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Abstract

The nonlinear properties of dust acoustic solitary waves in unmagnetized dust plasma consisting of negative charged
dust particles , Boltzmann distributed electrons and non-thermal distributed ions with variable dust charge are
investigated. By using the reductive perturbation theory, a Korteweg-de Veries (KdV) equation is derived. The
Sagdeev’s potential are obtained in terms of ion acoustic velocity by using the auto-Bäcklund (BT) transformation,
the modified Ǵ

G expansion, the sine-cosine expansion method, the sinh-coshine expansion method, and the sech-tanh
expansion method describing the nonlinear propagation of ion-acoustic solitary waves in unmagnetized dust plasma.
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1. Introduction

The study of dusty plasmas represents one of the most rapidly growing branches of plasma physics. The growing
interest in the physics of dusty plasmas has arisen not only from dust being an omnipresent ingredient of our
universe, but also from its vital role in understanding collective processes in astrophysical and space environments,
such as mode modication, new eigenmodes, coherent structures, etc [1]. Usually the dust grains are of micrometer
or sub-micrometer size and their masses are very large. The consideration of charged dust grains in plasmas not
only modifies the existing plasma wave spectra, but also introduces a number of new eigenmodes, such as dust-
acoustic waves (DAWs), which were reported theoretically first by Rao et al. [2] and verified experimentally by
Barkan et al [3]. The linear characteristics of DAWs have by now been well established both theoretically [4] and
experimentally [5]. There is also an enormous theoretical literature on the topic of nonlinear DAWs [6, 7, 8, 9]. In
the absence of dissipation (or if the dissipation is weak at the characteristic dynamical time scales of the system)
the balance between nonlinear and dispersion effects can result in the formation of symmetrical solitary waves (a
soliton). Shalini Bagchi [10] investigated the effects of obliquity and external magnetic field on the dust acoustic
solitary waves in hot magnetized dusty plasmas with Boltzmann distributed electrons and two-temperature trapped
ions. It was found that both compressive and rarefactive solitary waves as well as compressive and rarefactive double
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layers exist. Brindaban Das and Prasanta Chatterjee [11] studied large amplitude double layers in dusty plasma
with non-thermal electrons and two temperature isothermal ions. Xie et al. [12] investigated the small- and large-
amplitude dust-acoustic solitary waves (DASWs) in dusty plasmas with variable dust charge and two-temperature
ions. It was noticed that both compressive and rarefactive solitary waves as well as double layers exist.
The multispecies plasmas consisting of cold or warm positive and negative ions with usual Boltzmanns electrons
have been the focus of research for the past few years. Most research work was based on the study of ion-acoustic
solitons. KdV equation is derived in such plasmas using reductive perturbation method [13]. It was predicted
that with the introduction of negative ions, there exists a critical ion concentration of negative ions below which
compressive solitons exist and above which rarefactive solitons exist.
Lin and Daun also considered dust acoustic solitary wave in a dusty plasma with non-thermal ions [14]. In this
paper we we considered unmagnetized dusty plasma which including variation dust charge, Boltzmann distributed
electrons and non thermal distributed ions. We use the reductive perturbation technique to derive a KdV equation.
would like to use the homogeneous balance method [15, 16] to construct an auto-Bäcklund transformation (BT)[17-
23] , new exact soliton solutions of KdV equation are obtained and we have applied the modified Ǵ

G expansion
method[24-31], the sine-cosine expansion method, the sinh-coshine expansion method [3-36],and the sech-tanh
expansion method[33,37-41] and to obtain a new travelling wave solutions of KdV equation.
The paper is organized as follows :This introduction in Section 1. In Section 2, the mathematical analysis and, the
KdV equation is derived by using reductive perturbation theory. In Section 3, the auto-Bäcklund transformation
(BT) applying to construct new exact soliton solutions of KdV equation. In Section 4, the modified Ǵ

G expansion
method, the sine-cosine expansion method, the sinh-coshine expansion method, and the sech-tanh expansion method
are applied to construct new travelling wave solutions of KdV equation. Finally, the application of the solutions
are given in Section 5. Conclusions are given in Section 6.

