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Abstract

The problem of kidnapping as a social menace to a society is increasing in some African countries such as Nigeria. We therefore proposed
a new deterministic mathematical model for the dynamics of Kidnapping in a community. This menace is considered like a two strains
communicable disease with kidnapping propagation mission by kidnappers as one strain and adoption mission for kidnapped victims as the
other strain to assess the impact of super-infection. The model exhibits four equilibrium points each of which is unique and asymptotically
stable both locally and globally under certain conditions. We obtain the kidnapping propagation number Cp = maxi∈{1,2}{Ci} where Ci is
the propagation number associated with strain i. Another important threshold parameters associated with respective strains 1 and 2 are Cp1,2

and Cp2,1 . Indeed, we show that at most one strain invades the population if one of these parameters is less than unity. while the two strains
coexist at endemic state when both Cp1,2 and Cp2,1 are greater than unity. The global stability results of the model equilibria are established
by numerical simulations. This simulations results indicate that the super-infection destabilize the coexistence equilibrium.
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1. Introduction

Social epidemic like ideas, behaviors, messages etc., spread almost the same ways as infectious diseases do such as Tuberculosis,
HIV/AIDS and sexually transmitted diseases (STDs) from one person to another with similar characteristics associated with the epidemic.
Gladwell pointed out in his book that social epidemic like those mentioned above, spread over population same way virus spread [18].
Kidnapping which can be defined as taking away or transportation of a person by force against his/her will and holding him/her in false
imprisonment/confinement without legal authority. It is usually done for a motive or ransom [17, 26]. Moreover, kidnapping has various
definitions in the literature with varying degree and success [6]. It is one of such ideas/behaviours that can correctly be described as a social
epidemic which spread across vulnerable humans over time, for more examples (see [8, 12, 21, 29, 30, 31, 32]). Several types of kidnapping
are commonly seen in the world. These include Kidnap for Ransom, Tiger Kidnapping/Proxy Bombings, Express Kidnapping, Political and
Ideological Kidnapping, and Virtual Kidnapping [23]. The first type is common and rampant in Nigeria nowadays and so, we are going to
consider it here. Kidnap for ransom is the one for which a criminal detain the hostage to receive a payment from their family, employer, or
country in exchange for his/her release. It is a major source of income for criminal gangs that rely on ransom to finance their operations and
is on the rise worldwide.
It is well known that on kidnap for ransom, criminals target the rich, elite and expatriates, but in Nigeria they no longer just targeting them as
ordinary citizens are now becoming victims . It was reported that most victims are now ordinary citizens especially poor villagers, a large
proportion of which are kidnapped indiscriminately and are much more likely to be killed by the kidnappers in the event of failure to pay the
ransom. This is simply because Nigerian ruralities are less secure then its cities [22, 26]. Some problems which cause the social crime of
kidnapping include: politicians, poverty, terrorism, lack of stiffer punishment by government, negligence on the part of the well to do in
families and quick money [34]. Other causes are the problem of idleness, greed for money, the nature of kidnapping network contributes to
the youth’s involvement, wrong moral choices aid youth’s involvements, peer-group pressure, lack of proper orientation in the home front by
parents and guardians, unnecessary public display of wealth, wrong societal values, and lack of integrity/corrupt practices of government
officers and others [26].
It was reported by SB Morgen (SBM) that in the last 9 years, the total money spent for ransom in Nigeria is more than four billion Naira
(NGN 4 Billion, equivalent to 18.34 Million USD). Moreover, a huge chunk of the figure, about 11 Million USD was paid out between
January 2016 and March 2020 which is worrisome. Nigeria has the highest rate of kidnaps for ransom in Africa and it records more than
a thousand kidnapping incidents a year [7]. Over the past ten years, kidnapping is most rampant in the South-South geopolitical zone of
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the country. The most affected states in the country are Rivers, Kaduna, Delta, and Bayelsa [26]. It was presented in [22] that Rivers state
recorded 120 kidnap cases between 2016 and 2020, followed by Kaduna, with 117, then Delta with 96. Bayelsa is fourth with 85 kidnap
cases and Borno fifth, with 82 cases. As a consequence, kidnapping traumatises the victim and victim’s family and is also accompanied with
