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2Ecole Normale Supérieure, Département des sciences exactes, Koudougou, Burkina Faso
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Abstract

We deal with a degenerate population equation in divergence form depending on time, on age and on space. In this model, the birth rate is
unknown. We focus on the No-regret control and on the Low-regret control concepts of J. L. Lions treated in [Contrôle à moindres regrets
des systèmes distribués, C. R. Acad. Sci.Paris Ser. I Math., SIAM J. Control Optim. ,1992, Vol 315, pp. 1253–1257] and in [Duality
arguments for multi agents least regret control, Institut de France, 1999] to treat the problem. For this purpose, we prove first the existence
of the Low-regret control and the No-regret control. And we use a suitable Hilbert space to show that the No-regret control is the limit of
a family of adapted Low-regret controls defined by a quadratic pertubation and previously used by Nakoulima et al. in [Perturbations à
moindres regrets dans les systèmes distribués à données manquantes, C. R. Acad. Sci.Paris Ser. I Math., 2000, Vol 330, pp. 801–806]. Then
we give a singular optimality system for the family of adapted Low-regret controls and for the No-regret control.
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1. Introduction

We consider a degenerate population model in its divergence form with incomplete data:

∂y
∂ t

+
∂y
∂a

− (k(x)yx)x +µy = f + vχω in Q

y(t,a,1) = y(t,a,0) = 0 on QT,A
y(0,a,x) = y0(a,x) in QA,1

y(t,0,x) =
∫ A

0
g(a)y(t,a,x)da in QT,1

(1)

where QT,A = (0,T )× (0,A), Q = QT,A × (0,1), QA,1 = (0,A)× (0,1), QT,1 = (0,T )× (0,1), and Qω = QT,A ×ω where the subset
ω ⊂ (0,1) is the region where a control v is acting. This control corresponds to an external supply or to removal of individuals on the
subdomain ω . In this model, y(t,a,x) is the distribution of certain individuals at the point x ∈ (0,1), at time t ∈ (0,T ), where T is fixed,

and age a ∈ (0,A), A being the life expectancy, µ denotes the natural rate of fertility, respectively. The formula
∫ A

0
g(a)y(t,a,x)da is the

proportion of newborns at time t and at location x. But this proportion is unknown because the unknown term g = g(a) ∈ G denoting the
natural rate of fertility where G ⊂ L2(0,A). In this model, χω is the characteristic function of the control domain ω ; the initial distribution of
individuals y0 = y0(a,x) ∈ L2(QA,1) ; the given function f ∈ L2(Q) corresponds to an external supply. The function k denotes the dispersion
coefficient and we assume that it depends on the space variable x and degenerates at the boundary.
In the follow, we define the following notions:

Definition 1.1. We say that the function k is weakly degenerate (W.D.) if k ∈ W 1,1([0,1]), k > 0 in (0,1) and k(0) = k(1) = 0, for all
x ∈ [0,1], there exists two constants α,δ ∈ (0,1) such that xk′(x)≤ αk(x) and (x−1)k′(x)≤ δk(x).

Definition 1.2. We say that the function k is Strongly degenerate (S.D.) if k ∈ W 1,∞([0,1]),k > 0 in (0,1) and k(0) = k(1) = 0, for all
x ∈ [0,1], there exists two constants α,δ ∈ [1,2) such that xk′(x)≤ αk(x) and (x−1)k′(x)≤ δk(x).

Copyright © 2018 Author. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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During the recent years, population dynamics models have been widely studied by several authors from many points of view.
The majority of them have investigated the null controllability of the system for example [10], [6], [7], [8]. Indeed, y can represent the
distribution of a damaging insect population or of a pest population, for example [21]. Thus it is important to control it. In [21], system (1)
models an insect growth and the control corresponds to a removal of individuals by using pesticides. Authors in [10], are concerned with the
null controllability of a population dynamics model with an interior degenerate diffusion. To this end, they proved first a new Carleman
estimate for the full adjoint system and afterwards they deduce a suitable observability inequality which will be needed to establish the
existence of a control acting on a subset of the space which lead the population to extinction in a finite time.G. Fragnelli in [7] and [8] deals
with a degenerate model describing the dynamics of a population depending on time, on age and on space in divergence form. she assumes
that the degeneracy can occur at the boundary or in the interior of the space domain and she focus on null controllability problem. To this
aim, she proves first Carleman estimates for the associated adjoint problem, then, via cut off functions, she proves the existence of a null
control function localized in the interior of the space domain in the both papers. In the second one, she considers two cases: either the control
region contains the degeneracy point x0, or the control region is the union of two intervals each of them lying on one side of x0. Whereas in
[6], the same previous research is done but on a degenerate population equation in non-divergence form. In [14], the authors study the null
controllability by one control force of a nonlinear coupled of two models describing the dynamics of two species living together on the same
spatial domain. Firstly they establish a Carleman type inequality for the adjoint system of an intermediate model. From this inequality, they
derive an observability inequality. More, they prove the existence of a control acting on a subset of the domain that leads the uncontrolled
species to extinction in a finite time, by a fixed point argument.
In such cases, it is well known from the general theory that all nontrivial solutions of the corresponding system (commonly named
Lotka–McKendrick systems) are asymptotically exponentially growing or decaying, according to the size of a certain biological quantity
(the so called net reproduction rate), see [19] and also [5] for related results concerning time-independent steady states. In [1], authors
consider the control problem for a population dynamics model with age dependence, spatial structure, and a nonlocal birth process arising as
a boundary condition. They examine the controllability at a given time T and show that approximate controllability holds for every fixed
finite time T . As a consequence, a new uniqueness condition continuation result is proved.
As far as we know, the first controllability result for an age population dynamics model is established in [1], where the authors proved that a
set of profiles is approximately reachable. Later, in [3], a local exact controllability was proved. In particular, in [2], the authors showed that,
if the initial distribution is small enough, one can find a control that leads the population to extinction. In the last one, the null controllability
is also studied for nonlinear diffusive dynamic populations when the fertility and the mortality rates depend on the total population. In [18],

the authors considered a nonlinear distribution of newborns of the form F
(∫ A

0
β (t,a,x)y(t,a,x)da

)
.

However, in all the previous papers, the dispersion coefficient k is a constant or a strictly positive function.
To our best knowledge, [4] is the first paper where the dispersion coefficient, which depends on the space variable x, can degenerate. In
particular, the authors assume that k degenerates at the boundary (for example k(x) = xr, being x ∈ (0,1) and r > 0). Using Carleman
estimates for the adjoint problem, the authors prove null controllability for (1) under the condition T ≥ A . However, this assumption is
not realistic when A is too large. To overcome this problem in [20], the authors used Carleman estimates and a fixed point method via the
Leray-Schauder Theorem.
Some authors are interested with systems with incomplete data. For example, B.Jacob and A.Omrane in [11] are concerned with the control
for a linear age-structured population dynamics of incomplete initial data. More precisely, the initial population age distribution is supposed
to be unknown. they here generalize the notion of No-regret control of J.L.Lions in [12] to such singular population dynamics, following the
method by Nakoulima et al. as in [17]. They prove that the problem they are considering has a unique No-regret control that they characterize
by a singular optimality system.
In the present paper, we are interested with the No-regret control of a degenerate population dynamics system describing a single species in
divergence form with unknown information on the natural birth rate which to our knowledge has not been treated. In which, the dispersion
k is not considered as a constant but as a function depending on space variable x. We consider the minimization of the following cost
functional:

J(v;g) = ∥y(v;g)− zd∥2
L2(Q)+N∥v∥2

L2(Qω )
(2)

where zd ∈ L2(Q) and N > 0 are given. We have to solve the following optimization problem:

inf
v∈L2(Qω )

sup
g∈L2(0,A)

J(v;g)

But observing that we could have
sup

g∈L2(0,A)
J(v;g) = +∞,

we consider the following problem:

inf
v∈L2(Qω )

sup
g∈L2(0,A)

(J(v;g)− J(0;g)) (3)

One then looks for the control not making things worse with respect to a nominal control v0 (or to than doing nothing, v0 = 0 in our case),
independently of the perturbations which may be of infinite number. Lions used the notions of No-regret control [12] in application to the
control of systems having missing data. The No-regret concept was previously used in statistics by Savage [13]. The No-regret control
which is related to incomplete data problems is difficult to characterize directly. We will use an approximate control: the Low-regret control.
To achieve the No-regret control, we give the singular optimality system for the Low-regret control for problem (1)–(2), using a quadratic
perturbation used by Nakoulima et al. in [17]. Then, we give a characterization of the No-regret control which appears clearly as the limit of
a standard control problem.