2. Mathematical analysis

Basic equation for consideration dust acoustic wave in unmagnetized dusty plasma with include variable dust charge
, Boltzmann electrons and non-thermal ions , is given by:
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where nd is the dust particle number density normalized to nd0. ud is dust particle velocity normalized to Cd =
( zdTi

md
)

1
2 . zd, md and φ number of charge on dust particles, particle mass and electrostatic potential, respectively.

zd and φ are normalized to zd0 and Ti
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d
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d
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2 . T = Ti

Te
where Ti and Te are

temperature ions and electrons respectively and µ = n0e

n0i
, where n0e and n0i are number density of unperturbed

ions and electrons in dust acoustic.
ni is number density of ions and ne is number density of electrons which normalized to n0i and n0e respectively. ni

and ne is given by[42,43]:

ni = [1 +
4α

1 + 3α
(φ + φ2)]exp(φ) (5)

ne =
1

1− µ
exp(Tφ), (6)

α being a parameter defining the population of non-thermal ions [43,44]. In the case of α = 0 , we can neglect the
effect of non-thermal ions. Total charge neutrality at equilibrium is:

n0e + n0dz0d = n0i, (7)
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where n0e ,n0i, n0d and z0d are number density of unperturbed electrons, ions and the number density equilibrium
values of unperturbed number of charge on the dust particles respectively. The variation of dust charge is because
of collision between electrons and ions with dust particles. The collision of electrons and ions with plasma particles
produces a charged current. The charge-current balance equation is given by :

∂qd

∂t
= Ie + Ii, (8)

where Ie and Ii are current of electrons and ions respectively. If we consider that the streaming velocities of electrons
and ions are much smaller than the thermal velocities. Therefore dqd

dt << Ii, Ie and charge- current balance equation
(8) reduce to equation Ie + Ii ≈ 0.
The current of ions and electrons are[45]:

Ie = −eπr2(
8Te

πme
)

1
2 neexp(

eΦ
Te

), (9)

Ii = eπr2(
8Ti

πmi
)

1
2 ni(1− eφ

Ti
), (10)

where Φ denotes the dust particle surface potential related to the plasma potential φ [12] and zd is the normalized
dust charge obtained from:

zd =
ψ

ψ0
, (11)

where ψ = eΦ
Teff

and ψ0 = ψ(φ = 0).

In order to study the nonlinear propagation of the dust acoustic wave in a unmagnetized dust plasma, We now use
the reductive perturbation method to obtain the KdV equation that governs the behavior of small amplitude dust
acoustic waves. The independent variables are stretched as

ξ = ε
1
2 (x− λt) and τ = ε

3
2 t (12)

where λ is the phase velocity and ε is a small dimensionless expansion parameter. By expanding the independent
variables we have:

nd = 1 + εnd1 + ε2nd2 + ε3nd3 + ...... (13)

ud = εud1 + ε2ud2 + ε3ud3 + ...... (14)

φ = εφ1 − ε2φ2 + ε3φ3 − ...... (15)

p = 1 + εpd1 + ε2pd2 + ε3pd3 + ...... (16)

z = 1 + ε2zd1 + ε4zd2 + ...... (17)

Substituting equations (13-17) into equations (1-4) and collecting terms with same powers of ε, from the cofficients
of lowest order we have:

nd1 =
1

λ2 − 3T
φ1; ud1 =

λ

λ2 − 3T
φ1; Pd1 =

3
λ2 − 3T

φ1;η = 1
3T−λ2 = µT+3αµT−α+1

(1−µ)(1+3α) . (18)

And from the higher order coefficients of ε we have:
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By substituting equation (19-22) into (18) KdV equation is obtained:

∂φ1

∂τ
+ Cφ1

∂φ1

∂ξ
+ D

∂3φ1

∂ξ3
= 0, (23)

where coefficient C can be positive or negative. With positive C, solitary wave is compressive and with negative C,
solitary wave is rarefactive. The coefficients C and D are functions of T , α and µ and given by:

C =
−λ

−µ + 3µ2T + µ2λ2
, D =

3µ2λ + 2αλ− 12µ3Tλ

−µ + 3µ2T + µ2λ2
, (24)

where T , α and µ are plasma parameters.