huge economic or financial implications. In Nigeria, kidnapping has led to the loss of thousands of lives and huge sums of money. Many of
the victims of the crime have been killed in the course of their abduction, custody or release and many more have been injured. In fact, it was
estimated that globally, ransom payments could worth US$500 million annually [6].
Applications of mathematical epidemic theories to social phenomena were proposed for a long time [11, 19]. However, Mathematical models
have also been applied to investigate a variety of “contagious” social phenomena like crime, opinions, addiction and fanaticism (see for
instance, [3, 4, 5, 13, 14, 15, 16, 24, 25, 35]. A mathematical model of crime epidemic is proposed in [13], to gain insights into the best
policies regarding criminality. The analysis of the model shows that when the threshold parameter R0 is less than unity, the criminality
disappears, while the reverse results in persistence of the criminality in the society. Numerical simulations using a set of estimated parameter
values for the USA scenario showed that criminality can decrease. Sensitivity analysis reveals that prevention is the most important policy to
decrease criminality. Furthermore, elasticity analysis shows that having an honest subpopulation of judges play a significant role on the
decrease of criminality in the society. Recently, mathematical model of illicit drugs and banditry dynamics in a population was proposed in
[4]. Asymptotic stability analysis of the model equilibria was carried out which reveals that it is difficult to eliminate the menace due to the
occurrence of backward bifurcation phenomenon. Moreover, sensitivity analysis shows that illicit drug and banditry-free population depends
on the reduction of the influence rate on susceptible individuals and the parameter that measures the effectiveness of banditry compared to
illicit drug use. Also, in 2023 a deterministic mathematical model for armed banditry to get insights on controlling the spread of the menace
using job creation and efforts to make the crime unprofitable [16]. Numerical simulations of the model reveals that the applying any of the
two control strategies is effective in reducing the population profile of the informers and the bandits in a finite time.
Nowadays, kidnapping for ransom which involves series of negotiations between the kidnapper(s) and the family of the victim has been on
the increase. This is perhaps, due to terrorism, drug addiction, cultism or gangsterism and the high level of corruption and insecurity in some
countries. On this note, Okrinya [1], proposed a simple deterministic mathematical model on kidnapping. The model describes the evolution
and propagation of kidnapping as a crime in human society and the model features mimic dynamics of an infectious disease. As for the
disease transmission models, the threshold parameter that determine the crime propagation called a ”crime propagation number”, Cpn was
derived. They showed that kidnap free state exist which is locally and globally asymptotically stable when Cpn < 1. Also, the analysis reveals
that reducing the recruitment rate of kidnappers and increasing the rescue rate without any causality on the part of kidnapped victims will
lead to eradication of kidnapping in a society. Furthermore, numerical simulation shows that more than half of the population will become
kidnapped victims within a period of twenty years whereas 38% of the population would be attracted to the criminal act of kidnapping [1].
In a similar note, Okrinya and Consul extended the model of kidnapping presented in [2] by incorporating de-radicalizing and rehabilitation of
kidnappers as preventive measures. Numerical simulations were carried out on the combination of different levels of kidnappers’ recruitment
and rehabilitation. In fact, the analysis reveals that increasing the rehabilitation rate of kidnappers is a better and more effective way of
ensuring a kidnapping free society [2]. However, the assumptions in both the two models above that, during captivity of kidnapped victims
still give birth is not realistic in fact, even kidnapper may not give birth to kidnapper like him not to talk of kidnapped victims who have
limited time to be in captivity.
In this paper, we viewed kidnapping as a social crime in which a kidnapper (carrier of the crime) sell the idea to vulnerable humans (especially
unemployed youth). On the same vain, other group of individuals suffer for the crime by becoming kidnapped victims. Therefore, the crime
of kidnapping affect an individual either by kidnapping or becomes kidnapped victims. So, we consider kidnapping model as a two-strains
model in which kidnapped victims are the latent category (see [9, 10, 27] for multi-strains models).
The remaining paper is organized as follows: We give the model description in Section 2. Detailed analysis of the model equilibria is
provided in Section 3. Numerical simulation of the model is presented in Section 4 while we give a concluding remarks in Section 5.

