
International Journal of Applied Mathematical Research, 3 (4) (2014) 422-431
c©Science Publishing Corporation
www.sciencepubco.com/index.php/IJAMR
doi: 10.14419/ijamr.v3i4.3378
Research Paper

On the branch and cut method for multidimentional

mixed integer Knapsack problem
Mostafa Khorramizadeh*, Zahra Rakhshandehroo

Department of Mathematical Sciences, Shiraz University of Technology, Shiraz 71555-313, Iran
*Corresponding author E-mail: m.khorrami@sutech.ac.ir

Copyright c©2014 Mostafa Khorramizadeh and Zahra Rakhshandehroo. This is an open access article distributed under

the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

Abstract

In this paper, we examine the effect of the feasibility pump (FP) method on the branch and cut method for solving
the multidimentional mixed integer knapsack problem. The feasibility pump is a heuristic method, trying to compute
a feasible solution for mixed integer programming problems. Moreover, we consider two efficient strategies for using
the feasibility pump in a branch and cut method and present some tables of numerical results, concerning the
application and comparison of using these strategies in the branch and cut method for solving the multidimentional
mixed integer knapsack problem. The numerical results indicate that for the majority of the test problems, by using
the FP or the imroved version of the FP we can improve the efficiency of the branch and cut method for solving
the multidimentional mixed integer knapsack problem.

Keywords: Feasibility pump method, Branch and cut method, multidimentional mixed integer knapsack problem.

1. Introduction

Given a collection of items having both a weight and a usefulness, the knapsack problem is to fill a bag whose
capacity is constrained while maximizing the sum of the usefulness of the items contained in the bag. In the
mixed integer knapsack problem the number of some items are allowed to be continuous while the number of
the remaining variables must be integer. The mixed integer knapsack problem belongs to the class of NP-hard
problems [5]. The original version of the knapsack problem has one constraint relating to the capacity of the
bag, while in the multidimentional knapsack problem we have several constraints of this type. This problem has
many applications in the mathematical sciences and engineering [5, 7]. On efficient algorithm for solving the
multidimentional mixed integer knapsack problem is the branch and cut method [1, 6]. Recently, Bertacco et al.
[3] presented an efficient heuristic algorithm, called the feasibiltiy pump, for finding a feasible solution of mixed
integer programming problems and showed that their heuristic algorithm is able to improve the efficiency of the
branch and cut method. Then, Boland et al. [2] introduced an improvement of the feasibility pump method. One
important issue is the study of the effect of the feasibity pump method to a branch and cut method when applied
to solve the multidimentional mixed integer knapsack problem.

In this paper we first describe original version of the FP method [3] for computing a feasible solution of the
mixed integer programming problems. Then, we explain the improved version of the FP, presented in [2]. The
original version of the FP tries to find the feasible solutions without taking objective function into account, while
the improved version usually finds solutions with better objective value, but is more likely to fail to find a feasible

International Journal of Applied Mathematical Research 423

solution [2]. Then, we apply three branch and cut methods to a set of multidimentional mixed integer knapsack
standard test problems, taken from [1]. The first branch and cut method uses the original version of the FP, while
the second branch and cut method uses the improved version of the FP. In the third branch and cut method we do
not use the FP method. Finally, we present some numerical results to examine the effect of using the original version
of FP and the improved version of FP on the implemented branch and cut methods for solving multidimentional
mixed integer knapsack problem instances. We apply the implemented algorithms on 90 standard rest probelms.
The numerical results show that for the majority of the test problem instances, by using the FP or the imroved
version of the FP we can improve the efficiency of the branch and cut method for solving the multidimentional
mixed integer knapsack problem.

In section 2, we describe the original and improved versions of the FP. In section 3, we study the steps of the
branch and cut method. In section 4, we consider the multidimentional mixed integer knapsack problem. Finally,
section 5 is devoted to the numerical results.