3. Auto-Bäcklund transformation (BT) and new exact soliton solu-
tions of KdV equation

By using the idea of the Homogeneous balance method [46], we seek for Bäcklund transformation (BT) of equations
(23) in the form

φ1(ξ, τ) = ψ(τ)∂2ξf [χ(ξ, τ), η(ξ, τ)] + φ0(ξ, τ), (25)

where ψ(τ) is a differentiable function, f(χ, η) is a function to be determined later and φ0 be the special (old)
solution of KdV equation (23). In the following analysis, we will stay with the following conditions

ψ(τ) = 1, ηξ(ξ, τ) = 0 ⇒ η(ξ, τ) = η(τ) (26)

Substituting (25)and (26)into equation (23) yields

(Cfχχfχχχ + Dfχχχχχ)χ5
ξ + (χξξτ + Cχξξφ0ξ + Cχξξξφ0 + Dχξξξξξ)fχ

+ (2χξχξτ + χτχξξ + Cχ2
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+ (χτχ2
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χχ

+ (Cχ2
ξχξξξ + 3Cχξχ

2
ξξ)fχfχχ + (Cχ3

ξχξξ)fχfχχχ + ητχ2
ξfχχη + ητχξξfχη + φ0τ + Cφ0φ0ξ + Dφ0ξξξ = 0 (27)

Setting the coefficients ofχ5
ξ in (27) to zero, we obtain the ordinary differential equation for f; namely

Cfχχfχχχ + Dfχχχχχ = 0 (28)

which admits the solution

f = c ln(χ) + χσ(η) (29)

where σ(η) is differential function and c is arbitrary constant. According to (27), we obtain

fχ =
c

χ
+ σ, fχχ =

−c

χ2
, fχχχ =

2c

χ3
, fχχχχ =

−6c

χ4
, f2

χχ =
−c

6
fχχχχ, f2

χ =
−1
c

(c + χσ(η))2fχχ,

fχfχχ =
−1
2

(c + χσ(η))fχχχ, fχfχχχ =
−1
3

(c + χσ(η))fχχχχ (30)
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Substituting (28)and(30)into (27)yields a linear polynomial of fχ,fχχ,fχχχ and fχχχχ. Equating the coefficients of
fχ,fχχand fχχχχ to zero, holds

χξξτ + Cχξξφ0ξ + Cχξξξφ0 + Dχξξξξξ = 0 (31)

2χξχξτ + χτχξξ + Cχ2
ξφ0ξ + 3Cχξχξξφ0 + 10Dχξξχξξξ + 5Dχξχξξξξ − 1

c
(c + χσ(η))2(Cχξξχξξξ) = 0 (32)

χτχ2
ξ + Cχ3

ξφ0 + 15Dχξχ
2
ξξ + 10Dχ2

ξχξξξ − 1
2
(c + χσ(η))(Cχ2

ξχξξξ + 3Cχξχ
2
ξξ) = 0 (33)

10Dχ3
ξχξξ − c

6
(3Cχ3

ξχξξ)− 1
3
(c + χσ(η))(Cχ3

ξχξξ) = 0 (34)

φ0τ + Cφ0φ0ξ + Dφ0ξξξ = 0 (35)

The next crucial step is the assumption that

χ(ξ, τ) = 1 + expλ(τ)±kξ andφ0(ξ, τ) = φ0 (36)

where k is arbitrary constant. Substituting into equations (31-35), results in

λ′(τ) + Ckφ0 + k3D = 0 (37)

3λ′(τ) + 3Ckφ0 + 15k3D − C
(c + χσ(η))2

c
k3 = 0 (38)

λ′(τ) + Ckφ0 + 25k3D − 2C(c + χσ(η))k3 = 0 (39)

10D − 5
6
Cc− c

3
χσ(η) = 0 (40)

Solving the above system , we have

λ =
1
30

(−c2k3 − 12ckφ0)τ + c0, D =
c2

30
, σ = 0, C =

2c

5
(41)

where c0 is an integration constant, and let c0 = 0 . Substituting from equation (41) into equation (36), we have

χ(ξ, τ) = 1 + exp
1
30 (−c2k3−12ckφ0)τ±kξ andφ0(ξ, τ) = φ0 (42)

Substituting from equation (42) into equation (29), we have

f = c ln(1 + exp
1
30 (−c2k3−12ckφ0)τ±kξ) (43)

Substituting from equation (43) into equation (25), we have, the new exact soliton solution of KdV equation (23)
in the form

φ1 = ck2(
exp

1
30 (−c2k3−12ckφ0)τ±kξ

1 + exp
1
30 (−c2k3−12ckφ0)τ±kξ

− exp2( 1
30 (−c2k3−12ckφ0)τ±kξ)