2. Model formulation

We consider this crime problem to be similar to a two-strain epidemic disease with a single susceptible (individuals who are vulnerable to
become criminal) class but having two criminal classes corresponding to two crime agents (kidnappers with kidnapping propagation mission,
Kp and kidnapped victims with adoption mission, Kv). Each strain is to be modelled as a simple SIS system such that strain one (Kp) may
“super-infect” an individual infected with strain two (Kv), resulting to a new infection in compartment Kp. To formulate the model, we divide
the total human population (N(t)) at time t into three compartments: Susceptible population denoted by S(t) kidnappers population by Kp(t),
and kidnapped victims’ population as Kv(t). Thus

N(t) = S(t)+Kp(t)+Kv(t).

We now assume that

(i) the interaction between kidnappers and susceptible population is homogenous since nowadays the criminals target ordinary citizen
indiscriminately in addition to the rich, elite and expatriates [22, 26],

(ii) the susceptible individuals increase by birth and immigration at a constant rate Λ and become infected by effective social contact with
a kidnapper having a kidnapping propagation mission at the rate β1 with probability Kp

N ,
(iii) the susceptible may also buy idea of the crime when having contact with a kidnapped victim having kidnapping adoption mission at

the rate β2 with probability Kv
N ,

(iv) a kidnapper super-infect a kidnapped victim at the rate ρ to become a kidnapper and move to the Kp compartment,
(v) a kidnapper suffers crime related mortality at the rate α1 due to operation by the security agents in order to rescue kidnapped victim(s)

or as a result of the court order if arrested,
(vi) a kidnapped victim suffers crime related mortality at the rate α2 due to resisting abduction, failure to pay the ransom as demanded by

the kidnappers or to pay on time and fear that the victim(s) would identify the criminals if released,
(vii) a kidnapper would become susceptible when he/she quit from the crime for any reason at the rate τ1,

(viii) a kidnapped victim would become susceptible after he/she gained freedom at the rate τ2.
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Table 1: State variables of the Model

State Variables Description
N(t) Total human population
S(t) Number of human susceptible to kidnapping

Kp(t) Number of Kidnappers Population
Kv(t) Number of Kidnapped Victims(Kidnappees)

Table 2: Model Parameters and their dimensions values

Parameters Description Value Unit Source
Λ Recruitment rate of susceptible 0.0373 day−1 World Bank
β1 contact rate of kidnappers 3.8×10−4 day−1 [2]
β2 contact rate of kidnapped victims 0.0612 day−1 [2]
µ Per capital natural death rate 0.0116 day−1 World Bank
α1 Kidnappers’ induced death rate 2.35×10−9 human−1 day−1 [2]
α2 Kidnapped victims induced death rate 1.18×10−9 human−1 day−1 [2]
ρ Super-infection rate of Kidnappers to Kidnapped victims 0.0311 day−1 Assumed
τ1 Quitting rate of Kidnappers 0.1245 day−1 Assumed
τ2 Rescue/gaining freedom rate of kidnapped victims 0.0136 day−1 [2]

Using the above hypotheses the model is given by the following system of ordinary differential equations and the respective rates of transfer
between the three compartments is depicted in Figure 1.

Figure 1: Schematic diagram of the kidnap model (1)

dS
dt

= Λ− β1K pS
N

− β2KvS
N

+ τ1Kp + τ2Kv −µS,

dKp

dt
=

β1K pS
N

+ρKpKv − (µ +α1 + τ1)Kp,

dKv

dt
=

β2KvS
N

− (µ + τ2 +α2)Kv −ρKpKv.

(1)

The three state variables and all the model parameters are non-negatives.
The region

Ω =

{
(S,Kp,Kv) ∈ R3

+ : S > 0,Kp ≥ 0,Kv ≥ 0,S+Kp +Kv<
Λ

µ

}
.

is positively invariant and attractive.
Adding the three equations of (1), we have

dN
dt

= Λ−µN −α1Kp −α2Kv

≤ Λ−µN
(2)

Thus N(t)≤ Λ

µ
if N(0)≤ Λ

µ
. It follows that Ω is positively invariant. Moreover, if N(t)≥ Λ

µ
then dN

dt < 0 so that either the solution enters

Ω in finite time or N(t) approaches Λ

µ
and the kidnap variables (Kp and Kv) approach zero. Hence Ω is attracting and so, all solutions in

R3
+ eventually enter Ω. Therefore it is sufficient to consider the dynamics of system (1) in Ω. Hence the model (1) is considered to be

mathematically and criminology well possed in Ω.



4 International Journal of Applied Mathematical Research

Now, using S = N −Kp −Kv =S in the second and third equations of (1) and considering the equation of the total population, we obtain

dN
dt

= Λ−µN −α1Kp −α2Kv,

dKp

dt
=

β1Kp(N −Kp −Kv)

N
+ρKpKv − (µ +α1 + τ1)Kp,

dKv

dt
=

β2Kv(N −Kp −Kv)

N
− (µ + τ2 +α2)Kv −ρKpKv.

(3)

with domain

Γ =

{
(S,Kp,Kv) ∈ R3

+ : S> 0,Kp ≥ 0,Kv ≥ 0,N<
Λ

µ

}
.

3. Model analysis

3.1. Kidnap Free Equilibrium and threshold parameters

When there is no kidnapping then there is no kidnapped victims (i. e., Kp = Kv = 0). Thus, the kidnap-free equilibrium of model (3) is

E0 = (N0,K0
p,K

0
v ) =

(
Λ

µ
,0,0

)
. (4)

As for disease transmission models, in order to establish the linear stability of the equilibria, we need a threshold parameter known as the
kidnapping propagation number. Such a threshold parameter can be obtained by the next generation operator method [20, 27, 28]. Suppose P
is vector that indicate all the kidnapping effects such as kidnappers and kidnapped victims. Thus P = (Kp,Kv) then from (3), it can be seen
that:

dP
dt

=R−I

with

R=

(
β1Kp(N−Kp−Kv)

N
β2Kv(N−Kp−Kv)

N

)
,I=

(
−ρKvKp +(µ +α1 + τ1)Kp
(µ + τ2 +α2)Kv +ρKpKv

)
.