2. Feasibility pump method

In this section we explain the steps of the original and improved versions of the FP. Consider the following mixed
integer programming problem:

min{cT x| Ax ≤ b, l ≤ x ≤ u, xj ∈ Z ∀j ∈ I} (MIP)

In the first step of the FP we round the solution x∗ of the LP relaxation

min{cT x|;Ax ≤ b, l ≤ x ≤ u, } (LP)

to an integer vector x̃ = [x]I . For every S ⊂ N let [x]S be so that

[xj]S =
{

[xj + 0/5] ifj ∈ S
xj ifj /∈ S.

(1)

In case x̃ is not feasible, we try to compute a vector in the set of feasible solutions of the LP relaxatuon, that
minimizes ∆(x, x̃) =

∑
j∈I |xj − x̃j |. The FP replaces x∗ with the new computed vector and proceed. Moreover,

FP terminates if x∗ = x̃ or a predifined iteration limit is reached. Note that the closest point in the feasible set of
the LP relaxation to x̃ is computed by solving the followhng LP problem:

min ∆(x, x̃) =
∑

j∈I
x̃j=lj

(xj − lj) +
∑

j∈I
x̃j=uj

(uj − xj) +
∑

j∈I
lj<x̃j<uj

dj ,

s.t. Ax ≤ b, d ≥ x− x̃, d ≥ x̃− x, l ≤ x ≤ u,
(2)

where, the variables dj model the nonlinear term dj = |xj − x̃j | for integer variables xj that are not equal to one of
their bounds in the rounded solution x̃. During the algorithm the same sequence of integer and LP-feasible points
can be visited over and over again. To overcome this difficulty, each time an integer point x̃ is generated that was
already visited in a prior iteration, we perform a restart. In a restart a random perturbation step is executed,
which shifts some of the variables randomly up or down and installs this perturbed vector as new integer point x̃ to
continue the search. The second isue accurs if for a larg number of iterations, there is no considerable improvment
in the fractional measure

f(x∗) :=
∑

j∈I

(f(x∗j)) , f(x∗j) := |x∗j − [x∗j + 0/5]|.

To deal with the second isue we perform a restart if in a certain number of iterations no larg number of improvment
is observed in fractional measure. For fractional considrations, the original vergen of the FP consists of three stages.
In the first stage we relax the integrality conditions on the general integer variables and perform a certain number
of iterations (called a pumping round) just on the binary variables B ⊂ I. If the performance of the first stage
dose not give us the feasible solution, we apply the second stage. We start the second stage from the initial point
x̃ which is the closest point to the set of feasible solutions of the LP, that was visited during the first stage. Then,
we execute a certain number of iterations on all integer variables. If no feasible solution is found by performing the

424 International Journal of Applied Mathematical Research

second stage, we enter the third stage. In the third stage we use a point x̃ from the second stage closest to the set
of feasible solutions of LP and solve the MIP:

min{∆(x, x̃)| Ax ≤ b, l ≤ x ≤ u, xj ∈ Z ∀j ∈ I}

The third stage stops if the first feasible solution is found or if a a certain iteration limit is reached.
Next we describe the improved version of the FP. The main idea of the improved FP is to find a feasible solution

x of the problem for wich the objective value cT x is as small as possible. In [2] Boland et al. considerd this issue
by gradually reducing the influence of the original objective function cT x and increasing the weight of the artificial
objective function of the FP ∆. Indeed assume that c 6= 0. In the improved FP the distance function ∆(., x̃) is
replaced with a convex combination of ∆ and c:

∆α(x, x̃) = (1− α)∆(x, x̃) + α
||∆||
||c|| cT x, α ∈ [0, 1],

where ||.|| is the Euclidean norm of a vector, and ∆ is the objective function vector of the original FP. In the first
stage we have ||∆|| =

√
|B| and in the second stage we have ||∆|| =

√
|I|. In pumping rounds α is decreased

geometricly, i.e. αi+1 = φαi and α0 ∈ [0, 1] where φ < 1 and αi denotes the value of αi in the ith iteration. In the
improved version of the FP, we avoid cycling as follows. We remember paires (x̃, αi) and in the ith iteration, we
perform a restart if x̃ was visited at itration i′ < i with αi′ − αi ≤ δα and δα ∈ [0, 1], see [2] for details.