(1 + exp
1
30 (−c2k3−12ckφ0)τ±kξ)2

) + φ0 (44)

where φ0 be special (old) solution of KdV equation (23).
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4. Travelling wave solutions of the KdV equation by applying the mod-

ified Ǵ
G expansion method, the sine-cosine expansion method, the

sinh-coshine expansion method, the sech-tanh expansion method

4.1. The modified Ǵ
G

expansion method and new travelling wave solutions of KdV
equation

Suppose that NPDE is given by

F (φ, φξ, φτ , φξξ, φττ , φξτ , .......) = 0, (45)

where φ = φ(ξ, τ) is unknown function and F is a polynomial in and its partial derivatives, in which the highest
order derivatives and nonlinear terms are involved. In the following we give the main steps of the modified Ǵ

G
Expansion method:

Step 1. The travelling wave variable

φ(ξ, τ) = φ(χ), χ = lξ − ρτ, (46)

where ρ and l are constants, permits us to reduce (45)into ODE;

F (φ, φ′, φ′′, φ′′′, .....) = 0. (47)

Step 2. Suppose that the solution of (47) can be expressed by a polynomial Ǵ
G in as follows;

φ(χ) = α0 +
m∑

i=1

[αi

(
Ǵ

G

)i

+ α−i

(
Ǵ

G

)−i

], (48)

where G = G(ξ) satisfies the second order linear ODE

G′′ + γG = 0, (49)

where α0, αi, α−i and γ are constants to be determined.

Step 3. The parameter ”m” in (48) can be found by balancing the highest order derivatives term and the highest
nonlinear term in (47) ;
(i)if m is a positive integer then go to step 4;
(ii)if m is not positive integer, we put φ = vm and then return to step 1.

Step4. Substituting (48) into (47) and using (49), collecting all terms with the same powers of Ǵ
G together,and then

equating each coefficient of the resulted polynomial to zero, yield a system of algebraic equations for α0, αi, α−i

and γ.

Step 5. Since the general solutions (48) are well known to us, then substituting α0, αi, α−i and γ and the general
solutions (48) into (47), we have the traveling wave solutions of the given NPDE.
For KdV equation (23), to transform it to ODE using the wave variable χ = lξ − ρτ , so these equation became

−ρφ′1 + lCφ1φ
′
1 + l3Dφ′′′1 = 0 (50)

integerating these equation once and setting the constant of integration equal to zero

−ρφ1 +
lC

2
φ2

1 + l3Dφ′′1 = 0 (51)

φ1 = α0 + α1

(
Ǵ

G

)
+ α−1

(
Ǵ

G

)−1

+ α2

(
Ǵ

G

)2

+ α−2

(
Ǵ

G

)−2

. (52)
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Substituting from (52) into (50), setting the coefficients of Ǵ
G together to zero, we have the following set of over

determined equations in the unknowns α0, α1, α2, α−1, α−2and l. Solve the set of equations of coefficients of
Ǵ
G together , by using Mathematica we obtain the following solution:
I)α0 = − 4Dl2γ

C , α1 = 0, α2 = 0, α−1 = 0, α−2 = − 12Dl2γ2

C , ρ = ±4Dl3γ
So that, the generalized solution can be written as

φ1 = −4Dl2γ

C
− 12Dl2γ2

C

(
c1cos

√
γχ + c2sin

√
γχ

c2
√

γcos
√

γχ− c1
√

γsin
√

γχ

)2

. (53)

II)α2 = 4γα0
3+γ2 , k = 8Dl3γ

So that, the generalized solution can be written as

φ1 = α0 +
4γα0

3 + γ2

(
c2
√

γcos
√

γχ− c1
√

γsin
√

γχ

c1cos
√

γχ + c2sin
√

γχ

)2

, γ = −2
(

G′

G

)2

−
√
−3 + 4

(
G′

G

)4

(54)

4.2. The sine-cosine expansion method and new travelling wave solutions of KdV
equation

Suppose that a nonlinear partial differential equation (NPDE) is given by

F (φ, φξ, φτ , φξξ, φττ , φξτ , .......) = 0. (55)

where φ = φ(ξ, τ) is unknown function and F is a polynomial in and its partial derivatives, in which the highest
order derivatives and nonlinear terms are involved. In the following we give the main steps of the Sine-Cosine
expansion method:

Step 1. The traveling wave variable

φ(ξ, τ) = φ(χ), χ = lξ − ρτ, (56)

where ρ and l are constants, permits us to reduce(55)into the following ordinary differential equation (ODE);

F (φ, φ′, φ′′, φ′′′, .....) = 0. (57)

Step 2. Suppose that the solution of (57) can be expressed in the form as follows;

φ(χ) = A0 +
n∑

i=1

cosi−1(w(χ))[Aisin(w(χ))] + Bicos(w(χ))], (58)

whereAi (i = 0, 1, ...., n) and Bi (i =1, ...., n) are constants to be determined.

