

International Journal of Applied Mathematical Research, 3 (4) (2014) 441-445 ©Science Publishing Corporation www.sciencepubco.com/index.php/IJAMR doi: 10.14419/ijamr.v3i4.3394 Research Paper

Connectedness in fuzzy closure space

U. D. Tapi, Bhagyashri A. Deole^{*}

Department of Applied Mathematics and Computational Science Shri G. S. Institute of Technology and Science (M.P.), India *Corresponding author E-mail: deolebhagyashri@gmail.com

Copyright © 2014 U.D.Tapi, Bhagyashri A. Deole. This is an open access article distributed under the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A fuzzy Čech closure space (X, k) is a fuzzy set X with fuzzy Čech closure operator k: $I^X \rightarrow I^X$ where I^X is a power set of fuzzy subsets of X, which satisfies $k(\emptyset) = \emptyset, \lambda_1 \le \lambda_2 \Rightarrow k(\lambda_1) \le k(\lambda_2), k(\lambda_1 \cup \lambda_2) = k(\lambda_1) \cup k(\lambda_2)$ for all λ_1 , $\lambda_2 \in I^X$. A fuzzy topological space X is said to be fuzzy connected if it has no proper fuzzy clopen set. Many properties which hold in fuzzy topological space hold in fuzzy Čech closure space as well. A Čech closure space (X, u) is said to be connected if and only if any continuous map f from X to the discrete space $\{0, 1\}$ is constant. In this paper we introduce connectedness in fuzzy Čech closure space.

Keywords: Connectedness in Fuzzy Čech Closure Space, Connectedness in Fuzzy Topological Space, Fuzzy Čech Closure Operator, Fuzzy Čech Closure Space, Fuzzy Topological Space.

1. Introduction

In 1965 Zadeh [1] in his classical paper generalized characteristic function to fuzzy set. Chang [2] in 1968 introduced the topological structure of fuzzy sets. Pu and Liu [3] defined the concept of fuzzy connectedness using fuzzy closed set. Lowen [4] also defined an extension of a connectedness in a restricted family of fuzzy topologies. Fuzzy Čech closure operator and fuzzy Čech closure space were first studied by A.S. Mashhour and M.H. Ghanim [5]. In this paper we introduce connectedness in fuzzy Čech closure space and study some of their properties.

2. Preliminaries

Definition 2.1 [6]: An operator u: $P(X) \rightarrow P(X)$ defined on the power set P(X) of a set X satisfying the axioms:

- 1) u**φ**=**φ**,
- 2) $A \subseteq uA$, for every $A \subseteq X$,
- 3) $u(A \cup B) = uA \cup uB$, for all A, B \subseteq X.

is called a Čech closure operator and the pair (X, u) is a Čech closure space.

Definition 2.2 [7]: Let X is a non-empty fuzzy set. A function k: $I^X \rightarrow I^X$ is called fuzzy Čech closure operator on X if it satisfies the following conditions

- 1) $k(\emptyset) = \emptyset$.
- 2) $\lambda \leq k (\lambda)$, for all $\lambda \in I^X$.

3) $k(\lambda_1 \cup \lambda_2) = k(\lambda_1) \cup k(\lambda_2)$ for all $\lambda_1, \lambda_2 \in I^X$.

The pair (X, k) is called fuzzy Čech closure space.

Definition 2.3 [8]: A fuzzy topological space (X, k) is said to be connected if X cannot be represented as the union of two non-empty, disjoint fuzzy open subsets of X.

Definition 2.4 [9]: A Čech closure space (X, u) is said to be connected if and only if any continuous map f from X to the discrete space $\{0, 1\}$ is constant. A subset A in a Čech closure space (X, u) is said to be connected if A with the subspace topology is a connected space.

Definition 2.5 [10]: Given fuzzy topological spaces (X, δ) and (Y, γ) , a function f: $X \rightarrow Y$ is F- continuous if the inverse image under f of any fuzzy open set in Y is a fuzzy open set in X; i.e., if $f^{-1}(v) \in \delta$ whenever $v \in \gamma$.

3. Connectedness in fuzzy closure space

Definition 3.1: Let X is a nonempty fuzzy set .A function k: $I^X \rightarrow I^X$ is called fuzzy Čech closure operator on X. A fuzzy Čech closure space (X, k) is said to be connected if and only if any F-continuous map f from X to the fuzzy discrete space $\{0, 1\}$ is constant.