3. Branch and cut method

In this section we present an overview of the branch and cut method for solving the MIP [7, 4]. The branch and cut
method is a generization of the branch and bound method and consists of three major parts. The first part is called
the enumerative part. In the enumerative part we perform the initialazation, bounding, fixing and setting of the
variables, bounding, selection and fathoming. The initialization is concerned with operations such as reading in the
problem data, setting of the parametes of the algorithm and etc. In the bounding part we perform some operations
relating to the update of the best solution fund so far. By fixing and setting of variables we mean the assignment of
a constant value to some variables of the problem, in the remainder of the branch and cut method. In the selection
part we choose an active node of the branch and cut tree for processing. The selection of the next node can be
perfomed according to the depth first search, the breath first search and the best-node first search criteria. In the
fathoming part we stop processing a node further if the optimal value of the LP ralaxation of this node is greater
than or equal to the best optimal value found so far or if the LP relaxation of the node is infeasible or the optimal
solution of the LP relaxation of the node is feasible for the MIP. Another criteria for fathoming is called fathomming
by contradiction. Fathomming by contradiction occures if we observe that some fixed variables must be fixed or
set to another value. Finally a node is fathomed if the tailing off happenes, i.e. for certain number of successive
iterations the optimal value of the LP relaxation of the corresponding nodes does not improved considerably.

The second part of the branch and cut algorithm is concened with the computation of lower bound. This
part consists of the initialization of the new node, solving of the coressponding LP, separation and elimination.
After initialization of the new node and solving the corresponding LP, in the separation part, we generate a valid
inequality that cuts off the fractional optimal solution of the LP. In the elimination part we eliminate some valid
inequaliteis that are not effective.

In the third major part of the branch and cut method, we compute an upper bound. In this part we try to find
a feasible solution for the MIP and improve quality of the best solution found so far, in the every node of the branch
and cut tree. The main idea of this part is that if we can improve the quality of the best solution so far, then we
can decrease the width of the branch and cut tree and save a lot of computational cost. This strategy is prooved to
be effective in the practice [3, 2]. One of the most efficient heuristic methods for finding a feasible solution of MIP,
relating to this part is the FP method.

4. Mixed integer knapsack model

In this section we briefly describe the mixed integer programming formulation of the multidimentional mixed
integer knapsack problem [1]. In the following let I and C be the set of indices of integer and continuous variables,
respectively. For every i ∈ I, let xi and ci denote the number and the usefulness of the ith integer item, respectively.

International Journal of Applied Mathematical Research 425

For every j ∈ C, let wj and dj denote the number and the usefulness of the jth continuous item, respectively. Then,
the mixed integer programming formulation of the multidimentional mixed integer knapsack problem is as follows:

max
∑

i∈I cixi +
∑

j∈J djwj

s.t.
∑

i∈I airxi +
∑

j∈J gjrwj ≤ br, r ∈ R,

xi ≤ ui, wj ≤ vj , i ∈ I, j ∈ C,
xi ≥ 0, wj ≥ 0, i ∈ I, j ∈ C.

where, br is the capacity correspoding to the rth constraint and air and gjr are the space occupied in the rth
constraint by the ith integer variable and the jth continuous variable, respectively. ui and vj denote the upper
bound on the ith integer variable and the jth continuous variable, respectively. Moreover, no sign restriction is
imposed on br, air and gjr and they can take negative values.

5. Numerical results

In this section we describe our computational experiments. For the implementation we used a camputer with a a
2.53GHz Corei3/Windows7 with 2GB RAM using the CPLEX Version 12.6 with default settings. The 90 problem
instances are taken from [1]. Table 1 is concerned with the properties of the generated test problems. In this table
np denotes the problem number, |I|, |C| and |R| denote the number of integer variabes, the number of continuous
variables and the number of constraints of the generated test problem, respectively. Tables 2 and 3 are devoted
to the comparison of the computing time and the number of nodes of the branch and cut tree for solving the
corresponding multidimentional mixed integer unbounded knapsack pronlem instance. In this table, np denotes
the problem number. Moreover, TwFP , ToFP and TimFP denote the computing time of the branch and cut
method without using the FP, by using the original version of the FP and by using the improved version of the
FP, respectively. Finally, NNwFP , NNoFP and NNimFP denote the number of nodes of the branch and cut
tree without using the FP, by using the original version of the FP and by using the improved version of the FP,
respectively. In Tables 4 and 5, we compared the number of iterations and the value of the gap resulting from
the branch and cut tree for each problem instance. In tables 4 and 5, ITwFP , IToFP and IT imFP denote the
number of iterations of the branch and cut method without using the FP, by using the original version of the FP
and by using the improved version of the FP, respectively. Moreover, GwFP , GoFP and GimFP denote the gap
obtained after the application of the branch and cut method without using the FP, by using the original version of
the FP and by using the improved version of the FP, respectively.