Step 3. The parameter ”n” in (58) can be found by balancing the highest order derivatives term and the highest
nonlinear term in (57);
(i)if n is a positive integer then go to step 4;
(ii)if n is not positive integer, we put φ = vn and then return to step 1.

Step 4. Substitute (58) with the fixed parameter n into the obtained ODE using

dω(χ)
dχ

= γ
√

a + bsin2ω(χ), γ = ±1, (59)

where a and b are constants. collecting all terms with the same powers of w′ssiniwcosjw together. Set to zero the
coefficients of w′ssiniwcosjw(i = 0, 1; s = 0, 1; j = 0,1, 2,.,n) to get a set of algebraic equations Cijs (AS , BS) = 0
with respect to the unknowns A0, τ , Ai(i = 1, ...., n) and Bi (i=1, ...., n).

Step 5. Solve the set of algebraic equations to get A0, Ai and Bi, then we have the traveling wave solutions
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of the given nonlinear equation. In The sine-cosine expansion method there are three cases of (59):

Case I
In these case a=0, b=1, then the equation reduces to the first-order ODE

dw(χ)
dχ

= sin(w(χ)), (60)

which has the solutions:
sin(w(χ)) = sech(χ), orcos(w(χ)) = −tanh(χ)
and sin(w(χ)) = icsch(χ), orcos(w(χ)) = −coth(χ),
where i =

√−1

Case II
In these case a = 1, b = −m2, then the equation reduces to the first-order ODE

dw(χ)
dχ

= ±
√

1−m2sin2(w(χ)), (61)

where m is the modulus of Jacobi elliptic functions, which has the solutions
sin(w(χ)) = sn(χ; m), orcos(w(χ)) = cn(χ; m)
and sin(w(χ)) = ns(χ;m)

m , orcos(w(χ)) = ids(χ;m)
m

Case III
In these case a = m2, b = −1, then the equation reduces to the first-order ODE,

dw(χ)
dχ

= ±
√

m2 − sin2(w(χ)), (62)

which has the solutions,
sin(w(χ)) = msn(χ;m), orcos(w(χ)) = dn(χ; m).
and sin(w(χ)) = ns(χ;m), orcos(w(χ)) = ics(χ; m).

For KdV equation (23), to transform it to ODE using the wave variable χ = ρτ − lξ , so these equation became

−ρφ′1 + lCφ1φ
′
1 + l3Dφ′′′1 = 0 (63)

integerating these equation once and setting the constant of integration equal to zero

−ρφ1 +
lC

2
φ2

1 + l3Dφ′′1 = 0 (64)

according to steps ,we know that n=2 and suppose that the solution take the form

φ1 = A0 + A1sin(w(χ)) + B1cos(w(χ)) + A2sin(w(χ))cos(w(χ)) + B2cos
2(w(χ)) (65)

Substituting from (65) into (64), setting the coefficients of siniwcosjw(i = 0, 1; j = 0, 1, ...., n) to zero, we have
the following set of over determined equations in the unknowns A0, A1, A2, B1, B2and l. Solve the set of equations
of coefficients of siniwcosjw, by using Mathematica we obtain the following solutions:
I)A0 = a2ρ

C(a2+ab+b2)l + abρ
C(a2+ab+b2)l + b2ρ

C(a2+ab+b2)l + aDl2ρ

C
√

(a2+ab+b2)D2l6
+ 2bDl2ρ

C
√

(a2+ab+b2)D2l6
, A1 = 0, A2 = 0,B1 =

0,B2 = − 3bDl2ρ

C
√

(a2+ab+b2)D2l6
, γ = −

√
ρ

2(a2D2l6+abD2l6+b2D2l6)
1
4

So that, the generalized solution can be written as

φ1 =
a2ρ

C(a2 + ab + b2)l
+

abρ

C(a2 + ab + b2)l
+

b2ρ

C(a2 + ab + b2)l
+

aDl2ρ

C
√

(a2 + ab + b2)D2l6

+
2bDl2ρ

C
√

(a2 + ab + b2)D2l6
− 3bDl2ρ

C
√

(a2 + ab + b2)D2l6
cos2(w(χ)). (66)
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For three cases

Case I:

