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Abstract 

 

A fuzzy Čech closure space (X, k) is a fuzzy set X with fuzzy Čech closure operator k: I
X
 → I

X 
 where I

X 
 is a power set 

of fuzzy subsets of  X, which satisfies k ( ) =  ,   1   λ2  ⇒ k(  1 )  k( λ2 ), k (   1   λ2 ) =  k    1)  k (λ2)  for all   1 , 
λ2    I

X 
 . A fuzzy topological space X is said to be fuzzy connected if it has no proper fuzzy clopen set.Many properties 

which hold in fuzzy topological space hold in fuzzy Čech closure space as well. A Čech closure space (X, u) is said to 

be connected if and only if any continuous map f from X to the discrete space {0, 1} is constant. In this paper we 

introduce connectedness in fuzzy Čech closure space. 
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1. Introduction 

In 1965 Zadeh [1] in his classical paper generalized characteristic function to fuzzy set. Chang [2] in 1968 introduced 

the topological structure of fuzzy sets. Pu and Liu [3] defined the concept of fuzzy connectedness using fuzzy closed 

set. Lowen [4] also defined an extension of a connectedness in a restricted family of fuzzy topologies. Fuzzy Čech 

closure operator and fuzzy Čech closure space were first studied by A.S. Mashhour and M.H. Ghanim [5]. In this paper 

we introduce connectedness in fuzzy Čech closure space and study some of their properties. 

2. Preliminaries 

Definition 2.1 [6]: An operator u: P(X) →P(X) defined on the power set P(X) of a set X satisfying the axioms: 

1) u = , 

2) A ⊆uA , for every A⊆X, 

3) u (A B) = uA  uB , for all A, B⊆X. 

is called a Čech closure operator and the pair (X, u) is a Čech closure space. 

 

Definition 2.2 [7]: Let X is a non-empty fuzzy set. A function k: I
X 

→I
X
 is called fuzzy Čech closure operator on X if it 

satisfies the following conditions 

1) k ( ) = . 

2)  ≤ k ( ), for all    I
X 

. 

3) k (   1   λ2 ) =  k    1)  k (λ2 )  for all   1 , λ2    I
X
 . 

The pair (X, k) is called fuzzy Čech closure space. 

 

Definition 2.3 [8]: A fuzzy topological space (X, k) is said to be connected if X cannot be represented as the union of 

two non-empty, disjoint fuzzy open subsets of X. 

 

Definition 2.4 [9]: A Čech closure space (X, u) is said to be connected if and only if any continuous map f from X to 

the discrete space {0, 1} is constant. A subset A in a Čech closure space (X, u) is said to be connected if A with the 

subspace topology is a connected space. 
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Definition 2.5 [10]: Given fuzzy topological spaces (X,  ) and (Y, γ), a function f: X→Y is  

F- continuous if the inverse image under f  of any fuzzy open set in Y is a fuzzy open set in X; i.e., if f
-1

(v)    whenever 

v γ. 

3. Connectedness in fuzzy closure space 

Definition 3.1: Let X is a nonempty fuzzy set .A function k: I
X 

→I
X 

is called fuzzy Čech closure operator on X. A fuzzy 

Čech closure space (X, k) is said to be connected if and only if any F-continuous map f from X to the fuzzy discrete 

space {0, 1} is constant. 

 

Example 3.2: Let X= {a, b, c} be a non-empty fuzzy set. Define fuzzy Čech closure operator  

k: I
X 

→I
X 

such that 

                                   0X;       A=0X. 

                                   1{b, c};   if 0˂A ≤1 {b, c} 

k (x) =                        1{b, c};   if 0˂A ≤1 {b} 

                                   1{b, c};   if 0˂A ≤1{c} 

                                   1X;       otherwise 

FOS(X) = {{a}, {b}, {c}, {a, b}, {a, c}, ⌀, X}. 

Then (X, k) is called fuzzy Čech closure space. We define an F-continuous function f: X→ {0, 1} such that  

f
-1

{1} = {a, b} = {a, c} = {a} = {b} = {c} = X, f
-1

{0} = ⌀. 

Here function f is constant. Hence (X, k) is a fuzzy connected Čech closure space. 