Example 3.2: Let $X = \{a, b, c\}$ be a non-empty fuzzy set. Define fuzzy Čech closure operator k: $I^X \rightarrow I^X$ such that

$$k \ (x) = \left\{ \begin{array}{ccc} 0_X; & A = 0_X. \\ 1_{\{b,\,c\}}; & \text{if } 0 < A \leq 1_{\{b,\,c\}} \\ 1_{\{b,\,c\}}; & \text{if } 0 < A \leq 1_{\{b\}} \\ 1_{\{b,\,c\}}; & \text{if } 0 < A \leq 1_{\{c\}} \\ 1_{\{c\}}; & \text{if } 0 < A \leq 1_{\{c\}} \\ 1_X; & \text{otherwise} \end{array} \right.$$

FOS(X) = {{a}, {b}, {c}, {a, b}, {a, c}, Ø, X}. Then (X, k) is called fuzzy Čech closure space. We define an F-continuous function f: $X \rightarrow \{0, 1\}$ such that $f^{1}{1} = {a, b} = {a, c} = {a} = {b} = {c} = X, f^{1}{0} = Ø$. Here function f is constant. Hence (X, k) is a fuzzy connected Čech closure space.

Example 3.3: Let $X = \{a, b, c\}$ be a non-empty fuzzy set. Define a fuzzy Čech closure operator k: $I^X \rightarrow I^X$ such that

 $k(x) = \begin{cases} 0_X; & A=0_X. \\ 1_{\{a, b\}}; & if \ 0 < A \le 1_{\{a\}} \\ 1_{\{b, c\}}; & if \ 0 < A \le 1_{\{b\}} \\ 1_{\{c, a\}}; & if \ 0 < A \le 1_{\{c\}} \\ 1_X; & otherwise. \end{cases}$

 $FOS(X) = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \emptyset, X\}.$

Then (X, k) is called fuzzy Čech closure space. We define an F-continuous function f: $X \rightarrow \{0, 1\}$ such that $f^{1}\{1\} = \{a\} = \{b\} = \{c\} = \{a, b\} = \{b, c\} = \{c, a\} = X$, $f^{1}\{0\} = \emptyset$. Here function f is constant. Hence (X, k) is a fuzzy connected Čech closure space.

Theorem 3.4: A fuzzy Čech closure space (X, k) is said to be disconnected if and only if there is a nonempty proper fuzzy subset of X, which is both fuzzy open and fuzzy closed.

Proof: Necessary: Let fuzzy Čech closure space (X, k) is disconnected i.e. there exists an F-continuous function f: $X \rightarrow \{0, 1\}$ is not constant. Consider a proper fuzzy subset λ of X such that $\lambda = 1-\delta$. Since λ is fuzzy closed subset of X therefore δ is fuzzy open subset of X. But δ is also a fuzzy closed subset of fuzzy Čech closure space (X, k) therefore λ is fuzzy open subset of X. Hence λ is a clopen subset of X.

Sufficient: Let $\delta = X - \lambda$, since λ is a nonempty proper fuzzy subset of X, so that fuzzy set δ is also nonempty. Consider an F-continuous function f: $X \rightarrow \{0, 1\}$ such that f (λ) = 0 or 1, f (δ) = 1 or 0 that is an F-continuous function f is not constant. Hence (X, k) is fuzzy disconnected Čech closure space.

Theorem 3.5: A continuous image of a fuzzy connected Čech closure space is fuzzy connected Čech closure space.

Proof: Let fuzzy Čech closure space (X, k) is connected and consider an F-continuous function f: $X \rightarrow f(X)$ is surjective. If f(x) is not fuzzy connected Čech closure space, then there would be an F-continuous surjection g: $f(x) \rightarrow \{0, 1\}$ so that the composite function gof: $X \rightarrow \{0, 1\}$ would also be an F-continuous surjection. It is contradiction to the connectedness of fuzzy Čech closure space (X, k). Hence f(x) is a fuzzy connected Čech closure space.

Theorem 3.6: The union of any family of fuzzy connected subsets of fuzzy connected Čech closure space with a common point is connected.