φ1 =
a2ρ

C(a2 + ab + b2)l
+

abρ

C(a2 + ab + b2)l
+

b2ρ

C(a2 + ab + b2)l
+

aDl2ρ

C
√

(a2 + ab + b2)D2l6

+
2bDl2ρ

C
√

(a2 + ab + b2)D2l6
+

3bDl2ρ

C
√

(a2 + ab + b2)D2l6
tanh2(χ) (67)

or

φ1 =
a2ρ

C(a2 + ab + b2)l
+

abρ

C(a2 + ab + b2)l
+

b2ρ

C(a2 + ab + b2)l
+

aDl2ρ

C
√

(a2 + ab + b2)D2l6

+
2bDl2ρ

C
√

(a2 + ab + b2)D2l6
+

3bDl2ρ

C
√

(a2 + ab + b2)D2l6
coth2(χ) (68)

Case II:

φ1 =
a2ρ

C(a2 + ab + b2)l
+

abr

C(a2 + ab + b2)l
+

b2ρ

C(a2 + ab + b2)l

+
aDl2r

C
√

(a2 + ab + b2)D2l6
2bDl2ρ

C
√

(a2 + ab + b2)D2l6
− 3bDl2ρ

C
√

(a2 + ab + b2)D2l6
cn2(χ; m) (69)

or

φ1 =
a2ρ

C(a2 + ab + b2)l
+

abρ

C(a2 + ab + b2)l
+

b2ρ

C(a2 + ab + b2)l
+

aDl2r

C
√

(a2 + ab + b2)D2l6

+
2bDl2ρ

C
√

(a2 + ab + b2)D2l6
− 3bDl2ρ

C
√

(a2 + ab + b2)D2l6
ids2(χ;m)

m
(70)

Case III:

φ1 =
a2ρ

C(a2 + ab + b2)l
+

abρ

C(a2 + ab + b2)l
+

b2ρ

C(a2 + ab + b2)l
+

aDl2r

C
√

(a2 + ab + b2)D2l6

+
2bDl2ρ

C
√

(a2 + ab + b2)D2l6
− 3bDl2ρ

C
√

(a2 + ab + b2)D2l6
dn2(χ; m) (71)

or

φ1 =
a2ρ

C(a2 + ab + b2)l
+

abρ

C(a2 + ab + b2)l
+

b2ρ

C(a2 + ab + b2)l
+

aDl2ρ

C
√

(a2 + ab + b2)D2l6

+
2bDl2ρ

C
√

(a2 + ab + b2)D2l6
− 3bDl2ρ

C
√

(a2 + ab + b2)D2l6
ics2(χ; m) (72)
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4.3. The sinh-coshine expansion method and new travelling wave solutions of KdV
equation

Suppose that NPDE is given by

F (φ, φξ, φτ , φξξ, φττ , φξτ , .......) = 0, (73)

where φ = φ(ξ, τ) is unknown function and F is a polynomial in and its partial derivatives, in which the highest
order derivatives and nonlinear terms are involved. In the following we give the main steps of the sinh-coshine
expansion method:

Step 1. The traveling wave variable

φ(ξ, τ) = φ(χ), χ = lξ − ρτ, (74)

where ρ and l are constants, permits us to reduce (73)into ODE;

F (φ, φ′, φ′′, φ′′′, .....) = 0. (75)

Step 2. Suppose that the solution of (75) can be expressed in the form as follows;

φ(χ) = A0 +
n∑

i=1

coshi−1(χ)[Aisinh(χ) + Bicosh(χ)], (76)

whereAi (i = 0, 1, ...., n) and Bi (i = 1, ...., n) are constants to be determined.

Step 3. The parameter ”n” in (76) can be found by balancing the highest order derivatives term and the highest
nonlinear term in (75) ;
(i)if n is a positive integer then go to step 4;
(ii)if n is not positive integer, we put φ = vn and then return to step 1.

Step 4. Substitute (76) with the fixed parameter n into the obtained ODE. Collecting all terms with the same
powers of sinhiχcoshjχ together. Set to zero the coefficients of sinhiχcoshjχ(i = 0, 1; j = 0, 1, 2,.,n) to get a set
of algebraic equations Cijs (AS , BS) = 0 with respect to the unknowns A0, τ , Ai(i = 1, ...., n) and Bi (i = 1, ....,
n).

Step 5. Solve the set of algebraic equations to get A0, Ai and Bi then we have the traveling wave solutions
of the given NPDE.