The paper is organized as follows. In Section 2, we give well-posedness and some regularity results.We study the Low-regret and the adapted
Low-regret control and its characterization in sections 3 and 4 respectively. Finally, we prove the existence of the No-regret control and its
characterization in the last section.
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2. Well-posedness result and preliminaries

In this section and for what below, we will assume that k satisfies the following hypotheses:

k ∈C([0;1])∩C1((0;1]) ; k > 0 in (0;1], k(0) = 0; (4)

there exists a constant α ∈ [0,1) such that xk′(x)≤ αk(x), ∀x ∈ [0;1]
In addition, we assume that the function µ satisfies the following conditions:

µ ∈C(Q̄) and µ ≥ 0 in Q. (5)

and the function g = g(a) is not completely known but satisfies the following conditions:

g(a) ∈C(Q̄T,1) and g(a)≥ 0 in QT,1,∀a ∈ (0,A) (6)

To prove that problem (1) is well posed, we introduce the following Sobolev spaces:

H1
k =

{
u ∈ L2(0,1)|u absolutely continuous in [0,1],

√
kux ∈ L2(0,1) and u(1) = u(0) = 0

}
and

H2
k =

{
u ∈ H1

k (0,1)| (kux)x ∈ L2(0,1)
}
.

with their respective norms:
∥u∥2

H1
k (0,1)

= ∥u∥2
L2(0,1)+∥

√
kux∥2

L2(0,1) ∀u ∈ H1
k (0,1)

∥u∥2
H2

k (0,1)
= ∥u∥2

H1
k (0,1)

+∥(kux)x∥2
L2(0,1) ∀u ∈ H2

k (0,1)

Let the operator A : D(A) = H2
k (0,1) → L2(0,1) defined by Au = {(k(x)ux)x, u ∈ D(A)}, closed, self-adjoint and negative with dense

domain in L2(0,1).
Using properties of the operator A, one can show as in [[15], [9]] the existence of a unique solution of the model (1) and that this solution is
generated by a C0−semigroup on the space L2((0,A)× (0,1)). Moreover, this solution has additional time, age and gene regularity. More
precisely, the following well-posedness result holds.

Theorem 2.1. Under the hypothesis (4)-(6) and for all f ∈ L2(Q), y0 ∈ L2(QA,1) and v ∈ L2(Qω ), the system (1) admits a unique solution

y ∈ E = C ([0,T ],L2(QA,1))∩C ([0,A],L2(QT,1))∩L2(QT,A,H1
k (0,1))

and

sup
t∈[0,T ]

∥y(t)∥2
L2(QA,1)

+ sup
a∈[0,A]

∥y(a)∥2
L2(QT,1)

+
∫ T

0

∫ A

0
∥
√

kyx∥2
L2(0,1)dadt ≤C∥y0∥2

L2(QA,1)
+C∥ f∥2

L2(Q)+C∥v∥2
L2(Qω )

(7)

where C is a positive constant independent of k, y0 and f .

The properties of operator A allow us also to define the root of the operator B =−A denoted by B
1
2 . Using the weighted spaces H1

k (0,1) and
H2

k (0,1) introduced above, one can show that D(B
1
2 ) = H1

k (0,1).
The proof is analogous to that of [[16], Propositions 3.5.1 and 3.6.1]
Moreover, the following result is needed in the sequel.

Proposition 2.1. The operator B defined above has a unique extension B ∈ L (H1
k (0,1),H

−1
k (0,1)) where H−1

k (0,1) denotes the dual space
of H1

k (0,1) with respect to the pivot space L2(0,1).

For the proof, see [[16], Corollary 3.4.6]

Lemma 1. For any y ∈ W (T,A) =
{

y ∈ L2(QT,A;H1
k (0,1)) such that

∂y
∂ t

+
∂y
∂a

∈ L2(QT,A;H−1
k (0,1))

}
, one can define the trace at t = t0

in L2(QA,1). One can define also the trace at a = a0 in L2(QT,1). The applications “trace” are continuous for weak and strong topologies.

For more details on the latter lemma, see Oumar in [Sur un problème de dynamique de populations(2003)]

Remark 1. 1. The space H1
k (0,1) is compactly embedded in L2(0,1). See Alabau-Boussira in [Carleman estimates for degenerate

parabolic operators with applications to null controllability(2006)]
2. W (T,A)⊂C([0,T ],L2(QA,1)) and W (T,A)⊂C([0,A],L2(QT,1)). See Langlais in [Solutions fortes pour une classe de problèmes

aux limites dégénérés(1979)]

Proposition 2.2. The mapping

y : L2(Qω )×L2(0,A) −→ L2((0,T )× (0,A);H1
k (0,1))

(v,g) 7−→ y(v,g)

is continuous.
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Proof 1. Let be (v0,g0) ∈ L2(Qω )×L2(0,A). Let us show that lim
(v,g)→(v0,g0)

y(v,g) = y(v0,g0). We set ȳ = y(v,g)− y(v0,g0). then ȳ is

solution of :
∂ ȳ
∂ t +

∂ ȳ
∂a − (k(x)ȳx)x +µ ȳ = (v− v0)χω in Q

ȳ(t,a,1) = ȳ(t,a,0) = 0 on QT,A
ȳ(0,a,x) = 0 in QA,1

ȳ(t,0,x) =
∫ A

0
[g(a)y(t,a,x;v,g)−g0(a)y(t,a,x;v0,g0)]da in QT,1

If we set z = e−rt ȳ with r > 0, we get that z is solution of:
∂ z
∂ t +

∂ z
∂a − (k(x)zx)x +(µ + r)z = (v− v0)e−rt χω in Q

z(t,a,1) = z(t,a,0) = 0 on QT,A
z(0,a,x) = 0 in QA,1

z(t,0,x) = e−rt
∫ A

0
[g(a)y(t,a,x;v,g)−g0(a)y(t,a,x;v0,g0)]da in QT,1

(8)

Multiply the first equation of (8) by z then integrate by parts on Q:

1
2
∥z(T, ., .)∥2

L2(QA,1)
− 1

2
∥z(0, ., .)∥2

L2(QA,1)
+

1
2
∥z(.,A, .)∥2

L2(QT,1)
− 1

2
∥z(.,0, .)∥2

L2(QT,1)
+∥
√

k(x)zx∥2
L2(Q)+∥

√
r+µz∥2

L2(Q)

=
∫

Qω

e−rtz(v− v0)dtdadx

=⇒− 1
2
∥z(.,0, .)∥2

L2(QT,1)
+∥
√

k(x)zx∥2
L2(Q)+∥

√
r+µz∥2

L2(Q) ≤
∫

Qω

z(v− v0)dtdadx

=⇒∥
√

k(x)zx∥2
L2(Q)+∥

√
r+µz∥2

L2(Q) ≤
1
2
∥z(.,0, .)∥2

L2(QT,1)
+

1
2
∥z∥2

L2(Q)+
1
2
∥v− v0∥2

L2(Qω )