The numerical results of tables 2 and 3 show that for 27 instances the best computing times are obtained
after the application of the branch and cut method using the original version of the FP. For 30 instances the best
computing times are related to the branch and cut method using the improved version of the FP. For 33 problem
instances the best computing times are obtained after the application of the branch and cut method without using
the FP. Therefore, from 90 test problems, for 57 problem instances using the orignal or the improved version of the
FP reduces the computing time of the branch and cut method.

From 90 generated prolem instances, in 31 cases the branch and cut method without using any versions of the
FP has less number of nodes, while in 54 cases using either the original version or improved version of the FP results
in less number of nodes of the corresponding branch and cut tree. It can also be verified that for 28 instances using
the improved FP results in fewer number of nodes and for 26 instances using the original version gives better results.
In 5 cases the number of nodes obtained by using all three branch and cut methods are equal.

In tables 4 and 5, for 31 problem instances the number of iterations of the branch and cut method without using
the FP is less than that of the branch and cut method using at least one version of the FP. However, for 57 problem
instances the branch and cut method that uses a version of the FP needs less number of iterations. In 34 cases the
improved version of the FP needs less number of iterations and in 23 cases the original version of the FP needs less
number of iterations. In 2 cases the number of iterations of three branch and cut methods are equal. From the 90
test problems, in 32 test instances, the branch and cut method without using the FP, gives a better value for gap
than the branch and cut method using at least a version of the FP, while in 53 cases the branch and cut method
using a version of FP gives a better value for the gap. For 31 cases the gap obtained by using the original version
of the FP is the best and for 22 instances the improved version of the FP gives the best value for the gap. From
the numerical results of tables 1, 2 and 3 we conclude that for most of the test instances, by using the original or
improved version of the FP we can improve the efficiency of the resulting branch and cut method.

426 International Journal of Applied Mathematical Research

Table 1: Properties of the problem instances

np |I| |C| |R| np |I| |C| |R| np |I| |C| |R|
1 250 5 50 31 250 20 50 61 500 10 50
2 250 5 50 32 250 20 50 62 500 10 50
3 250 5 50 33 250 20 50 63 500 10 50
4 250 5 50 34 250 20 50 64 500 10 50
5 250 5 50 35 250 20 50 65 500 10 50
6 250 5 75 36 250 20 75 66 500 10 75
7 250 5 75 37 250 20 75 67 500 10 75
8 250 5 75 38 250 20 75 68 500 10 75
9 250 5 75 39 250 20 75 69 500 10 75
10 250 5 75 40 250 20 75 70 500 10 75
11 250 5 100 41 250 20 100 71 500 10 100
12 250 5 100 42 250 20 100 72 500 10 100
13 250 5 100 43 250 20 100 73 500 10 100
14 250 5 100 44 250 20 100 74 500 10 100
15 250 5 100 45 250 20 100 75 500 10 100
16 250 10 50 46 500 5 50 76 500 20 50
17 250 10 50 47 500 5 50 77 500 20 50
18 250 10 50 48 500 5 50 78 500 20 50
19 250 10 50 49 500 5 50 79 500 20 50
20 250 10 50 50 500 5 50 80 500 20 50
21 250 10 75 51 500 5 75 81 500 20 75
22 250 10 75 52 500 5 75 82 500 20 75
23 250 10 75 53 500 5 75 83 500 20 75
24 250 10 75 54 500 5 75 84 500 20 75
25 250 10 75 55 500 5 75 85 500 20 75
26 250 10 100 56 500 5 100 86 500 20 100
27 250 10 100 57 500 5 100 87 500 20 100
28 250 10 100 58 500 5 100 88 500 20 100
29 250 10 100 59 500 5 100 89 500 20 100
30 250 10 100 60 500 5 100 90 500 20 100