φ1 = A0 + A1sinh(χ) + B1cosh(χ) + A2sinh(χ)cosh(χ) + B2cosh
2(χ) (77)

Substituting from (77) into (64), setting the coefficients of sinhiχcoshjχ(i = 0, 1; j = 0, 1, ...., n) to zero, we have
the following set of over determined equations in the unknowns A0, A1, A2, B1, B2and l. Solve the set of equations
of coefficients of sinhiχcoshjχ , by using Mathematica we obtain the following solution:

A1 = ±
√

D2l6−ρ2

Cl , A2 =, B1 =, B2 = 0
So that, the generalized solution can be written as

φ1 = A0 ±
√

D2l6 − ρ2

Cl
sinh(χ),A0 =

−Clρ+Cl
√

D2l6−ρ2sinh(χ)+

√
C2l2(ρ2−2Dl3

√
D2l6−ρ2sinh(χ))

C2l2 (78)

4.4. The sech-tanh expansion method and new travelling wave solutions of KdV
equation

Suppose that NPDE is given by

F (φ, φξ, φτ , φξξ, φττ , φξτ , .......) = 0, (79)
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where φ = φ(ξ, τ) is unknown function and F is a polynomial in and its partial derivatives, in which the highest
order derivatives and nonlinear terms are involved. In the following we give the main steps of the sech-tanh expan-
sion method:

Step 1. The traveling wave variable

φ(ξ, τ) = φ(χ), χ = lξ − ρτ, (80)

where ρ and l are constants, permits us to reduce (80)into ODE;

F (φ, φ′, φ′′, φ′′′, .....) = 0. (81)

Step 2. Suppose that the solution of (81) can be expressed in the form as follows;

φ(χ) = A0 +
n∑

i=1

sechi−1(χ)[Aitanh(χ)] + Bisech(χ)], (82)

whereAi (i = 0, 1, ...., n) and Bi (i = 1, ...., n) are constants to be determined.

Step 3. The parameter ”n” in (82) can be found by balancing the highest order derivatives term and the highest
nonlinear term in (81) ;
(i)if n is a positive integer then go to step 4;
(ii)if n is not positive integer,we put φ = vn and then return to step 1.

Step 4. Substitute (82) with the fixed parameter n into the obtained ODE. Collecting all terms with the same
powers of sechiχtanhjχ together. Set to zero the coefficients of sechiχtanhjχ (i = 0, 1; j = 0, 1, 2,.,n) to get a set
of algebraic equations Cijs (AS , BS) = 0 with respect to the unknowns A0, τ , Ai(i = 1, ...., n) and Bi (i = 1, ....,
n).

Step 5. Solve the set of algebraic equations to get A0, Ai and Bi then we have the traveling wave solutions
of the given NPDE .

φ1 = A0 + A1tanh(χ) + B1sech(χ) + A2tanh(χ)sech(χ) + B2sech
2(χ) (83)

Substituting from (83) into (64), setting the coefficients of sechiχtanhjχ (i = 0, 1; j = 0, 1, ...., n) to zero, we have
the following set of over determined equations in the unknowns A0, A1, A2, B1, B2and l. Solve the set of equations
of coefficients of sechiχtanhjχ, by using Mathematica we obtain the following solution:
I)A0 = − 8Dl2

C , A1 = 0, B1 = 0, A2 = 0, B2 = 12Dl2

C , ρ = −4Dl3

So that, the generalized solution can be written as

φ1 = −8Dl2

C
+

12Dl2

C
sech2(χ) (84)

II)A0 = 0, A1 = 0, B1 = 0, A2 = 0, B2 = 12Dl2

C , ρ = 4Dl3

So that, the generalized solution can be written as

φ1 =
12Dl2

C
sech2(χ) (85)

III)A0 = 0, A1 = 0, B1 = 0, A2 = ± 6iρ
Al , B2 = ± 6ρ

Cl , D = ± ρ
l3

So that, the generalized solution can be written as

φ1 = ±6iρ

Cl
tanh(χ)sech(χ) +± 6ρ

Cl
sech2(χ) (86)
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5. Applications

Now, we shall look at three explicit physical applications of the solutions given above. We investigate Sagdeev
potential φ1 corresponding to the solutions of KdV equation (23).The detailed application of these solutions requires
a judicious of the free parameters occurring in the solutions.