Now, observing that:

z(t,0,x) = e−rt
∫ A

0
[g(a)−g0(a)]y(t,a,x;v,g)da+

∫ A

0
g0(a)z(t,a,x)da

then, we make a few calculations on this latter equation. We obtain this estimation:

∥z(.,0, .)∥2
L2(QT,1)

≤ ∥g(a)−g0(a)∥2
L2(0,A)∥y∥2

L∞(0,A)+∥g0(a)∥2
L2(0,A)∥z∥2

L2(Q)

Hence,

∥
√

k(x)zx∥2
L2(Q)+∥

√
r+µz∥2

L2(Q) ≤
1
2
∥g(a)−g0(a)∥2

L2(0,A)∥y∥2
L∞(0,A)+

1
2
∥g0(a)∥2

L2(0,A)∥z∥2
L2(Q)+

1
2
∥z∥2

L2(Q)+
1
2
∥v− v0∥2

L2(Qω )

=⇒∥
√

k(x)zx∥2
L2(Q)+

[
r+µ − 1

2
− 1

2
∥g0(a)∥2

L2(0,A)

]
∥z∥2

L2(Q) ≤
1
2
∥v− v0∥2

L2(Qω )
+

1
2
∥g(a)−g0(a)∥2

L2(0,A)∥y∥2
L∞(0,A)

We will choose r such that r+µ >
1+∥g0(a)∥2

L2(0,A)
2 . Thus

∥z∥2
L2((0,T )×(0,A);H1

k (0,1))
≤ 1

2
∥v− v0∥2

L2(Qω )
+

1
2
∥g(a)−g0(a)∥2

L2(0,A)∥y∥2
L∞(0,A)

We deduce

∥z∥L2((0,T )×(0,A);H1
k (0,1))

≤
√

2
2

∥v− v0∥L2(Qω )+

√
2

2
∥g(a)−g0(a)∥L2(0,A)∥y∥L∞(0,A)

By substitution

∥ȳ∥L2((0,T )×(0,A);H1
k (0,1))

≤
√

2
2

erT ∥v− v0∥L2(Qω )+

√
2

2
erT ∥g(a)−g0(a)∥L2(0,A)∥y∥L∞(0,A)

Now, passing to the limit in this latter inequality when (v,g)→ (v0,g0), ȳ→ 0 strongly in L2(QT,A;H1
k (0,1)). We obtain that y(v,g) converges

to y(v0,g0) in L2(QT,A;H1
k (0,1)).

Proposition 2.3. Let λ > 0. Let g,h ∈ L2(0,A) and v,w ∈ L2(Qω). Let y = y(v,g) solution of system (1) and the application (v,g) 7→ y(v,g)

continuous from L2(Qω )× L2(0,A) onto L2(QT,A;H1
k (0,1)). Set ȳλ =

y(v+λw,g+λh)− y(v,g)
λ

. Then (ȳλ ) converges strongly in

L2(QT,A;H1
k (0,1)) to a function ȳ as λ → 0 which verifies

∂ ȳ
∂ t +

∂ ȳ
∂a − (k(x)ȳx)x +µ ȳ = wχω in Q

ȳ(t,a,1) = ȳ(t,a,0) = 0 on QT,A
ȳ(0,a,x) = 0 in QA,1

ȳ(t,0,x) =
∫ A

0
g(a)ȳda+

∫ A

0
h(a)y(t,a,x;v,g)da in QT,1
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Proof 2. Let g,h ∈ L2(0,A) and v,w ∈ L2(Qω). We define ȳλ =
y(v+λw,g+λh)− y(v,g)

λ
, then ȳλ is solution of

∂ ȳλ

∂ t + ∂ ȳλ

∂a − (k(x)ȳλx
)x +µ ȳλ = wχω in Q

ȳλ (t,a,1) = ȳλ (t,a,0) = 0 on QT,A
ȳλ (0,a,x) = 0 in QA,1

ȳλ (t,0,x) =
∫ A

0
g(a)ȳλ da+

∫ A

0
h(a)y(t,a,x;v+λw,g+λh)da in QT,1

Set yλ = ȳλ − ȳ where ȳ is solution of
∂ ȳ
∂ t +

∂ ȳ
∂a − (k(x)ȳx)x +µ ȳ = wχω in Q

ȳ(t,a,1) = ȳ(t,a,0) = 0 on QT,A
ȳ(0,a,x) = 0 in QA,1

ȳ(t,0,x) =
∫ A

0
g(a)ȳda+

∫ A

0
h(a)y(t,a,x;v,g)da in QT,1

Then yλ is solution of
∂yλ

∂ t + ∂yλ

∂a − (k(x)yλx
)x +µyλ = 0 in Q

yλ (t,a,1) = yλ (t,a,0) = 0 on QT,A
yλ (0,a,x) = 0 in QA,1

yλ (t,0,x) =
∫ A

0
g(a)yλ da+

∫ A

0
h(a)[y(t,a,x;v+λw,g+λh)− y(t,a,x;v,g)]da in QT,1

In the sequel, set zλ = e−rtyλ with r > 0. Then zλ is solution of:

∂ zλ

∂ t + ∂ zλ

∂a − (k(x)zλx)x +(µ + r)zλ = 0 in Q
zλ (t,a,1) = zλ (t,a,0) = 0 on QT,A
zλ (0,a,x) = 0 in QA,1

zλ (t,0,x) = e−rt
(∫ A

0
g(a)yλ da+

∫ A

0
h(a)[y(t,a,x;v+λw,g+λh)− y(t,a,x;v,g)]da

)
in QT,1

which gives

∂ zλ

∂ t + ∂ zλ

∂a − (k(x)zλx)x +(µ + r)zλ = 0 in Q
zλ (t,a,1) = zλ (t,a,0) = 0 on QT,A
zλ (0,a,x) = 0 in QA,1

zλ (t,0,x) =
∫ A

0
g(a)zλ da+ e−rt

(∫ A

0
h(a)[y(t,a,x;v+λw,g+λh)− y(t,a,x;v,g)]da

)
in QT,1

(9)

Now, we multiply the first equation of (9) by zλ then integrate by parts on Q:

1
2
∥zλ (T, ., .)∥2

L2(QA,1)
− 1

2
∥zλ (0, ., .)∥2

L2(QA,1)
+

1
2
∥zλ (.,A, .)∥2

L2(QT,1)
− 1

2
∥zλ (.,0, .)∥2

L2(QT,1)
+∥
√

k(x)zλx∥2
L2(Q)+∥

√
r+µzλ ∥2

L2(Q) = 0

It comes:

∥
√

k(x)zλx∥2
L2(Q)+∥

√
r+µzλ ∥2

L2(Q) =
1
2
∥zλ (.,0, .)∥2

L2(QT,1)
− 1

2
∥zλ (T, ., .)∥2

L2(QA,1)
− 1

2
∥zλ (.,A, .)∥2

L2(QT,1)

and,

∥
√

k(x)zλx∥2
L2(Q)+∥

√
r+µzλ ∥2

L2(Q) ≤
1
2
∥zλ (.,0, .)∥2

L2(QT,1)

while:

zλ (t,0,x) =
∫ A

0
g(a)zλ da+ e−rt

(∫ A

0
h(a)[y(t,a,x;v+λw,g+λh)− y(t,a,x;v,g)]da

)
then,

∥zλ (.,0, .)∥2
L2(QT,1)