Proof: Let $\{X_{\alpha}\}$ be a family of fuzzy connected subsets of fuzzy connected Čech closure space (X, k) and $p \in X_{\alpha}$ for all α . Let f: $UX_{\alpha} \rightarrow \{0, 1\}$ be any F-continuous map and $f_{\alpha} : X_{\alpha} \rightarrow \{0, 1\}$ be the restriction of f to X_{α} . Since f and f_{α} are

F-continuous functions. Each X_{α} is fuzzy connected Čech closure space so f_{α} is constant. Now let $p \in X_{\alpha}$, $f_{\alpha}(x_{\alpha}) = f(p)$, $\forall \alpha \Rightarrow p \in \bigcup X_{\alpha}$, $f(x_{\alpha}) = f(p)$ i.e. f is constant. Hence $\bigcup X_{\alpha}$ is fuzzy connected Čech closure space.

4. Connected subsets in a fuzzy closure space

Definition 4.1:-If $A \subset X$, (X, k) is a fuzzy Čech closure space, then A is said to be a fuzzy connected subset of X if A is fuzzy connected space as a fuzzy subspace of X. If $A \subset Y \subset X$, then A is a fuzzy connected subset of the fuzzy Čech closure space X if and only if it is a fuzzy connected subset of the fuzzy subspace Y of (X, k).

Example 4.2: Let $X = \{a, b, c\}$ be a non-empty fuzzy set. Define fuzzy Čech closure operator k: $I^X \rightarrow I^X$ such that

 $k(x) = \begin{cases} 0_X; A=0_X. \\ 1_{\{b, c\}}; & \text{if } 0 < A \le 1_{\{b, c\}} \\ 1_{\{b, c\}}; & \text{if } 0 < A \le 1_{\{b\}} \\ 1_{\{b, c\}}; & \text{if } 0 < A \le 1_{\{c\}} \\ 1_{\{b, c\}}; & \text{if } 0 < A \le 1_{\{c\}} \\ 1_{X}; & \text{otherwise.} \end{cases}$

 $FOS(X) = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, X, \emptyset\}.$

Then (X, k) is called fuzzy Čech closure space. We define an F-continuous function f: $X \rightarrow \{0, 1\}$ such that $f^{1}\{1\} = \{a, b\} = \{a, c\} = \{b\} = \{c\} = X, f^{1}\{0\} = \emptyset$.

Here function f(x) is constant. Hence (X, k) is a fuzzy connected Čech closure space.

Consider a subset $Y = \{a, b\}$ of X. Define a fuzzy Čech closure operator $k_Y: I^Y \rightarrow I^Y$ such that

 $k_{Y}(x) = \begin{cases} 0_{X}; & A=0_{X}.\\ 1_{\{a, b\}}; & \text{if } 0{<}A \leq 1_{\{a\}}\\ 1_{\{b\}}; & \text{if } 0{<}A \leq 1_{\{b\}}\\ 1_{X}; & \text{otherwise} \end{cases}$

FOS(X) = {{a}, X, Ø}. Here (Y, k_Y) is a fuzzy Čech closure space. We define an F-continuous function f: Y \rightarrow {0, 1} such that f^1 {1} = {a} = {X}, f^1{0} = Ø.

Hence (Y, k_Y) is a fuzzy connected Čech closure subspace of fuzzy connected Čech closure space (X, k).

Theorem 4.3: If (X, k) is a fuzzy Čech closure space and A is a fuzzy connected subset of X and λ and δ are non-empty fuzzy open sets in X satisfying $\lambda + \delta = 1$, then either $\lambda/A = 1$ or $\delta/A = 1$.

Proof: If A is a fuzzy connected subset of X than there exists a continuous function f: $A \rightarrow \{0, 1\}$ is constant. Suppose there exists $x_0, y_0 \in A$ such that $\lambda(x_0) \neq 1$ and $\delta(y_0) \neq 1$. Then $\lambda + \delta = 1$ implies that $\lambda/A + \delta/A = 1$, where $\lambda/A \neq 0$, $\delta/A \neq 0$ which implies that $f(\lambda) \neq f(\delta)$ in A. So A is not a fuzzy connected Čech closure subset of X. Hence either $\lambda/A = 1$ or $\delta/A = 1$.

Theorem 4.4: Let $\{A_{\alpha}\}_{\alpha \in \wedge}$ be a family of fuzzy connected subsets of fuzzy Čech closure space (X, k) such that for each α and β in \wedge and $\alpha \neq \beta$, $\mu_{A\alpha}$ and $\mu_{A\beta}$ are not separated from each other. Then $U_{\alpha \in \wedge} A_{\alpha}$ is a fuzzy connected subset of fuzzy Čech closure space (X, k).