5.1. First application by using auto-Bäcklund transformation

Now on inserting the special (old) solution φ0 [47,48] of the KdV equation (23) given by

φ0 =
3λ

C
Sech2(

ξ − λτ

ω
), ω = 2

√
D

λ
(87)

The new exact soltion solution (44)of the KdV equation (23) can be given as

φ1 = ck2 exp
1
30 (−c2k3−12ck 3λ

C Sech2( ξ−λτ
ω ))τ±kξ

1 + exp
1
30 (−c2k3−12ck 3λ

C Sech2( ξ−λτ
ω ))τ±kξ

[
1− exp( 1

30 (−c2k3−12ck 3λ
C Sech2( ξ−λτ

ω ))τ±kξ)

(1 + exp
1
30 (−c2k3−12ck 3λ

C Sech2( ξ−λτ
ω ))τ±kξ)

]

+
3λ

C
Sech2(

ξ − λτ

ω
), c =

5C

2
(88)

Applicable to some relevant values of C, D, λ and k, the Sagdeev potential φ1 is displayed in Figures 1.

5.2. Second application by using the modified Ǵ
G

expansion method

Now, using the backward substitution of the solution (53) through the backward transformations (46), we obtain
the travelling wave solution of the KdV equation (23) in the form

φ1 = −4Dl2γ

C
− 12Dl2γ2

C

(
c1cos

√
γ(lξ − ρτ) + c2sin

√
γ(lξ − ρτ)

c2
√

γcos
√

γ(lξ − ρτ)− c1
√

γsin
√

γ(lξ − ρτ)

)2

. (89)

Applicable to some relevant values of C,D, l, ρ, c1, c2, and γ, the Sagdeev potential φ1 is displayed in Figures 2.

5.3. Third application by using the sech-tanh expansion method

Now, using the backward substitution of the solution (85) through the backward transformation (80), we obtain
the travelling wave solution of the KdV equation (23) in the form

φ1 =
12Dl2

C
sech2(lξ − ρτ), ρ = 4Dl3. (90)

Applicable to some relevant values of A,,l,and ρ, the Sagdeev potential φ1 is displayed in Figures 3

From the above travelling wave solution (90) of KdV equation (23), the amplitude take the form 12Dl2

C and ρ = 4Dl3.
This solution also stands for n1. It should be noted here that the perturbation method, which is only valid for small
but finite amplitude limit, is not valid for large propagation angle θ, which makes the wave amplitude large enough
to break the condition 1 > εn1. For ρ = 4Dl3 > 0, there exist solitary waves with positive density only. It is seen
that as ρ increases, the amplitude increases, from equation (24) since C = −λ

−µ+3µ2T+µ2λ2 , the amplitude decreases
for λ < 0 and the amplitude increases for λ > 0.
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Fig.1.1. The Sagdeev potential φ1 (88) in the surface graphic for C = 1.2, D = 0.1, k = 0.5, λ = 1.

Fig.1.2. The Sagdeev potential φ1 (88) in the plane graphic at τ = 0.01 for C = 1.2, D = 0.1, k = 0.5, λ = 1.

Fig.2.1. The Sagdeev potential φ1 (89) in the surface graphic for C = 2.1, D = 0.9, l = 0.4, c1 = 2, c2 = 3, ρ = 1,
γ = 1.
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Fig.2.2. The Sagdeev potential φ1 (89) in the plane graphic at τ = 0.1 for C = 2.1, D = 0.9, l = 0.4, c1 = 2, c2 = 3,
ρ = 1, γ = 1.

Fig.3.1. The Sagdeev potential φ1 (90) in the surface graphic for C = 1.2, D = 0.1, l = 0.5.

Fig.3.2. The Sagdeev potential φ1 (90) in the plane graphic at τ = 0.01 for C = 1.2, D = 0.1, l = 0.5.
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6. Conclusions

In this Work, We have investigated the propagation of nonlinear dust-acoustic waves in unmagnetized dusty plasma
with Boltzmann distributed electrons and nonthermal distributed ions considering variable dust charge. By using
the reductive perturbation technique, a KdV equation with a nonlinearity proportional to three-half power of the
wave potential is derived to investigate the nonlinear propagation of dust acoustic solitary waves. The stationary
new soliton solution and travelling wave solutions of the KdV equation are derived. The auto-Bäcklund (BT)
transformations, the modified Ǵ

G expansion method, the sine-cosine expansion method, sinh-coshine expansion
method and the sech-tanh expansion method have been successfully applied to find the Sagdeev potential φ1 for
KdV equation which described unmagnetized plasma with Boltzmann distributed and nonthermal distributed ions.
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