As in [27], let M be the matrix of the infection terms and T the matrix of transition terms. Then, we have

M =
∂R

∂P
=

(
β1 0
0 β2

)
,

T =
∂I

∂P
=

(
µ +α1 + τ1 0

0 µ + τ2 +α2

)
so that

MT−1 =

(
β1

µ+τ1+α1
0

0 β2
µ+τ2+α2

)
.

This matrix has the two eigenvalues

Ci =
βi

µ + τi +αi
, for i = 1,2.

Since M−T is reducible then the second and the third equations of (3) decouple near the kidnap-free equilibrium. These two eigenvalues
correspond to the crime propagation numbers for each strain. Thus the crime propagation number denoted by Cp is given by:

Cp = max
i∈{1,2}

Ci. (5)

We can alternatively interpret this model as that Kp is the sole crime compartment and that Kv is not a crime compartment. Thus the
kidnappee-presence equilibrium is given by

E∗ = (N∗,K∗
p,K

∗
v )

=

(
ΛC2

µC2 +α2(C2 −1)
,0,

Λ(C2 −1)
µC2 +α2(C2 −1)

)
,

(6)

if and only if C2 > 1 with Q2 = µ +α2 + τ2.
As in [33], we obtain the invasion threshold associated to this equilibrium point (E∗) as follows

Cp1,2 =
C1

C2
+

ρΛC1(C2 −1)
β1[µC2 +α2(C2 −1)]

.

Another equilibrium point called kidnapper-presence equilibrium is given by

E∗ = (N∗,Kp∗,Kv∗)

=

(
ΛC1

µC1 +α1(C1 −1)
,

Λ(C1 −1)
µC1 +α1(C1 −1)

,0
)
,

(7)

which exists if and only if C1 > 1, where Q1 = µ +α1 + τ1. The associated invasion threshold of this equilibrium is

Cp2,1 =
C2

C1
+

ρΛC2(C1 −1)
β2[µC1 +α1(C1 −1)]

.
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3.2. Local stability of equilibria

Here, we establish the local asymptotic stability of the three equilibrium points presented in (4), (6) and (7), respectively.

Theorem 1. The kidnap-free equilibrium point (E0) of model (3) is locally asymptotically stable on Γ if Cp < 1 and is unstable when
Cp > 1.

Proof. Linearizing system (3) around E0, we have

J(E0) =

 −µ −α1 −α2
0 β1 −Q1 0
0 0 β2 −Q2

 . (8)

Thus, the eigenvalues of this matrix are: λ1 =−µ, λ2 =−Q1(1−C1) and λ2 =−Q2(1−C2) which are negative whenever C1 < 1 and
C2 < 1. Hence, E0 is locally asymptotically stable if C1 < 1 and C2 < 1 implying that Cp < 1. But, when either C1 > 1 or C2 > 1 or both
are greater than unity (i.e., Cp > 1), then E0 is unstable.

Theorem 2. The kidnappee-presence equilibrium point (E∗) of model (3) is stable locally asymptotically on Γ if C2 > 1 and Cp1,2 < 1.

Proof. Evaluating the Jacobian matrix of system (3) about the equilibrium point, E∗, we obtain

J(E∗) =

 −µ −α1 −α2
0 Q1(Cp1,2 −1) 0

β2(C2−1)2

C ∗2
2

Φ − β2(C2−1)
C2

 .

where Φ =−(C2 −1)Q2[µC2+α2(C2−1)]+ρΛ

µC2+α2(C2−1) Then it can be seen by inspection that the first eigenvalue of J(E∗) is λ1 = Q1(Cp1,2 −1)< 0 if
Cp1,2 < 1. The remaining two eigenvalues are for the sub-matrix of J(E∗) given by

J0(E∗) =

(
−µ −α2

β2(C2−1)2

C ∗2
2

− β2(C2−1)
C2

)
.

Then the eigenvalues of this matrix will have negative real parts if tr(J0)< 0 and det(J0)> 0. But if C2 > 1

tr(J0) =−µC2 +β2(C2 −1)
C2

< 0 and det(J0) =
β2(C2 −1)[µC2 +α2(C2 −1)

C2
> 0.

Thus, the two eigenvalues λ2 and λ3 of J0 have negative real parts and so, the three eigenvalues of J(E∗) will have negative real parts if
C2 > 1 and Cp1,2 < 1. Hence, the result.

Theorem 3. If C1 > 1 and Cp2,1 < 1, the kidnaper-presence equilibrium point (E∗) of model (3) is locally asymptotically stable on Γ.