 

Example 3.3: Let X= {a, b, c} be a non-empty fuzzy set. Define a fuzzy Čech closure operator  

k: I
X 

→I
X 

such that 

                                   0X;     A=0X. 

                                   1{a, b}; if 0˂A ≤1 {a}  

k (x) =                        1{b, c}; if 0˂A ≤1 {b} 

                                   1{c, a}; if 0˂A ≤1{c} 

                                   1X;     otherwise. 

FOS(X) = {{a}, {b}, {c}, {a, b}, {b, c}, {a, c}, ⌀, X}. 

Then (X, k) is called fuzzy Čech closure space. We define an F-continuous function f: X→ {0, 1} such that  

f
-1

{1} = {a} = {b} = {c} = {a, b} = {b, c} = {c, a} = X, f
-1

{0} = ⌀. Here function f is constant. Hence (X, k) is a fuzzy 

connected Čech closure space. 

 

Theorem 3.4: A fuzzy Čech closure space (X, k) is said to be disconnected if and only if there is a nonempty proper 

fuzzy subset of X, which is both fuzzy open and fuzzy closed. 

 

Proof: Necessary: Let fuzzy Čech closure space (X, k) is disconnected i.e. there exists an F-continuous function  

f: X→ {0, 1} is not constant. Consider a proper fuzzy subset λ of X such that λ = 1-   Since λ is fuzzy closed subset of 

X therefore δ is fuzzy open subset of X. But δ is also a fuzzy closed subset of fuzzy Čech closure space (X, k) therefore 

λ is fuzzy open subset of X. Hence λ is a clopen subset of X. 

Sufficient: Let  =X   , since   is a nonempty proper fuzzy subset of X, so that fuzzy set   is also nonempty. Consider 

an F-continuous function f: X→ {0, 1} such that f ( ) = 0 or 1, f ( ) = 1 or 0 that is an F-continuous function f is not 

constant. Hence (X, k) is fuzzy disconnected Čech closure space. 

 

Theorem 3.5: A continuous image of a fuzzy connected Čech closure space is fuzzy connected Čech closure space. 

 

Proof: Let fuzzy Čech closure space (X, k) is connected and consider an F-continuous function f: X →f(X) is 

surjective. If f(x) is not fuzzy connected Čech closure space, then there would be an F-continuous surjection g: f(x) → 

{0, 1} so that the composite function gof: X→ {0, 1} would also be an F-continuous surjection. It is contradiction to the 

connectedness of fuzzy Čech closure space (X, k). Hence f(x) is a fuzzy connected Čech closure space. 

 

Theorem 3.6: The union of any family of fuzzy connected subsets of fuzzy connected Čech closure space with a common 

point is connected. 

 

Proof: Let {Xα} be a family of fuzzy connected subsets of fuzzy connected Čech closure space (X, k) and p Xα   for all 

α. Let f: UXα→ {0, 1} be any F-continuous map and fα : Xα → {0, 1}be the restriction of f to Xα. Since f and fα are  
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F-continuous functions.  Each Xα   is fuzzy connected Čech closure space so fα is constant. Now let p Xα , fα(xα)=f(p), 

α ⇒ p  
 
Xα  , f(xα)=f(p) i.e. f is constant. Hence UXα is fuzzy connected Čech closure space. 

4. Connected subsets in a fuzzy closure space 

Definition 4.1:-If A⊂X, (X, k) is a fuzzy Čech closure space, then A is said to be a fuzzy connected subset of X if A is 

fuzzy connected space as a fuzzy subspace of X. If A⊂Y⊂X, then A is a fuzzy connected subset of the fuzzy Čech 

closure space X if and only if it is a fuzzy connected subset of the fuzzy subspace Y of (X, k). 

 

Example 4.2: Let X= {a, b, c} be a non-empty fuzzy set. Define fuzzy Čech closure operator 

k: I
X 

→I
X 

such that 

                                   0X;      A=0X. 

                                   1{b, c};   if 0˂A ≤1 {b, c} 

         k (x) =               1{b, c};   if 0˂A ≤1 {b} 

                                   1{b, c};   if 0˂A ≤1{c} 

                                   1X;       otherwise. 