≤ ∥g∥2
L2(0,A)∥zλ ∥2

L2(Q)+∥h∥2
L2(0,A)∥y(v+λw,g+λh)− y(v,g)∥2

L2(Q)

In the sequel,

∥
√

k(x)zλx∥2
L2(Q)+∥

√
r+µzλ ∥2

L2(Q) ≤
1
2
∥g∥2

L2(0,A)∥zλ ∥2
L2(Q)+

1
2
∥h∥2

L2(0,A)∥y(v+λw,g+λh)− y(v,g)∥2
L2(Q)

Then,

∥
√

k(x)zλx∥2
L2(Q)+

[
r+µ − 1

2
∥g∥2

L2(0,A)

]
∥zλ ∥2

L2(Q) ≤
1
2
∥h∥2

L2(0,A)∥y(v+λw,g+λh)− y(v,g)∥2
L2(Q)

While λ → 0, as the application (v,g)→ y(v,g) is continuous, we deduce that yλ → 0 strongly in L2(QT,A;H1
k (0,1)). Then, the sequence

(ȳλ ) converges to ȳ strongly in L2(QT,A;H1
k (0,1)) when λ → 0.
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Proposition 2.4. For any g ∈ L2(0,A), the application v 7→ ∂y
∂g

(v,g) is continuous from L2(Qω ) onto L (L2(0,A);L2(QT,A;H1
k (0,1))).

Proof 3. We set ȳ(h) =
∂y
∂g

(v,g)(h). Then ȳ(h) is solution of system



∂ ȳ(h)
∂ t

+
∂ ȳ(h)

∂a
− (k(x)ȳ(h)x)x +µ ȳ(h) = 0 in Q

ȳ(h)(t,a,1) = ȳ(h)(t,a,0) = 0 on QT,A
ȳ(h)(0,a,x) = 0 in QA,1

ȳ(h)(t,0,x) =
∫ A

0
g(a)ȳ(h)da+

∫ A

0
h(a)y(t,a,x;v,g)da in QT,1

Let v1,v2 ∈ L2(Qω ). Set ȳ1(h) =
∂y
∂g

(v1,g)(h), ȳ2(h) =
∂y
∂g

(v2,g)(h) and take z̄(h) = e−rt(ȳ1(h)− ȳ2(h)) with r > 0. Then z̄(h) is solution

to the problem:

∂ z̄(h)
∂ t

+
∂ z̄(h)

∂a
− (k(x)z̄(h)x)x +(µ + r)z̄(h) = 0 in Q

z̄(h)(t,a,1) = z̄(h)(t,a,0) = 0 on QT,A
z̄(h)(0,a,x) = 0 in QA,1

z̄(h)(t,0,x) =
∫ A

0
g(a)z̄(h)da+ e−rt

∫ A

0
h(a)[y(v1,g)− y(v2,g)]da in QT,1

(10)

Multiply the first equation of (10) by z̄(h) then integrate by parts on Q:

1
2
∥z̄(h)(T, ., .)∥2

L2(QA,1)
− 1

2
∥z̄(h)(0, ., .)∥2

L2(QA,1)
+

1
2
∥z̄(h)(.,A, .)∥2

L2(QT,1)
− 1

2
∥z̄(h)(.,0, .)∥2

L2(QT,1)
+∥
√

k(x)z̄(h)x∥2
L2(Q)

+∥
√

r+µ z̄(h)∥2
L2(Q) = 0

Now

∥z̄(h)(.,0, .)∥2
L2(QT,1)

≤ ∥g∥2
L2(0,A)∥z̄(h)∥2

L2(Q)+∥h∥2
L2(0,A)∥y(v1,g)− y(v2,g)∥2

L2(Q)

We choose r such that r+µ > ∥g∥2
L2(0,A). Then we deduce:

∥z̄(h)∥L2((0,T )×(0,A);H1
k (0,1))

≤ ∥h∥L2(0,A)∥y(v1,g)− y(v2,g)∥L2(Q)

By returning to z̄(h) = e−rt(ȳ1(h)− ȳ2(h)) with r > 0, one obtains :

∥ȳ1(h)− ȳ2(h)∥L2((0,T )×(0,A);H1
k (0,1))

≤ ∥h∥L2(0,A)e
rT ∥y(v1,g)− y(v2,g)∥L2(Q)

Passing to the limit when v1 → v2 and by using Proposition 2.2, we obtain that
∂y
∂g

(v1,g) converges to
∂y
∂g

(v2,g) in

L (L2(0,A);L2(QT,A;H1
k (0,1))).

Proposition 2.5. For any v ∈ L2(Qω ) the application v 7→ ξ (v, .) is continuous from L2(Qω ) to L2(QT,A;H1
k (0,1)) where ξ (v, .) is solution

of
−∂ξ

∂ t
− ∂ξ

∂a
− (k(x)ξx)x +µξ = y(v,0)− zd in Q

ξ (t,a,1) = ξ (t,a,0) = 0 on QT,A
ξ (T,a,x) = 0 in QA,1
ξ (t,A,x) = 0 in QT,1

(11)

Proof 4. Let be v1,v2 ∈ L2(Qω ) and let be ξ̄ = ξ (v1)−ξ (v2). Then ξ̄ satifies the system:
−∂ ξ̄

∂ t
− ∂ ξ̄

∂a
− (k(x)ξ̄x)x +(µ + r)ξ̄ = y(v1,0)− y(v2,0) in Q

ξ̄ (t,a,1) = ξ̄ (t,a,0) = 0 on QT,A
ξ̄ (T,a,x) = 0 in QA,1
ξ̄ (t,A,x) = 0 in QT,1

If we set ζ = e−rt ξ̄ with r > 0, we get that ζ is solution of:
−∂ζ

∂ t
− ∂ζ

∂a
− (k(x)ζx)x +(µ + r)ζ = (y(v1, .)− y(v2, .))e−rt in Q

ζ (t,a,1) = ζ (t,a,0) = 0 on QT,A
ζ (T,a,x) = 0 in QA,1
ζ (t,A,x) = 0 in QT,1

(12)
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Multiply the first equation of (12) by ζ then integrate by parts on Q:

−1
2
∥ζ (T, ., .)∥2

QA,1
+

1
2
∥ζ (0, ., .)∥2

QA,1
− 1

2
∥ζ (.,A, .)∥2

QT,1
+

1
2
∥ζ (.,0, .)∥2

QT,1
+∥
√

k(x)ζx∥2
Q +∥

√
r+µζ∥2

Q

=
∫

Q
ζ (y(v1, .)− y(v2, .))e−rtdtdadx

Next,

1
2
∥ζ (0, ., .)∥2

QA,1
+

1
2
∥ζ (.,0, .)∥2

QT,1
+∥
√

k(x)ζx∥2
Q +∥

√
r+µζ∥2

Q =
∫

Q
ζ (y(v1, .)− y(v2, .))e−rtdtdadx

=⇒1
2
∥ζ (.,0, .)∥2

QT,1
+∥
√

k(x)ζx∥2
Q +∥

√
r+µζ∥2

Q ≤
∫

Q
ζ (y(v1, .)− y(v2, .))e−rtdtdadx

=⇒1
2
∥ζ (.,0, .)∥2

QT,1
+∥
√

k(x)ζx∥2
Q +(r+µ)∥ζ∥2

Q ≤ 1
2
∥ζ∥2

Q +
1
2
∥y(v1, .)− y(v2, .)∥2

Q

=⇒1
2
∥ζ (.,0, .)∥2

QT,1
+∥ζ∥2

L2(QT,A;H1
k (0,1))