Proof: Suppose $Y=U_{\alpha \in \wedge} A_{\alpha}$ is not a fuzzy connected subset of X that is F-continuous function f: $Y \rightarrow \{0, 1\}$ is not constant. Let there exists non-zero fuzzy open sets a and b in Y s. t. f (a) \neq f (b) and a+b=1.Fix $\alpha_0 \in \wedge$. Then $A\alpha_0$ is a fuzzy connected subset of Y as it is so in fuzzy Čech closure space

(X, k). Therefore by theorem 4.3, either $\mu_{A\alpha0}$ /A α_0 = a/A α_0 or $\mu_{A\alpha0}$ /A α_0 = b/A α_0 . Without loss of generality assume that $\mu_{A\alpha0} / A\alpha_0 = a / A\alpha_0$ (1)Define λ and δ as $\lambda(x) = a(x)$ if $x \in Y$ and $\lambda(x) = 0$ if $x \in X - Y$ and $\delta(x) = b(x)$ if $x \in Y$ and $\delta(x) = 0$ if $x \in X - Y$. By theorem 4.3, $k_{Y}(a)=k(\lambda)/Y$ and $k_{Y}(b)=k(\delta)/Y$ (2)So (1) implies that $\mu_{A\alpha 0} \leq \lambda$. Therefore $k_{\rm Y}(\mu_{\rm A\alpha0}) \leq k(\lambda)$ (3) Let $\alpha \in (\alpha_0)$. Since A_α is a fuzzy connected closure subset of Y either $\mu_{A\alpha}/A_{\alpha} = a/A_{\alpha} \text{ or } \mu_{A\alpha}/A_{\alpha} = b/A_{\alpha}, \text{ we show that } \mu_{A\alpha}/A_{\alpha} \neq b/A_{\alpha}.$ Suppose that $\mu_{A\alpha}/A_{\alpha} = b/A_{\alpha}$. Therefore $\mu_{A\alpha} \le \delta$. Hence $k(\mathbf{\mu}_{A\alpha}) \leq k(\delta)$ (4) This gives a contradiction as $\mu_{A\alpha 0}$ and $\mu_{A\alpha}$ are not separated from each other.

So $\mu_{A\alpha}/A_{\alpha} \neq b/A_{\alpha}$. Hence $\mu_{A\alpha}/A_{\alpha} = a/A_{\alpha}$ for each $\alpha \in \land$. Which implies that $\mu_{Y} = a$.

But a + b = 1. So b(x) = 0 for every $x \in Y$. But $b \neq 0$. So the supposition that Y is not a fuzzy connected subset of X is false i.e. F-continuous function f: $Y \rightarrow \{0, 1\}$ is constant. Hence $\bigcup_{\alpha \in \wedge} A_{\alpha}$ is a fuzzy connected subset of fuzzy Čech closure space (X, k).

Theorem 4.5: If $\{A_a\}_{ac\wedge}$ is a family of fuzzy connected subsets of a fuzzy connected Čech closure space (X, k) and $\bigcap_{ac\wedge} A_a \neq \emptyset$, then $\bigcup_{ac\wedge} A_a$ is a fuzzy connected subset of fuzzy connected Čech closure space X.

Proof: Let A_{α} in the family is a fuzzy connected subset of fuzzy Čech closure space (X, k) i.e. A F-continuous function $f: \{A_{\alpha}\}_{\alpha \in \wedge} \rightarrow \{0,1\}$ is constant. For any $\alpha, \beta \in \wedge, \alpha \neq \beta$, we have $A_{\alpha} \cap A_{\beta} \neq \emptyset$. Hence k ($\mu_{A\alpha}$) + $\mu_{A\beta} > 1$ and $\mu_{A\alpha} + k$ ($\mu_{A\beta}$) > 1. Thus characteristics functions of each pair of members of the family are not separated from each other. So $\bigcup_{\alpha \in \wedge} A_{\alpha}$ is a fuzzy connected subset of fuzzy Čech closure space X.

Theorem 4.6: If C is a fuzzy connected subset of a fuzzy connected Čech closure space X, $V \subset X$ -C and μ_v /X-C is a fuzzy clopen in X-C, and then CUV is a fuzzy connected subset of fuzzy connected Čech closure space (X, k).