FOS(X) = {{a}, {b}, {c}, {a, b}, {a, c}, X, ⌀}. 

Then (X, k) is called fuzzy Čech closure space. We define an F-continuous function f: X→ {0, 1} such that  

f
-1

{1} = {a, b} = {a, c} = {a} = {b} = {c} = X, f
-1

{0} = ⌀. 

Here function f(x) is constant. Hence (X, k) is a fuzzy connected Čech closure space. 

Consider a subset Y= {a, b} of X. Define a fuzzy Čech closure operator kY: I
Y 

→I
Y
 such that 

                                   0X;      A=0X. 

                                   1{a, b};  if 0˂A ≤1 {a} 

          kY (x) =             1{b};    if 0˂A ≤1 {b} 

                                   1X;       otherwise 

FOS(X) = {{a}, X, ⌀}.Here (Y, kY) is a fuzzy Čech closure space. We define an F-continuous function f: Y→ {0, 1} 

such that f
-1

{1} = {a} = {X}, f
-1

{0} = ⌀. 

Hence (Y, kY) is a fuzzy connected Čech closure subspace of fuzzy connected Čech closure space (X, k). 

 

Theorem 4.3: If (X, k) is a fuzzy Čech closure space and A is a fuzzy connected subset of X and λ and δ are non-empty 

fuzzy open sets in X satisfying λ + δ=1, then either λ/A = 1 or δ/A =1. 

 

Proof: If A is a fuzzy connected subset of X than there exists a continuous function f: A→ {0, 1} is constant. Suppose 

there exists x0 ,y0   A such that λ(x0) 1 and δ(y0) 1.Then λ+δ=1 implies that λ/A+ δ/A =1,where λ/A      δ/A   0 

which implies that f(λ) f(δ) in A. So A is not a fuzzy connected Čech closure subset of X. Hence either λ/A = 1  

or δ/A =1. 

 

Theorem 4.4: Let {Aα} αє˄ be a family of fuzzy connected subsets of fuzzy Čech closure space (X, k) such that for each α 

and β in ˄ and α β,  Aα and  Aβ are not separated from each other. Then  αє˄ Aα is a fuzzy connected subset of fuzzy 

Čech closure space (X, k). 

 

Proof: Suppose Y= αє˄ Aα is not a fuzzy connected subset of X that is F-continuous function f: Y→ {0, 1} is not 

constant. Let there exists non-zero fuzzy open sets a and b in Y s. t. f (a)  f (b) and a+b=1.Fix α0 ˄.Then Aα0 is a 

fuzzy connected subset of Y as it is so in fuzzy Čech closure space  

(X, k).Therefore by theorem 4.3, either Aα0 /Aα0 =a/Aα0 or  Aα0 /Aα0 =b/Aα0 .Without loss of generality assume that 

 Aα0 /Aα0 =a/Aα0                                                                                                                                                                (1) 

Define λ and δ as λ(x) =a(x) if x Y and λ(x) =0 if x X-Y and δ(x) =b(x) if x Y and δ(x) =0if x X-Y. 

By theorem 4.3, 

kY (a)=k(λ)/Y and kY(b)=k(δ)/Y                                                                                                                                         (2) 

So (1) implies that  Aα0   λ.Therefore 

kY (  Aα0 )   k(λ)                                                                                                                                                                (3) 

Let α ˄-{α0}.Since Aα is a fuzzy connected closure subset of Y either 

 Aα/Aα =a/Aα or  Aα/Aα =b/Aα, we show that  Aα/Aα   b/Aα. 

Suppose that  Aα/Aα =b/Aα. Therefore  Aα δ.Hence 

k ( Aα ) k(δ)                                                                                                                                                                      (4) 

This gives a contradiction as  Aα0 and  Aα are not separated from each other. 

So  Aα/Aα   b/Aα .Hence  Aα/Aα =a/Aα for each α ˄.Which implies that  Y =a. 
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But a + b = 1. So b(x) = 0 for every x  Y.But b 0.So the supposition that Y is not a fuzzy connected subset of X is 

false i.e. F-continuous function f: Y→ {0, 1} is constant. Hence  αє˄ Aα is a fuzzy connected subset of fuzzy Čech 

closure space (X, k).  