≤ 1
2
∥y(v1, .)− y(v2, .)∥2

Q

returning to ζ = e−rt ξ̄

1
2
∥ξ̄ (.,0, .)∥2

QT,1
+∥ξ̄∥2

L2(QT,A;H1
k (0,1))

≤ erT ∥y(v1, .)− y(v2, .)∥2
Q

and consequently

∥ξ̄∥2
L2(QT,A;H1

k (0,1))
≤ erT ∥y(v1, .)− y(v2, .)∥2

Q

Using Proposition 2.2, we get that v 7→ ξ (v, .) is continuous from L2(Qω ) to L2(QT,A;H1
k (0,1))

3. Position of the problem

In this section, we are interested with the No-regret control solution of the problem (3). The feature of nonlinearity of the mapping g → y(v;g)
from L2(0;A) onto L2(QT,A;H1

k (0,1)) and the regularity results of y proven in Propositions 2.2 and 2.3 involve to replace the cost function
defined in (2) by a new one:

J1(v,g) = J(v,0)+
∂J
∂g

(v,0)(g) (13)

Thus, the optimization problem (3) becomes:

inf
v∈L2(Qω )

sup
g∈L2(0,A)

J1(v,g)− J1(0,g) (14)

Let y(v,0) ∈ L2(QT,A;H1
k (0,1)) be the solution of:

∂y(v,0)
∂ t

+
∂y(v,0)

∂a
− (k(x)yx(v,0))x +µy(v,0) = f + vχω in Q

y(t,a,1)(v,0) = y(t,a,0)(v,0) = 0 on U
y(0,a,x)(v,0) = y0(a,x) in QA,1
y(t,0,x)(v,0) = 0 in QT,1

(15)

In the sequel, we establish the following results:

Proposition 3.1. For any (v,g) ∈ L2(Qω )×L2(0,A), the following equality holds:

J1(v,g) = J(v,0)+2
∫

Q

(
∂y
∂g

(v,0)(g)
)
(y(v,0)− zd)dtdadx (16)

where J is the cost function defined in (2) and
∂J
∂g

(v,0)(g) = lim
t→0

J(v, tg)− J(v,0)
t

Proof 5. We have:

J(v, tg) = ∥y(v, tg)− zd∥2
L2(Q)+N∥v∥2

L2(Qω )

= ∥y(v, tg)− y(v,0)∥2
L2(Q)+∥y(v,0)− zd∥2

L2(Q)+N∥v∥2
L2(Qω )

+2
∫

Q
(y(v, tg)− y(v,0))(y(v,0)− zd)dtdadx

= J(v,0)+∥y(v, tg)− y(v,0)∥2
L2(Q)+2

∫
Q
(y(v, tg)− y(v,0))(y(v,0)− zd)dtdadx

Then, passing to the limit in the expression
J(v, tg)− J(v,0)

t
when t → 0, we obtain:

∂J
∂g

(v,0)(g) = 2
∫

Q

(
∂y
∂g

(v,0)(g)
)
(y(v,0)− zd)dtdadx
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Consequently,

∂J
∂g

(v,0)(g)+ J(v,0) = J(v,0)+2
∫

Q

(
∂y
∂g

(v,0)(g)
)
(y(v,0)− zd)dtdadx

Finally,

J1(v,0) = J(v,0)+2
∫

Q

(
∂y
∂g

(v,0)(g)
)
(y(v,0)− zd)dtdadx

Proposition 3.2. For any (v,g) ∈ L2(Qω )×L2(0,A), the following equality holds:

J1(v,g)− J1(0,g) = J(v,0)− J(0,0)+2
∫ A

0
S(a,v)g(a)da (17)

where for any a ∈ (0,A),

S(a,v) =
∫

QT,1

[y(t,a,x;v,0)ξ (v)(t,0,x)− y(t,a,x;0,0)ξ (0)(t,0,x)]dtdx (18)

with ξ (v) solution of (11).

Proof 6. On the one hand side, for any (v,g) ∈ L2(Qω )×L2(0,A), we have:

J1(v,g)− J1(0,g) = J(v,0)− J(0,0)+2
∫

Q

(
∂y
∂g

(v,0)(g)
)
(y(v,0)− zd)dtdadx−2

∫
Q

(
∂y
∂g

(0,0)(g)
)
(y(0,0)− zd)dtdadx

And on the other hand side and according to Proposition 2.4, ȳ(g) =
∂y
∂g

(v,0)(g) is solution of:


∂ ȳ(g)

∂ t
+

∂ ȳ(g)
∂a

− (k(x)ȳx(g))x +µ ȳ(g) = f + vχω in Q

ȳ(g)(t,a,1) = ȳ(g)(t,a,0) = 0 on QT,A
ȳ(g)(0,a,x) = 0 in QA,1
ȳ(g)(t,0,x) =

∫ A
0 g(a)y(t,a,x;v,0)da in QT,1

(19)

Multiply the first equation of (19) by ξ (v) and integrate by parts over Q, it comes:∫
Q

ξ (v)
(

∂ ȳ(g)
∂ t

+
∂ ȳ(g)

∂a
− (k(x)ȳx(g))x +µ ȳ(g)

)
dtdadx = 0

Then,

0 =
∫

Q
ȳ(g)

(
−∂ξ (v)

∂ t
− ∂ξ (v)

∂a
− (k(x)ξx(v))x +µξ (v)

)
dtdadx+

∫
QT,1

ξ (v)(.,A, .)ȳ(g)(.,A, .)dtdx−
∫

QT,1

ξ (v)(.,0, .)ȳ(g)(.,0, .)dtdx

+
∫

QA,1

ξ (v)(T, ., .)ȳ(g)(T, ., .)dadx−
∫

QA,1

ξ (v)(0, ., .)ȳ(g)(0, ., .))dadx+
∫

QT,A

[k(x)ξ (v)ȳx(g)]10dtda−
∫

QT,A

[k(x)ξx(v)ȳ(g)]10dtda

by taking into account the conditions at the boundary / limits, it comes:∫
Q

ȳ(g)
(
−∂ξ (v)

∂ t
− ∂ξ (v)

∂a
− (k(x)ξx(v))x +µξ (v)

)
dtdadx =

∫
QT,1

ξ (v)(.,0, .)
∫ A

0
y(t,a,x;v,0)g(a)dtdadx

Next, we obtain:∫
Q

ȳ(g)(y(v,0)− zd)dtdadx =
∫ A

0

∫
QT,1

ξ (v)(.,0, .)y(t,a,x;v,0)g(a)dtdadx

We can get also:∫
Q

ȳ(g)(y(0,0)− zd)dtdadx =
∫ A

0

∫
QT,1

ξ (0)(.,0, .)y(t,a,x;v,0)g(a)dtdadx

by substituting with what below, it comes:

J1(v,g)− J1(0,g) = J(v,0)− J(0,0)+2
∫

Q
g(a) [y(t,a,x;v,0)ξ (v)(t,0,x)− y(t,a,x;0,0)ξ (0)(t,0,x)]dtdadx

by setting,

S(a,v) =
∫

QT,1

[y(t,a,x;v,0)ξ (v)(t,0,x)− y(t,a,x;0,0)ξ (0)(t,0,x)]dadx

we obtain:

J1(v,g)− J1(0,g) = J(v,0)− J(0,0)+2
∫ A

0
g(a)S(a,v)da
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Proposition 3.3. Let S(.,v) be the function defined in relation (18). Then the application v → S(.,v) is continuous from L2(Qω ) onto
L2(0,A).