International Journal of Applied Mathematical Research 427

Table 2: Comparison of the computing time and number of nodes

np TwFP ToFP TimFP NNwFP NNoFP NNimFP
1 0.48 0.37 0.48 0 496 0
2 0.39 0.42 0.51 0 0 0
3 0.51 0.39 0.64 814 1115 1772
4 0.38 0.36 0.36 0 0 0
5 0.38 0.33 0.36 0 0 0
6 10.4 29.45 1.61 70363 240362 7456
7 0.61 0.72 0.61 2573 4817 3104
8 0.61 0.86 0.69 2222 4604 3426
9 3.21 3.01 3.50 22984 22665 24414
10 1.56 2.64 2.42 6418 17095 12683
11 4.71 5.10 4.58 16231 22898 21290
12 0.75 0.83 0.95 3131 2815 3877
13 2.08 5.72 4.18 3159 20363 18535
14 0.55 0.78 0.55 1510 4085 1565
15 2.22 2.34 2.48 3935 5456 4996
16 0.41 0.37 0.44 475 545 0
17 0.50 0.47 0.45 1984 1716 1495
18 0.80 0.76 0.83 5165 4946 6138
19 0.47 0.47 0.55 1062 1022 2545
20 0.41 0.42 0.36 179 184 170
21 7.68 4.57 6.72 46566 22911 38360
22 3.79 11.23 3.74 13315 49190 13496
23 2.22 6.33 1.50 12552 30819 5542
24 2.84 7.58 2.95 16306 29557 15507
25 2.17 1.26 1.43 11334 4775 8146
26 2.14 2.03 2.06 3184 3567 4767
27 2.62 2.59 2.71 16139 3911 6764
28 3.09 2.40 3.96 8687 8408 13681
29 2.93 3.23 2.54 8812 7120 6903
30 3.21 8.74 3.03 3926 36751 4010
31 1.34 1.79 1.84 9548 14533 13736
32 0.81 1.03 0.81 4191 5773 5528
33 1.50 1.17 1.18 8573 5643 5353
34 1.08 1.15 0.65 5681 5867 5048
35 0.45 0.50 0.50 2950 2312 2469
36 2.79 5.16 3.26 21489 33893 21768
37 2.00 1.67 2.21 4475 4459 3777
38 2.34 3.20 4.31 8998 16305 25723
39 44.24 72.62 61.01 331734 632811 584904
40 1.67 1.75 2.36 9408 8155 11937
41 2.70 2.82 2.84 6159 5252 6584
42 3.20 3.99 7.36 9749 15483 31502
43 3.65 3.99 3.85 6675 6567 6743
44 4.85 3.01 0.51 22719 8388 13400
45 5.29 4.15 3.84 17545 8282 6160