Proof. Evaluating the Jacobian matrix of system (3) about the equilibrium point, E∗, we obtain

J(E∗) =

 −µ −α1 −α2
β1(C1−1)2

C ∗2
1

− β1(C1−1)
C1

Φ2

0 0 Q2(Cp2,1 −1)

 .

where Φ2 =−(C1 −1)Q1[µC1+α1(C1−1)]−ρΛ

µC1+α(C1−1) Then it can be seen by inspection that the first eigenvalue of J(E∗) is λ1 = Q2(Cp2,1 −1)< 0 if

Cp2,1 < 1. The remaining two eigenvalues are for the sub-matrix of J(E∗) given by

J0(E∗) =

(
−µ −α1

β1(C1−1)2

C ∗2
1

− β1(C1−1)
C1

)
.

Then the eigenvalues of this matrix will have negative real parts if tr(J0)< 0 and det(J0)> 0. But if C1 > 1

tr(J0) =−µC1 +β1(C1 −1)
C1

< 0 and det(J0) =
β1(C1 −1)[µC1 +α1(C1 −1)

C1
> 0.

Thus, the two eigenvalues λ2 and λ3 of J0 have negative real parts and so, the three eigenvalues of J(E∗) will have negative real parts if
C1 > 1 and Cp2,1 < 1. Hence, the result.

3.3. Coexistence Equilibria

Equating the right hand side of system (3) to zero, we have

N =
Λ−α1Kp −α2Kv

µ
,

β1(N −Kp −Kv)

N
+ρKv − (µ +α1 + τ1) = 0,

β2(N −Kp −Kv)

N
− (µ + τ2 +α2)−ρKp = 0.

(9)
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Then from the second and third equations of (9), we obtain using the first equation of (9)

(β1 +ρKv −Q1)(Λ−α1Kp −α2Kv)−µβ1(Kp +Kv) = 0,

(β2 −ρKp −Q2)(Λ−α1Kp −α2Kv)−µβ2(Kp +Kv) = 0,
(10)

with Q1 = µ + τ1 +α1 and Q2 = µ + τ2 +α2. Eliminating the third terms of (10), we obtain

Kv =
β1[Q2(C2 −1)−ρKp]−β2Q1(C1 −1)

ρβ2
. (11)

Using the second equation of (10), we obtain after algebraic manipulations a quadratic equation in terms of Kp.

aK2
p +bKp + c = 0, (12)

where

a = (α1β2 −α2β1)ρ
2,

b =−ρ

{
α2Q1β2

(
C1

C2
−1
)
+Q2(C2 −1)(α1β2 −α2β1)+β2[µ(β2 −β1)+ρΛ]

}
,

c = Q1Q2

(
C1

C2
−1
)
[α2β1(C2 −1)+µβ2C2]+Q2ρβ2Λ(C2 −1).

(13)

It follows that

(1) If α1β2 −α2β1 > 0 with either C1 < 1,C2 > 1 or C1 < C2 < 1 and Cp1,2 < 1,Cp2,1 > 1 then the coefficients a > 0,b < 0 and c < 0 or

a > 0,b > 0 and c < 0 so that (12) has one positive real root Kp =
−b+

√
b2+4ac

2a
(2) If α1β2 −α2β1 < 0,C1 > C2 > 1 and Cp2,1 > Cp1,2 > 1 then the coefficients a < 0,b > 0 and c > 0 such that (12) has one positive

real root Kp =
−b+

√
b2+4ac

2a
(3) If α1β2 −α2β1 > 0,C1 < 1,C2 > 1 and Cp2,1 > Cp1,2 > 1 then the coefficients a > 0,b < 0 and c > 0 leading to two positive real

roots of (13), Kp1,2 =
b±

√
b2−4ac
2a .

Thus, the only positive real root of (12) with coefficients in equation (13) when it exists in both items (1) and (2) is

Kp =
−b+

√
b2 +4ac

2a
.

Hence, the unique coexistence equilibrium is Ẽ = (Ñ, K̃p, K̃v) with

Ñ =
Λ−α1K̃p −α2K̃v

µ
,

K̃p =
−b+

√
b2 +4ac

2a
,

K̃v =
β1[Q2(C2 −1)−ρK̃p]−β2Q1(C1 −1)

ρβ2
.