Proof 7. Let v1,v2 ∈ L2(Qω ), we have:

S(a,v1)−S(a,v2) =
∫

QT,1

y(t,a,x;v1,0)ξ (v1)(t,0,x)dtdx−
∫

QT,1

y(t,a,x;v2,0)ξ (v2)(t,0,x)dtdx

=
∫

QT,1

[y(t,a,x;v1,0)− y(t,a,x;v2,0)]ξ (v1)(t,0,x)]dtdx−
∫

QT,1

y(t,a,x;v2,0)[ξ (v1)(t,0,x)−ξ (v2)(t,0,x)]dtdx

Passing to the norm

∥S(a,v1)−S(a,v2)∥2
L2(Qω) ≤

1
2
∥y(v1, .)− y(v2, .)∥2

L2(Q)+
1
2
∥ξ (v1)∥2

L2(QT )
+

1
2
∥y(v2, .)∥2

L2(Q)+
1
2
∥ξ (v1)−ξ (v2)∥2

L2(QT )

≤ 1
2
∥y(v1, .)− y(v2, .)∥2

L2(Q)+
1
2
∥ξ (v1)−ξ (v2)∥2

L2(QT )

As the Proposition 2.2 is an argument on continuity of the application v → y(v, .) and using an argument of the proof of Proposition 2.5 on
the continuity of application v → ξ (v), we conclude that S(a,v1)→ S(a,v2) when v1 → v2.

Lemma 2. Let S(.,v) be the function defined in relation (18) for any a ∈ L2(0,A). For any γ > 0, we consider the sequences yγ =
y(t,a,x;uγ ,0) and ξ (uγ ) respectively solutions of (15) and (11) with v = uγ . Assume that there exists constant C > 0 independent of γ such
that

∥S(.,uγ )∥L2(0,A) ≤C (20)

Assume also that û ∈ L2(Qω ), ξ̂ (.,0, .) ∈ L2(QT,1) and ŷ = y(t,a,x; û,0) ∈ L2(QT,A;H1
k (0,1)) solution of (15) such that

uγ ⇀ û weakly in L2(QT,A ×ω) (21)

yγ ⇀ ŷ = y(t,a,x; û,0) weakly in L2(QT,A;H1
k (0,1)) (22)

ξ (uγ )(.,0, .)⇀ ξ̂ (.,0, .) weakly in L2(QT,1) (23)

Then we have:

S(.,uγ )⇀ S(., û) weakly in D ′(A) (24)

Proof 8. Let D(A) be the set of C∞ functions with compact support on (0,A) and D ′(A) its dual. For any φ ∈ D(A),

ηγ (t,x) =
∫ A

0
φ(a)y(t,a,x;uγ ,0)da, ∀(t,x) ∈ QT,1 (25)

In view of (22), there exists a constant C such that

∥ηγ∥L2(QT,1) ≤ ∥yγ∥L2(Q).∥φ∥L2(0,A) ≤C

Then, there exists η ∈ L2(QT,1) such that
ηγ ⇀ η weakly in L2(QT,1)

More, we have

η(t,x) =
∫ A

0
φ(a)y(t,a,x; û,0)da, ∀(t,x) ∈ QT,1 (26)

As yγ = y(t,a,x;uγ ,0) solution of (18) with v = uγ , we have that ηγ is solution of
∂ηγ

∂ t
− (k(x)ηγx)x = νγ in QT,1

ηγ (t,1) = ηγ (t,0) = 0 on (0,T )
ηγ (0,x) =

∫ A
0 φ(a)y0(a,x)da in (0,1)

where

νγ (t,x) =
∫ A

0
φ(a)( f +uγ χω )da−

∫ A

0
φ(a)yγ µ(a)da−

∫ A

0
φ(a)

∂yγ

∂a
da

Using (21) and (22), we can improve a majoration of νγ :

∥νγ∥L2(QT,1) ≤
(

2∥ f∥2
L2(Q)+2∥uγ∥2

L2(Qω )
+∥µ∥2

L∞(0,A).∥yγ∥2
L2(Q)

) 1
2 ∥φ∥L2(0,A)+∥yγ∥L2(Q).∥

∂φ

∂a
∥L2(0,A) ≤C

Then there exixts C > 0 independent of γ such that ∥ηγ∥L2(0,T );H1
0 (0,1)

≤C

∥
∂ηγ

∂ t
∥L2(0,T );H−1(0,1) ≤C
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Consequently, it follows from Aubin-Lions lemma that

ηγ → η strongly in L2(QT,1) (27)

with

η(t,x) =
∫ A

0
φ(a)y(t,a,x; û,0)da, ∀(t,x) ∈ QT,1

Now, back to
S(a,uγ ) =

∫
QT,1

y(t,a,x;uγ ,0)ξ (uγ )(t,0,x)dtdx−
∫

QT,1

y(t,a,x;0,0)ξ (0)(t,0,x)dtdx

For any φ ∈ D(A),∫ A

0
S(a,uγ )φ(a)da =

∫ A

0

∫
QT,1

y(t,a,x;uγ ,0)φ(a)ξ (uγ )(t,0,x)dtdxda−
∫ A

0

∫
QT,1

y(t,a,x;0,0)φ(a)ξ (0)(t,0,x)dtdxda

=
∫

QT,1

∫ A

0
y(t,a,x;uγ ,0)φ(a)ξ (uγ )(t,0,x)dtdxda−

∫
QT,1

∫ A

0
y(t,a,x;0,0)φ(a)ξ (0)(t,0,x)dtdxda

=
∫

QT,1

ηγ (t,x)ξ (uγ )(t,0,x)dtdxda−
∫

QT,1

∫ A

0
y(t,a,x;0,0)φ(a)ξ (0)(t,0,x)dtdxda

Passing to the while using (26) and (21) in this latter equality∫ A

0
S(a,uγ )φ(a)da −→

∫
QT,1

η(t,x)ξ (û)(t,0,x)dtdxda−
∫

QT,1

∫ A

0
y(t,a,x;0,0)φ(a)ξ (0)(t,0,x)dtdxda

According to (25),∫ A

0
S(a,uγ )φ(a)da −→

∫
QT,1

∫ A

0
y(t,a,x; û,0)φ(a)ξ (û)(t,0,x)dtdxda−

∫
QT

∫ A

0
y(t,a,x;0,0)φ(a)ξ (0)(t,0,x)dtdxda

We deduce from which below, S(a,uγ )⇀ S(a, û) weakly in D(A).

4. Existence of the No-regret control and the Low-regret control

In view of (17), the optimization problem (14) is equivalent to the following problem:

inf
v∈L2(Qω )

sup
g∈L2(0,A)

J̃ (v). (28)

with

J̃ (v) = J(v,0)− J(0,0)+2
∫ A

0
g(a)S(a,v)da. (29)

The quantity
∫ A

0
g(a)S(a,v)da may be equal to 0 or +∞. We define the set:

Uad =

{
v ∈ L2(Qω );

∫ A

0
g(a)S(a,v)da = 0, ∀g ∈ L2(0,A)

}
(30)

Further, we give the results of existence of the No-regret control and the Low-regret control.

Lemma 3. There exists a solution ũ of (28) in Uad .

