstrates that the constraints and 

objective function are of    type. This model is applied with three different similarity matrices. Necessarily, then, the 

similarity matrix of the same original points of the test problems are used when 

i)  The similarity matrix contains the    type distance of the original points, 

ii)  The similarity matrix contains the    type distance of the original points, 

iii)  The similarity matrix contains the    type distance of the original points. 

Therefore, the         reconstruction model is used to reconstruct the points that are related to the above-mentioned 

similarity matrices, separately. MATLAB Optimizer is used to solve the         reconstruction models. Table 4 shows 

the objective function values using different similarity matrices. 

Similar to previously reconstructed structures, those for the two previous test problems (9 points among a square and 11 

points on a circuit), as well as the test for 20 points on a circuit using each similarity matrix are shown in Figures 5 to 7.  

 
Table 4: Objective function values of the         reconstruction model. 

Test 

No. 

Number of 

Points 

Objective function value when 

the similarity matrix of    

distances is used 

Objective function value when 

the similarity matrix of    

distances is used 

Objective function value when 

the similarity matrix of    

distances is used 

1 4 0.0032 0.0037 0.0029 

2 9 0.0028 0.0041 0.0028 

3 10 0.0526 0.0042 0.0547 

4 11 0.0616 0.0040 0.1239 

5 12 0.0528 0.0043 0.0285 

6 13 0.0584 0.0041 0.0316 

7 14 0.0438 0.0038 0.0240 

8 15 0.0402 0.0031 0.0422 

9 16 0.2204 0.0033 0.0652 

10 16 0.0735 0.0037 0.0712 

11 17 0.0371 0.0043 0.0242 

12 18 0.0412 0.0027 0.0470 

13 19 0.0388 0.0040 0.0485 

14 20 0.0498 0.0027 0.0278 

15 25 0.0676 0.0031 0.3569 
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Fig. 5: The original and reconstructed structures for the second test problem using         reconstruction models. 

 

 

 

 
Fig. 6: The original and reconstructed structures for the 11-point test problem using         reconstruction models. 
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Fig. 7: The original and reconstructed structures of the 20-point test problem using         reconstruction models. 

5. Discussion and conclusion  

The similarity values in the mathematical model of MDS are considered more or less to be distance type quantities. 

Otherwise it would not be possible to reconstruct a geometric configuration. Also supporting this assumption are the 

conditions starting that for all j and k the equations      , and         must hold. Obviously the distance which is 

and must be used most frequently, is the Euclidean distance. However, other types of distances exist both in real life 

problems and mathematical theory. Moreover, the original MDS method uses two distances. One measures the 

geometric distances between the reconstructed points while the other measures the biases of the geometric distances 

from the similarity values. This observation then leads to a generalization of the MDS method where a particular 

version is characterized by the types of the two distances. In the cases of    and    distances mixed-integer 

programming models described the problems. In the computational experiences, the distances used in the reconstruction 

were different from those used to create the similarity matrix. However, while the reconstructed configurations did 

contain some distortions, the original structure was still recognizable. 
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