428 International Journal of Applied Mathematical Research

Table 3: Comparison of the computing time and number of nodes

np TwFP ToFP TimFP NNwFP NNoFP NNimFP
46 0.76 0.69 0.69 985 1700 1164
47 0.69 0.66 0.67 814 812 835
48 1.03 1.16 0.89 3845 3846 5811
49 0.56 0.59 0.66 1366 1662 1890
50 0.42 0.39 0.42 0 0 0
51 2.39 1.93 2.04 10457 9021 7551
52 12.72 4.71 2.82 67590 17050 9799
53 1.97 1.90 1.98 7612 8134 6101
54 1.83 1.67 3.38 8520 2392 24692
55 2.00 1.87 1.97 6144 5765 6809
56 2.64 1.40 2.23 8598 5152 5492
57 12.71 3.59 3.12 55424 14773 12746
58 1.76 1.23 1.89 2778 4219 3965
59 2.62 2.67 11.14 6089 8629 46361
60 2.81 2.40 7968 6903
61 2.04 2.17 2.26 5878 6068 5713
62 0.87 0.87 1.22 2684 2933 4819
63 1.23 0.86 1.29 5087 4177 4718
64 1.15 1.11 1.01 4798 4469 3478
65 0.52 0.51 0.64 0 0 0
66 2.34 2.03 1.86 9320 6495 5602
67 7.21 13.82 13.03 25142 78036 57225
68 3.73 45.26 3.89 19411 27870 18165
69 3.34 11.33 3.25 20131 48071 155487
70 2.37 3.15 2.84 8928 15889 13355
71 73.27 8.75 15.76 505691 153787 323815
72 2.01 1.67 1.26 5406 4156 1627
73 2.48 2.25 2.15 3469 5717 4233
74 3.07 3.28 2.76 6565 10465 6966
75 5.02 43.79 15.12 11792 272509 67032
76 1.82 2.34 5.41 1080 13394 32528
77 1.31 1.06 1.42 4536 4701 6199
78 1.34 1.20 1.47 4536 5105 5189
79 1.45 1.47 1.50 5517 5655 5559
80 0.69 0.72 0.81 868 884 1468
81 5.01 20.61 11.58 23232 202501 56874
82 3.24 4.94 9.22 11371 21813 30544
83 188.45 489.25 17.91 1322238 2963241 127115
84 14.54 15.59 3.32 90804 88455 13174
85 3.78 14.48 4.82 9217 76941 15538
86 2.51 4.15 4.09 5940 18537 16813
87 2.29 2.22 2.23 6834 5232 5223
88 2.81 2.79 1.62 4821 5043 1796
89 2.92 2.78 3.65 8293 4887 4648
90 2.03 2.14 2.07 4559 5179 4445

International Journal of Applied Mathematical Research 429

Table 4: Comparison of the number of iterations and gap

np ITwFP IToFP IT imFP GwFP GoFP GimFP
1 750 2528 793 0.25 - 3.31622
2 694 694 694 - - -
3 4549 4287 7769 3.039 1.329 3.010
4 618 583 591 2.475 - 0.513
5 722 722 722 - - -
6 485948 1726116 40445 - 4.837 4.382
7 12195 23514 14157 4.75 4.651 4.673
8 17733 30941 24321 3.526 3.908 2.811
9 22984 966356 125719 4.878 5.132 4.526
10 33725 78151 71449 4.797 5.017 4.653
11 130494 158240 136655 6.741 6.537 6.749
12 13405 11719 16134 6.404 6.440 6.599
13 17377 159901 142619 - 6.852 7.023
14 6446 15739 5462 6.014 3.839 2.936
15 18820 28337 30571 6.120 5.774 6.361
16 3132 3259 813 2.041 3.107 -
17 8737 7192 6792 1.808 1.077 0.975
18 23166 21720 24479 2.270 1.783 3.055
19 5611 5575 8492 2.508 2.348 3.307
20 1838 1882 1769 - 2.966 -
21 222602 137070 169458 4.810 4.824 4.841
22 69734 391900 93071 4.704 4.921 4.930
23 71105 177877 37672 5.118 5.056 3.258
24 97136 220591 93723 5.037 5.102 4.343
25 50092 25969 38112 4.972 4.466 4.858
26 14868 16676 22994 6.317 6.797 6.793
27 25005 18235 29694 5.343 6.304 6.197
28 61420 52317 84621 6.446 6.813 6.705
29 56060 34479 33405 5.415 7.105 6.696
30 17043 193888 17431 5.681 6.820 6.539
31 38430 60269 63205 2.403 2.682 3.240
32 21569 21960 23102 3.129 - 3.258
33 27631 14572 12833 3.209 3.100 3.046
34 22838 23210 14809 3.399 - 2.748
35 7774 5696 5029 3.081 2.333 2.948
36 102539 81969 81999 4.969 4.753 4.560
37 17051 19944 13624 4.997 4.812 4.097
38 46620 80126 143011 5.011 5.018 5.210
39 1697631 2953633 2149683 5.220 5.220 5.225
40 31955 30432 62545 4.850 4.655 5.013
41 22306 18439 25473 6.807 6.952 6.370
42 32451 58800 112860 6.561 6.263 6.813
43 24258 22410 21755 6.977 6.253 6.266
44 90375 28503 47364 7.065 7.092 7.111
45 64412 30741 23814 6.5832 6.400 6.548