Proof 9. Firstly, the continuity of the application v → J(v,0)− J(0,0) is a consequence of the Proposition 2.2. Moreover, the application
v → J(v,0)− J(0,0) is positive ( or 0-coercive) and bounded below by −J(0,0). Secondly, due to the fact that J(v,0)− J(0,0)>−J(0,0),
we can define a real d such that d = inf

v∈L2(Qω )
J̃ (v). Let (vn) be a minimizing sequence such that d = lim

n→+∞
J̃ (vn). We have: −J(0,0)⩽

J(vn,0)− J(0,0)+2
∫ A

0 g(a)S(a,vn)da ⩽ d +1. We deduce that there exists a constant C independent of n such that:

∥y(vn,0)− zd∥L2(Q) ⩽C (31)

∥vn∥L2(Qω ) ⩽C (32)

∥S(.;vn)∥L2(0,A) ⩽C (33)

According to (32), the sequence (vn) is bounded. Thus we can extract a subsequence still denoted (vn) such that

vn ⇀ v weakly in L2(Qω ) (34)

On the one hand side, the continuity of the application v → y(v, .) (Proposition 2.2) and the relation (32) and on the other hand side, the
continuity of the application v → S(.,v) (Proposition 3.3) and the relation (32) permit us to deduce:

y(vn, .)⇀ y(v, .) weakly in L2(Q) (35)
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S(.,vn)⇀ S(.,v) weakly in L2(0,A) (36)

This implies with what above:

J(v,0)− J(0,0)+2
∫ A

0
g(a)S(a,v)da ⩽ liminf

n→+∞
J(vn,0)− J(0,0)+2

∫ A

0
g(a)S(a,vn)da ⩽ d

In other words, ũ is the No-regret control solution of the problem (28).

As such a control ũ is not easy to characterize, we consider for any γ > 0, the relaxed optimization problem:

inf
v∈L2(Qω )

sup
g∈L2(0,A)

[J(v,0)− J(0,0)+2
∫ A

0
g(a)S(a,v)da− γ∥g∥2

L2(0,A)] (37)

which means of Fenchel-Legendre transform is equivalent to

inf
v∈L2(Qω )

Jγ (v) (38)

with

Jγ (v) = J(v,0)− J(0,0)+
1
γ
∥S(.;v)∥2

L2(0,A) (39)

Proposition 4.1. For any γ > 0, there exists at least a Low-regret control uγ solution of the problem (38).

Proof 10. One can proceed as for Proof 9. Analogously, we can show easily that the application v → J(v,0)− J(0,0) is coercive in L2(Qω ),
bounded below by −J(0,0) and continuous because of Proposition 2.2.
Furthermore, the continuity of the application v → S(.,v) (Proposition 3.3) and the use of a minimizing sequence permit us to deduce that
there exists at least a Low-regret control uγ .
Then the strict convexity of the application v → S(.,v) is not established. Hence the uniqueness of the Low-regret control uγ is not ensured.
Therefore, there is not assurance that the Low-regret uγ will converge toward the No-regret ũ ∈Uad . Thus in order to obtain this convergence,
we adapt the cost function J̃ to a given No-regret control.

We now turn to the characterization of the adapted Low-regret control ũγ in the next section.

5. Existence and characterization of the adapted Low-regret control

For any γ > 0, the optimization problem (38) becomes:

inf
v∈L2(Qω )

J̃γ (v) (40)

where

J̃γ (v) = J(v,0)− J(0,0)+∥v− ũ∥L2(Qω )+
1
γ
∥S(.;v)∥2

L2(0,A) (41)

Proposition 5.1. For any γ > 0, there exists at least an adapted Low-regret control ũγ in L2(Qω ) solution of problem (40).

Proof 11. As for the previous proofs, we use the fact that the application v → J(v,0)− J(0,0) is coercive in L2(Qω ), bounded below by
−J(0,0) and continuous (Proposition 2.2).
Then the continuity of the application v → S(.,v) (Proposition 3.3) and the lower semi-continuity of the function v → J̃γ permit with means
of a minimizing sequence to deduce that there exists at least an adapted Low-regret control ũγ in L2(Qω ).

Proposition 5.2. Let be ũγ ∈ L2(Qω ) solution of problem (40). Then there exists p̃γ = p(ũγ ) ∈ L2(QT,A;H1
k (0,1)) and q̃γ = q(ũγ ) ∈

L2(QT,A;H1
k (0,1)) such as the quadruplet {ỹγ , ξ̃γ , p̃γ , q̃γ} be solution of systems:

∂ ỹγ

∂ t +
∂ ỹγ

∂a − (k(x)ỹγx)x +µ ỹγ = f + ũγ χω in Q
ỹγ (t,a,1) = ỹγ (t,a,0) = 0 on QT,A
ỹγ (0,a,x) = y0(a,x) in QA,1
ỹγ (t,0,x) = 0 in QT,1

(42)


− ∂ ξ̃γ

∂ t − ∂ ξ̃γ

∂a − (k(x)ξ̃γx)x +µξ̃γ = ỹγ − zd in Q
ξ̃γ (t,a,1) = ξ̃γ (t,a,0) = 0 on QT,A
ξ̃γ (0,a,x) = 0 in QA,1
ξ̃γ (t,0,x) = 0 in QT,1

(43)


∂ p̃γ

∂ t +
∂ p̃γ

∂a − (k(x)p̃γx)x +µ p̃γ = 0 in Q
p̃γ (t,a,1) = p̃γ (t,a,0) = 0 on QT,A
p̃γ (0,a,x) = 0 in QA,1

p̃γ (t,0,x) = 1√
γ

∫ A

0
y(t,a,x; ũγ ,0)S(a, ũγ )da in QT,1

(44)


− ∂ q̃γ

∂ t − ∂ q̃γ

∂a − (k(x)q̃γx)x +µ q̃γ = y(ũγ ,0)− zd +ζ γ in Q
q̃γ (t,a,1) = q̃γ (t,a,0) = 0 on QT,A
q̃γ (0,a,x) = 0 in QA,1
q̃γ (t,0,x) = 0 in QT,1

(45)
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and

(N +1)ũγ − ũ+ q̃γ = 0 in Qω (46)

where

ζ
γ =

1
√

γ
p̃γ +

1
γ

S(a, ũγ )ξ (ũγ )(t,0,x)

Proof 12. The optimality condition of Euler-Lagrange which characterizes the adapted Low-regret control ũγ is given by:

lim
λ→0

J̃ γ (ũγ +λw)−J̃ γ (ũγ )

λ
= 0, ∀w ∈ L2(Qω ).

We use Proposition 2.3 and Proposition 3.2 to transform the latter optimality condition. After some calculations, we obtain, ∀w ∈ L2(Qω ),
the equality:∫

Q
ȳ(w)(ỹγ − zd +

1
γ

S(a, ũγ )ξ̄ (t,0,x))dtdadx+
∫

Qω

(ũγ − ũ)wdtdadx+
∫

Qω

Nũγ wdtdadx+
∫

Q

1
γ

ỹγ S(a, ũγ )ξ̄ (t,0,x)dtdadx = 0, (47)

where ȳ(w) = ∂y
∂v (ũγ ,0)(w) and ξ̄ = ∂ξ

∂v (ũγ ) are respective solutions of:
∂ ȳ(w)

∂ t +
∂ ȳ(w)

∂a − (k(x)ȳx(w))x +µy(w) = wχω in Q
ȳ(w)(t,a,1) = ȳ(w)(t,a,0) = 0 on QT,A
ȳ(w)(0,a,x) = 0 in QA,1
ȳ(w)(t,0,x) = 0 in QT,1

(48)

and
− ∂ ξ̄γ

∂ t − ∂ ξ̄γ

∂a − (k(x)ξ̄x)x +µξ̄γ = ȳ(w) in Q
ξ̄ (t,a,1) = ξ̄ (t,a,0) = 0 on QT,A
ξ̄ (T,a,x) = 0 in QA,1
ξ̄ (t,A,x) = 0 in QT,1

(49)

We introduce adjoint state p̃γ and q̃γ solutions of (44) and (45) to interpret (47). Then we multiply the first equation of (48) by q̃γ and we
integrate by parts on Q. We obtain:∫

Q
ȳ(w)(ỹγ − zd +

1
√

γ
pγ +

1
γ

S(a, ũγ )ξ̄ (t,0,x))dtdadx =
∫

Qω

q̃γ wdtdadx, ∀w ∈ L2(Qω ) (50)

And we multiply the first equation of (49) by 1√
γ

pγ and integrate by parts on Q. We get:

1
γ

∫
Q

ξ̄ (t,0,x)S(a, ũγ )ỹγ dtdadx =
1
√

γ

∫
Q

ȳ(w)pγ dtdadx, ∀w ∈ L2(Qω ) (51)

By reducing the relation (47) using relations (50) and (51), we get:∫
Qω

w((N +1)ũγ − ũ+ q̃γ )dtdadx = 0, ∀w ∈ L2(Qω )

Finally we deduce the relation (46).