For this equilibrium to be biologically feasible we need to show that Ñ and K̃v are positive. Suppose Ñ ≥ 0 then if Ñ = 0, from the first
equation of (9) we have Λ = α1K̃p +α2K̃v but Λ ̸= α1K̃p +α2K̃v and so, Ñ > 0. Also, suppose K̃v ≥ 0 and if K̃v = 0 then from the second

equation of (9) K̃p =
Q1N(1−C1)

C1
and the third equation of (9) gives K̃p =

Q2N(1−C2)
ρN+β2

. But Q1N(1−C1)
C1

̸= Q2N(1−C2)
ρN+β2

indicating that K̃v > 0.
On the other hand, if equation (12) with coefficients in (13) has two positive real roots as in item (3), then the two coexistence equilibria of
model (3) are Ẽ1,2 = (Ñ1,2, K̃p1,2 , K̃v1,2) where

Ñ1,2 =
Λ−α1K̃p1,2 −α2K̃v1,2

µ
,

K̃p1,2 =
b±

√
b2 −4ac
2a

,

K̃v1,2 =
β1[Q2(C2 −1)−ρK̃p1,2 ]−β2Q1(C1 −1)

ρβ2
.

3.4. Global stability results of equilibria

The local stability of the equilibrium points of model (3) presented in Theorems 1-3 allow us to prove the global stability of these equilibrium
points.

Theorem 4. If Cp < 1, the kidnap-free equilibrium (E0) is globally asymptotically stable on the domain Γ and is unstable otherwise.
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We define a Lyapunov function by
Θ = Kp +Kv,

so that its time derivative along the solutions of (3) is the following.

Θ̇ = K̇p + K̇v

=
β1Kp(N −Kp −Kv)

N
+ρKpKv − (µ +α1 + τ1)Kp

+
β2Kv(N −Kp −Kv)

N
− (µ + τ2 +α2)Kv −ρKpKv

= β1Kp +β2Kv −
(

Kp +Kv

N

)
(β1Kp +β2Kv)−Q1Kp −Q2Kv

=−Q1Kp

(
1− β1

Q1

)
−Q2Kv

(
1− β2

Q2

)
−
(

Kp +Kv

N

)
(β1Kp +β2Kv)

=−
[

Q1Kp(1−C1)+Q2Kv(1−C2)+

(
Kp +Kv

N

)
(β1Kp +β2Kv)

]
Thus, Θ̇ ≤ 0 when C1 < 1,C2 < 1 with Θ̇ = 0 if and only if Kp = Kv = 0. Using Kp = Kv = 0 in system (3) indicates that N0 → Λ

µ
and

Kp,Kv approaches zero as t → ∞. Therefore, Θ is a Lyapunov function on Γ and the set {(N,Kp,Kv) ∈ Γ : Θ = 0} which is the largest
invariant set is the singleton set E0. Hence every solution of system (3) with initial conditions in Γ approaches E0 as t approaches ∞

whenever C1 < 1,C2 < 1.

Theorem 5. The kidnappee-presence equilibrium E∗ is globally stable asymptotically on Γ when Cp1,2 < 1 and is unstable if Cp2,1 > 1.

Proof. We consider a Lyapunov function

H = N −N∗−N∗ ln
(

N
N∗

)
+Kv −K∗

v −K∗
v ln
(

Kv

K∗
v

)
.

The Lyapunov derivative of this function along the trajectories of system (3) is

Ḣ =

(
1− N∗

N

)
Ṅ +

(
1− K∗

v
Kv

)
K̇v

=

(
1− N∗

N

)
(Λ−µN −α1Kp −α2Kp)

+

(
1− K∗

v
Kv

)[
β2Kv(N −Kp −Kv)

N
− (µ + τ2 +α2)Kv −ρKpKv

] (14)

At kidnappee-presence equilibrium, we have the following identities

Λ = µN∗+α1K∗
p +α2K∗

p

Q2 =
β2(N∗−K∗

p −K∗
v )

N∗ −ρK∗
p

(15)

Applying these identities, Ḣ becomes

Ḣ =

(
1− N∗

N

)
(µN∗+α1K∗

p +α2K∗
p −µN −α1Kp −α2Kp)

+

(
1− K∗

v
Kv

)[
β2Kv(N −Kp −Kv)

N
−

β2Kv(N∗−K∗
p −K∗

v )

N∗ +ρK∗
pKv −ρKpKv

]
= µN∗

(
2− N∗

N
− N

N∗

)
+α1K∗

p

(
1− N∗

N

)(
1−

Kp

K∗
p

)
+α2K∗

v

(
1− N∗

N

)(
1− Kv

K∗
v

)
+β2Kv

(
1− K∗

v
Kv

)
+β2K∗

v

(
Kp +Kv

N

)(
1− Kv

K∗
v

)
+ρKpK∗

v

(
1− Kv

K∗
v

)
+β2K∗

v

(
1− Kv

K∗
v

)
+β2Kv

(
K∗

p +K∗
v

N∗

)
+ρKpKv

(
1− K∗

v
Kv

)
Noting that N ≤ N∗,Kp ≤ K∗

p and Kv ≤ K∗
v , we get

Ḣ ≤ µN∗
(

2− N∗

N
− N

N∗

)
+ρK∗

pK∗
v

(
2− K∗

v
Kv

− Kv

K∗
v

)
+β2K∗

v

(
2− Kv

K∗
v
− K∗

v
Kv

)
+β2K∗

v

(
K∗

p +K∗
v

N∗

)(
2− K∗

v
Kv

− Kv

K∗
v

)
By arithmetic-geometric inequality, we have(

2− N∗

N
− N

N∗

)
≤ 0,

(
2−

K∗
p

Kp
−

Kp

Kp

)
≤ 0,

(
2− Kv

K∗
v
− K∗

v
Kv

)
≤ 0.