430 International Journal of Applied Mathematical Research

Table 5: Comparison of the number of iterations and gap

np ITwFP IToFP IT imFP GwFP GoFP GimFP
46 5816 8184 6214 2.919 2.384 2.642
47 3963 3927 3960 - - -
48 1483 14711 23028 - 1.747 3.097
49 5852 5817 6508 3.158 1.537 1.976
50 430 429 407 - - -
51 72673 46329 42139 4.888 4.769 4.739
52 398626 148348 57436 4.889 4.815 4.555
53 43704 40645 38372 4.204 4.750 4.821
54 32196 27742 114320 3.688 4.113 5.157
55 38915 33085 35581 3.330 4.762 4.693
56 55131 44097 37867 5.759 6.151 6.489
57 467384 88935 84622 6.563 5.737 6.573
58 19529 30550 26879 - 5.963 2.030
59 37525 54120 378039 5.484 6.867 7.058
60 53390 53275 6.096 6.540
61 25099 24664 22851 0.873 1.381 0.418
62 12205 14301 23259 2.193 2.749 2.257
63 18579 14928 14469 3.025 2.572 0.203
64 20051 18348 11369 3.059 1.657 3.23
65 683 736 846 1.766 2.739 -
66 60657 36264 30635 3.857 4.019 4.672
67 212605 433766 476890 4.808 4.942 4.917
68 90872 1910354 95628 4.992 5.103 5.007
69 117520 352917 87444 5.183 5.197 4.952
70 38216 70399 55249 5.026 4.995 4.838
71 2987870 153787 323819 6.926 6.919 6.919
72 67537 38813 16345 6.826 6.018 4.230
73 20075 36243 21245 2.263 5.776 4.592
74 47292 91815 46664 7.003 6.664 6.862
75 56764 1562728 474330 6.611 6.777 6.767
76 36240 48065 146609 2.770 3.291 3.193
77 15961 16799 25469 - 2.402 3.191
78 15961 19127 17103 - 2.817 2.274
79 17230 21117 21501 0.934 3.190 3.164
80 3190 3382 6151 - 1.224 3.320
81 87545 833289 286222 4.895 4.902 4.869
82 62544 143951 225584 5.030 5.017 5.012
83 10028928 24535349 609941 5.115 5.115 5.112
84 406629 487306 46243 5.251 5.268 4.978
85 34029 458821 71820 5.069 5.100 4.972
86 22881 82056 84012 6.678 6.978 6.821
87 24985 19732 20073 6.831 6.618 6.490
88 16404 19021 6976 5.801 6.034 6.953
89 32017 20043 19814 6.942 7.187 6.472
90 18980 22093 18513 4.493 6.431 5.468

International Journal of Applied Mathematical Research 431

Acknowledgements

The authors thank the Shiraz university of Technology for supporting this work.

References

[1] A. Atamturk, On the facets of the mixedinteger knapsack polyhedron, Mathematical Programming Serries B, 98: 145175,
2003.

[2] Boland N. L., Eberhard A.C., Engineer F. and Tsoukalas A, Improving the feasibility pump. Discrete Optimization,
4(1):77-86, 2007.

[3] Bertacco L. Fischetti M. and Lodi A, A feasibility pump heuristic for general Mixed-Integer Problems. Discrete Opti-
mization, 4(1):63-76, 2007.

[4] M. Elf, C. Gutwenger, M. Junger and G. Rinaldi, branch and cut Algorithm for combinatorial optimization and
their implementation in ABACUS,Computational Combinatorial Optimization: Optimal or Provably Near-Optimal
Solutions., Lecture Notes in Computer Science. 2241 Springer 2001, pp. 157-222.

[5] H. Kellerer, U. Pferschy and D. Pisinger, Knapsack Problems, Springer-Verlag, Berlin, 2004.

[6] R. Weismantel, On the 0/1 knapsack polytope. Mathematical Programming, 77:4968, 1997.

[7] L. A. Wolsey, Integer Programming, John Wiley and Sons, New York, 1998.