Proof: Suppose Y=CUV is not a fuzzy connected Čech closure subset of fuzzy connected closure space (X, k). Then there exist fuzzy open sets λ and δ such that $f(\lambda) \neq f(\delta)$, and $\lambda/Y + \delta/Y = 1$ (1) Since C is a fuzzy connected Čech closure subset of Y (as it is so in X), By theorem 4.3, $\lambda/C = \mu_C/C$ or $\delta/C = \mu_C/C$. Without loss of generality assume that $\lambda / C = \mu_C / C$. So by equation (1), $\delta / C = 0$ (2)Therefore $\delta / V \neq 0$ (as $\delta / Y \neq 0$) (3) Let us define a fuzzy set δ_1 in X as $\delta_1(x) = \delta(x)$, if $x \in V$, $= 0, \quad \text{if } x \in X - V.$ We shall now show that δ_1 is fuzzy closed as well as fuzzy open in X. Now $\delta_1 / V = \delta / V$ and by equation (1) δ / V is fuzzy closed in V. Therefore δ_1 /V is fuzzy closed in V. Also μ_v is fuzzy closed in X-C. Therefore δ_1 /X-C is fuzzy closed in X-C. Now $\delta_1 / X - C = \delta / X - C \cap \mu_v / X - C.$ (4)Therefore δ_1 /X-C is fuzzy open in X-C. Thus δ_1 /X-C is fuzzy clopen in X-C Further $\delta_1 / Y = \delta / Y$ (because of (2)). As δ / Y is fuzzy clopen in Y (because of (1)), therefore (5) δ_1 /Y is fuzzy clopen in Y.

Now by (4) and (5) and δ_1 is fuzzy clopen in (X-C) \cup Y = X. As δ_1 is a proper fuzzy set, we get a contradiction to the fact that X is fuzzy connected Čech closure space. Hence CUV is a fuzzy connected subset of fuzzy connected Čech closure space (X, k).

Theorem 4.7: If A and B are fuzzy subsets of a fuzzy Čech closure space (X, k) and $\mu_A \leq \mu_B \leq k(\mu_A)$ and A is fuzzy connected closure subset of X, then B is also a fuzzy connected Čech closure subset of fuzzy Čech closure space (X, k).

Proof: If we suppose that B is not a fuzzy connected subset then there exist fuzzy open sets λ and δ in X such that $\lambda/B \neq 0$, $\delta/B \neq 0$, and $f(\lambda)\neq f(\delta)$ (1)

We first show that $\lambda / A \neq 0$. If $\lambda / A = 0$, then $\lambda + \mu_A \leq 1$, which implies that $\lambda + k(\mu_A) \leq 1$; so $\lambda + \mu_B \leq 1$ (because $\mu_B \leq k(\mu_A)$). This is turn implies that $\lambda / B = 0$, which is a contradiction ,as $\lambda / B \neq 0$. Therefore $\lambda / A \neq 0$. Similarly we can show that $\delta / A \neq 0$. Now (1) and $\mu_A \leq \mu_B$ imply $\lambda / A + \delta / A = 1$. So A is not fuzzy connected, which is a contradiction.

5. Conclusion

In this paper the idea of connectedness in fuzzy Čech closure space was introduced and relationship between the connectedness and fuzzy Čech closure space were explained.

References

- [1] L.A. Zadeh, Fuzzy sets, Inform. And Control 8 (1965) pp: 338-353.
- [2] C.L. Chang, Fuzzy topological Space, J. Math. Anal. Appl., 24 (1968), pp: 182-190.
- [3] P.M. Pu and Y. M. Liu, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moor- Smith convergence. J. Math. Anal. Appl., 76, (1980), pp: 571-599.
- [4] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56(1976), pp: 621-633.
- [5] A.S. Mashhour, M.H. Ghanim, Fuzzy closure space, J. Math. Anal. Appl., 106, (1985), pp: 154-170.

- [6] C. Boonpok, On Continuous Maps in Closure Spaces, General Mathematics Vol. 17, (2009), No. 2.
- R. Gowri, G. Jegadeesan, Connectedness in fuzzy Čech closure spaces, Asian Journal of current engineering and maths 2:5, (2013) pp: 326-[7] 328.
- [8]
- K. S. Sethupathy Raja, S. Lakshmivarahan Connectedness in fuzzy topological space, Kybernetika- volume 13 (1977), number 3. U.D. Tapi, Bhagyashri A. Deole, note on connectedness in closure space, Impact J. Sci. Tech., Fiji Islands, Vol. 6, (2012), No. 1, pp: 43-46. [9]
- [10] K. K. Azad. On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82(1) (1981), 14–32.