 

Theorem 4.5: If {Aα}αє˄ is a family of fuzzy connected subsets of a fuzzy connected Čech closure space (X, k) and  

 αє˄ Aα  ,then  αє˄ Aα is a fuzzy connected subset of fuzzy connected Čech closure space X. 

 

Proof: Let Aα in the family is a fuzzy connected subset of fuzzy Čech closure space (X, k) i.e. A F-continuous function  

f :{Aα}αє˄ → {0,1} is constant. For any α, β  ˄, α   , we have Aα   Aβ    .Hence k ( Aα) +  Aβ   1  

and  Aα +k ( Aβ )  1.Thus characteristics functions of each pair of members of the family are not separated from each 

other. So  αє˄ Aα is a fuzzy connected subset of fuzzy Čech closure space X. 

 

Theorem 4.6: If C is a fuzzy connected subset of a fuzzy connected Čech closure space X, V⊂ X-C and  v /X-C is a 

fuzzy clopen in X-C, and then C V is a fuzzy connected subset of fuzzy connected Čech closure space (X, k). 

 

Proof: Suppose Y=C V is not a fuzzy connected Čech closure subset of fuzzy connected closure space (X, k).Then 

there exist fuzzy open sets λ and δ such that f ( ) ≠ f ( ), and 

λ /Y + δ /Y =1                                                                                                                                                                   (1) 

Since C is a fuzzy connected Čech closure subset of Y (as it is so in X), 

By theorem 4.3, λ /C =  C /C or δ / C =  C /C .Without loss of generality assume that 

λ /C =  C /C . So by equation (1), 

δ / C = 0                                                                                                                                                                              (2) 

Therefore δ / V   0 (as δ /Y   0)                                                                                                                                      (3) 

Let us define a fuzzy set δ1 in X as 

δ1(x) = δ(x), if x  V, 

         = 0,      if x  X-V. 

We shall now show that δ1 is fuzzy closed as well as fuzzy open in X. 

Now δ1 /V = δ / V and by equation (1) δ / V is fuzzy closed in V. 

Therefore δ1 /V is fuzzy closed in V. Also  v is fuzzy closed in X-C. Therefore δ1 /X-C is fuzzy closed in X-C. Now  

δ1 /X-C = δ /X-C⋂  v /X-C.    (4)   

Therefore δ1 /X-C is fuzzy open in X-C. 

Thus δ1 /X-C is fuzzy clopen in X-C                                                                                                                                  

Further δ1 /Y = δ/Y (because of (2)).As δ /Y is fuzzy clopen in Y (because of (1)), therefore                                        (5) 

δ1 /Y is fuzzy clopen in Y.                                                                                                                                                   

Now by (4) and (5) and δ1 is fuzzy clopen in (X-C)   Y = X. As δ1 is a proper fuzzy set, we get a contradiction to the 

fact that X is fuzzy connected Čech closure space. Hence C V is a fuzzy connected subset of fuzzy connected Čech 

closure space (X, k). 

 

Theorem 4.7: If A and B are fuzzy subsets of a fuzzy Čech closure space (X, k) and  A  B k( A) and A is fuzzy 

connected closure subset of X , then B is also a fuzzy connected Čech closure subset of  fuzzy Čech closure space (X, k). 

 

Proof: If we suppose that B is not a fuzzy connected subset then there exist fuzzy open sets λ and δ in X such that 

λ /B   0, δ /B   0, and f( )≠f( )                                                                                                                                     (1) 

We first show that λ /A  0. If λ /A = 0, then λ +  A    1, which implies that λ + k( A)    1; so λ +  B    1  

(because  B   k( A) ).This is turn implies that λ /B = 0, which is a contradiction ,as λ /B   0.Therefore λ /A   0 . 

Similarly we can show that δ /A   0.Now (1) and  A    B imply λ /A + δ /A = 1.So A is not fuzzy connected, which is 

a contradiction. 

5. Conclusion 

In this paper the idea of connectedness in fuzzy Čech closure space was introduced and relationship between the 

connectedness and fuzzy Čech closure space were explained.  
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