Thus, Ḣ ≤ 0. Then, we conclude this proof using similar argument as in the proof of Theorem 4.
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Theorem 6. The kidnapper-presence equilibrium E∗ is globally stable asymptotically on Γ if Cp2,1 < 1 and is unstable for Cp2,1 > 1.

Proof. We prove this theorem using similar arguments as in the proof of Theorem 5 with following Lyapunov function

M = N −N∗−N∗ ln
(

N
N∗

)
+Kp −Kp∗ −Kp∗ ln

(
Kp

Kp∗

)
.

Since there are three cases for the existence of coexistence equilibrium of model (3) as earlier discussed we use the first case to illustrate its
global stability result in the following theorem.

Theorem 7. The coexistence equilibrium Ẽ is globally stable asymptotically in the interior of Γ if Cp1,2 < 1 and Cp2,1 > 1. It is unstable
otherwise.

Proof. Define a Lyapunov function by

G = N − Ñ − Ñ ln
(

N
Ñ

)
+Kp − K̃p − K̃p ln

Kp

K̃p
+Kv − K̃v − K̃v ln

(
Kv

K̃v

)
.

The Lyapunov derivative of G along the solutions of system (3) is as follows:

Ġ =

(
1− Ñ

N

)
Ṅ +

(
1−

K̃p

Kp

)
K̇p +

(
1− K̃v

Kv

)
K̇v

=

(
1− Ñ

N

)
(Λ−µN −α1Kp −α2Kp)

+

(
1−

K̃p

Kp

)[
β1Kp(N −Kp −Kv)

N
+ρKpKv − (µ +α1 + τ1)Kp

]
+

(
1− K̃v

Kv

)[
β2Kv(N −Kp −Kv)

N
− (µ + τ2 +α2)Kv −ρKpKv

]
(16)

But at coexistence-equilibrium, we have

Λ = µÑ +α1K̃p +α2K̃p

Q1 =
β1(Ñ − K̃p − K̃v)

Ñ
+ρK̃v

Q2 =
β2(Ñ − K̃p − K̃v)

Ñ
−ρK̃p

(17)

Using equation (17), Ġ becomes

Ġ =

(
1− Ñ

N

)
(µÑ +α1K̃p +α2K̃p −µN −α1Kp −α2Kp)

+

(
1−

K̃p

Kp

)[
β1Kp(N −Kp −Kv)

N
+ρKpKv −

β1Kp(Ñ − K̃p − K̃v)

Ñ
−ρK̃vKp

]
+

(
1− K̃v

Kv

)[
β2Kv(N −Kp −Kv)

N
−

β2Kv(Ñ − K̃p − K̃v)

Ñ
+ρK̃pKv −ρKpKv

]
= µÑ

(
2− Ñ

N
− N

Ñ

)
+α1K̃p

(
1− Ñ

N

)(
1−

Kp

K̃p

)
+α2K̃v

(
1− Ñ

N

)(
1− Kv

K̃v

)
+β1Kp

(
1−

K̃p

Kp

)
+β1K̃p

(
Kp +Kv

N

)(
1−

Kp

K̃p

)
+β2Kv

(
1− K̃v

Kv

)
+β2K̃v

(
Kp +Kv

N

)(
1− Kv

K̃v

)
+β1K̃p

(
1−

Kp

K̃p

)
+β1Kp

(
K̃p + K̃v

Ñ

)(
1−

K̃p

Kp

)
+β2K̃v

(
1− Kv

K̃v

)
+β2Kv

(
K̃p + K̃v

Ñ

)(
1− K̃v

Kv

)
≤ µÑ

(
2− Ñ

N
− N

Ñ

)
+β1K̃p

(
2−

K̃p

Kp
−

Kp

K̃p

)(
Ñ + K̃p + K̃v

Ñ

)
+β2K̃v

(
2− Kv

K̃v
− K̃v

Kv

)(
Ñ + K̃p + K̃v

Ñ

)
By Arithmetic-geometric inequality, we have(

2− Ñ
N
− N

Ñ

)
≤ 0,

(
2−

K̃p

Kp
−

Kp

K̃p

)
≤ 0,

(
2− Kv

K̃v
− K̃v

Kv

)
≤ 0.

Therefore,

Ġ ≤ µÑ
(

2− Ñ
N
− N

Ñ

)
+

(
Ñ + K̃p + K̃v

Ñ

)
×
[

β1K̃p

(
2−

Kp

K̃p
−

K̃p

Kp

)
+β2K̃v

(
2− K̃v

Kv
− Kv

K̃v

)]
so that Ġ ≤ 0. We conclude this proof using similar argument as in the proof of Theorem 4.
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4. Numerical Simulations

In this section, numerical simulations are conducted using parameter values from published literature and some reasonable estimates to
illustrates our results presented in the previous sections. Figure 2(a)–(c) display the global asymptotic stability of the kidnap-free equilibrium,

(a) (b)

(c)

Figure 2: Simulations of model (3), with parameter values as shown in Table 2, to display the result in Theorem 4, the GAS of kidnap-free equilibrium, E0

showing in (a) kidnappers population Kp(t) (b) kidnappees population Kv(t) and in (c) the total human population N(t), with C1 = 0.3042, C2 = 0.4487 so
that Cp = 0.4487.

E0 using parameter values in Table 2 to illustrate the result in Theorem 4. It can be seen from Figures 2(a) and (b) that using different
initial conditions, the sub-populations of kidnappers and kidnappees are approaching zero asymptotically, respectively so that C1 = 0.3042,
C2 = 0.4487 hence Cp = 0.4487 < 1. Similarly, in Figure 2(c), the total population, N(t) approach the respective equilibrium point using
different initial values. The Figures 3(a)–(c) illustrate the results in Theorems 5, 6 and 7, respectively. In Figure 3(a),the global asymptotic
stability of kidnappee-presence, E∗ is shown using different initial conditions and parameter values given in Table 2, Cp1,2 = 0.3037 < 1 .
Similarly, in Figure 3(b), the global asymptotic stability of kidnapper-presence, E∗ is shown using different initial conditions and parameter
values in Table 2 except for β1 = 0.38,τ2 = 0.136 so that Cp2,1 = 0.3912 < 1. Figure 3(c) also illustrates the global asymptotic stability
for Ẽ, the coexistence equilibrium using different initial conditions and parameter values in Table 2 except for β1 = 0.036 such that
CP1,2 = 0.4115 < 1 and CP2,1 = 24.1839 > 1.

5. Conclusion

We propose a new deterministic mathematical model for the dynamics of kidnapping in a community. The problem is considered like a
multi-strain communicable disease such that the kidnapping propagation mission by kidnappers is one strain while the kidnapping adoption
mission for the kidnapped victim is the second strain. The presented model is found to exhibit four equilibrium points including the
kidnap-free state, kidnappee-presence equilibrium, kidnapper-presence equilibrium and coexistence equilibrium. The dynamics of the
proposed model is determined by a threshold parameter called crime propagation number, Cp which is the maximum of the crime numbers
Ci for i = 1,2 associated with two strains and two other threshold parameters associated with individual strains, Cp1,2 and Cp2,1 . We carried
out the stability analysis of the model equilibrium points and show that

(i) The kidnap-free equilibrium is locally and globally asymptotically stable if Cp < 1.
(ii) If C2 > 1 and Cp1,2 < 1, the kidnappee-presence equilibrium is stable locally and globally

(iii) For C1 > 1 and Cp2,1 < 1,the kidnapper-presence equilibrium is asymptotically stable locally and globally
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(a) (b)

(c)

Figure 3: Simulations of model (3), with parameter values as shown in Table 2, displaying the results in Theorems 5, 6 and 7 showing GAS (a) for E∗ with
C2 = 2.4286,Cp1,2 = 0.3037 < 1, (b) for E∗ with β1 = 0.38,τ2 = 0.136,C1 = 2.7921,Cp2,1 = 0.3912 < 1 and (c) for Ẽ with β1 = 0.036,C1 = 0.2645,C2 =

2.4286,CP1,2 = 0.4115 < 1 and CP2,1 = 24.1839 > 1.

(iv) The coexistence equilibrium is globally stable asymptotically when Cp1,2 < 1 and Cp2,1 > 1.

Furthermore, these theoretical global stability results are established using numerical simulations in Figures 2 and 3. In fact, the numerical
results indicate that the super-infection scenario destabilizes the coexistence equilibrium for which each strain can dominate if its threshold
parameter is larger than one and the other strain cannot invade its equilibrium, see Figure 3. For further research, kidnap quitters for any
reasons can be incorporated in the model to serve like a recovery in disease transmission models. Rehabilitation as a control measure may
also be captured in the model to assess its positive impact on the spread of the menace.
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