Proposition 5.3. Let ũγ ∈ L2(Qω ) be a solution of problem (40). Let also {ỹγ , ξ̃γ , p̃γ , q̃γ} be solution of systems (42)-(46). Then we have
following estimations:

∥ũγ∥L2(Qω ) ≤C (52)

1
√

γ
∥S(a, ũγ )∥L2(0,A) ≤C (53)

∥ỹγ∥L2(QT,A;H1
k (0,1))

≤C (54)

∥ξ̃γ∥L2(QT,A;H1
k (0,1))

≤C (55)

∥ξ̃γ (.,0, .)∥L2(QT,1) ≤C (56)

∥p̃γ∥L2(QT,A;H1
k (0,1))

≤C (57)

∥ p̃γ (.,0, .)∥L2(QT,1) ≤C (58)

∥q̃γ∥L2(QT,A;H1
k (0,1))

≤C (59)

where C is a positive constant and none the same in each inequality.
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Proof 13. We proceed by steps:
Step 1: We prove the estimations (52)-(55).
According to Proposition 5.1, ũγ is a solution of (40). So,

J̃γ (ũγ )≤ J̃ γ (0) = ∥ũ∥L2(Qω )

Then, from defnition of J̃ γ , J and by relations (41) and (2) that,

∥ỹγ − zd∥2
L2(Q)+N∥ũγ∥2

L2(Qω )
+∥ũγ − ũ∥2

L2(Qω )
+

1
γ
∥S(., ũγ )∥2

L2(0,A) ≤ ∥ũγ∥2
L2(Qω )

+∥y(0,0)− zd∥2
L2(Q)

=C
(
∥ũ∥L2(Qω ),∥y0∥L2(QA,1),∥ f∥L2(Q),∥zd∥L2(Q)

)
as the state y(v,g) depends of the initial term y0, the control ũ and the source term f . In addition, we can set

C =C
(
∥ũ∥L2(Qω ),∥y0∥L2(QA,1),∥ f∥L2(Q),∥zd∥L2(Q)

)
.

Hence, we deduce the relations (52), (53) and

∥ỹγ − zd∥L2(Q) ≤C (60)

For the proof of (54)-(56), we proceed as for Proof 1. As ỹγ and ξ̃γ are respectively solutions of (48) and (49), we obtain the following
estimations:

∥ỹγ∥L2(QT,A;H1
k (0,1))

≤ 1√
2

erT
(
∥ũγ∥L2(Qω )+∥y0∥L2(QA,1)+∥ f∥L2(Q)

)
and

∥ξ̃γ∥L2(QT,A;H1
k (0,1))

+∥ξ̃γ (.,0, .)∥L2(QT ) ≤
√

2
2

erT ∥ỹγ − zd∥L2(Q).

Step 2: Now, we will prove the estimations (57) and (58).
The proof of (57) is similar to the latter one. As p̃γ is the solution of (44), we get:

∥ p̃γ∥L2(QT,A;H1
k (0,1))

≤C

The proof of (58) uses the inequality:∫
QT,1

∣∣∣∣ 1
√

γ

∫ A

0
y(t,a,x; ũγ ,0)S(a, ũγ )da

∣∣∣∣2 dtdx ≤ 1
γ
∥S(., ũγ )∥2

L2(0,A)∥ỹγ∥2
L2(Q) (61)

and the relations (53), (54). We deduce:
∥ p̃γ (.,0, .)∥L2(QT,1) ≤C

Step 3: At last, we will prove the estimation (59).
We decompose the solution of (45) q̃γ as q̃γ = q̃1

γ + q̃2
γ where q̃1

γ is the solution of:
− ∂ q̃1

γ

∂ t − ∂ q̃1
γ

∂a − (k(x)q̃1
γx)x +µ q̃1

γ = ỹγ − zd in Q
q̃1

γ (t,a,1) = q̃1
γ (t,a,0) = 0 on QT,A

q̃1
γ (T,a,x) = 0 in QA,1

q̃1
γ (t,A,x) = 0 in QT,1

(62)

and q̃2
γ is the solution of:

− ∂ q̃2
γ

∂ t − ∂ q̃2
γ

∂a − (k(x)q̃2
γx)x +µ q̃2

γ = 1√
γ

pγ +
1
γ

ξ̃ (0)S(a, ũγ ) in Q

q̃2
γ (t,a,1) = q̃2

γ (t,a,0) = 0 on QT,A
q̃2

γ (T,a,x) = 0 in QA,1
q̃2

γ (t,A,x) = 0 in QT,1

(63)

The same reasoning as in Proof 1 and the estimation (60) involve:

∥q̃1
γ∥L2(QT,A;H1

k (0,1))
≤C (64)

where C =C
(
∥ũ∥L2(Qω ),∥y0∥L2(QA,1),∥ f∥L2(Q),∥zd∥L2(Q)

)
.

The relations (47) and (51) permit to obtain:

0 =
∫

Q
ȳ(w)(ỹγ − zd)dtdadx+

∫
Qω

Nũγ wdtdadx+
∫

Qω

(ũγ − ũ)wdtdadx+
∫

Q
ȳ(w)(

1
√

γ
pγ +

1
γ

ξ̃ (0)S(a, ũγ ))dtdadx, ∀w ∈ L2(Qω ) (65)

We set
O = {ȳ(w),w ∈ L2(Qω )}.

Then O ⊂ L2(Q). We define on O ×O the inner product

⟨ȳ(v), ȳ(w)⟩O =
∫

Qω

vwdtdadx+
∫

Q
ȳ(v)ȳ(w)dtdadx, ∀(ȳ(v), ȳ(w)) ∈ O ×O
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The set O endowed with norm ∥ȳ(w)∥2
O = ∥w∥2

L2(Qω )
+∥ȳ(w)∥2

L2(Q)
is a Hilbert space.

By setting

Tγ (ũγ ) =
1
√

γ
pγ +

1
γ

ξ̃ (0)S(a, ũγ )

For any w ∈ L2(Qω ) and taking account (65), we get :∫
Q

Tγ (ũγ )ȳ(w)dtdadx =−
∫

Q
ȳ(w)(ỹγ − zd)dtdadx−

∫
Qω

Nũγ wdtdadx−
∫

Qω

(ũγ − ũ)wdtdadx (66)

The inequality of Cauchy-Schwarz permits to write:∣∣∣∣−∫Q
ȳ(w)(ỹγ − zd)dtdadx−

∫
Qω

((N +1)ũγ − ũ)wdtdadx
∣∣∣∣≤ ∥ỹγ − zd∥L2(Q)∥ȳ(w)∥L2(Q)+(N +1)∥ũγ∥L2(Qω )∥w∥L2(Qω )+∥ũ∥L2(Qω )∥w∥L2(Qω )

≤ ∥ỹγ − zd∥L2(Q)+(N +1)∥ũγ∥L2(Qω )+∥ũ∥L2(Qω )∥ȳ(w)∥O

≤C∥ȳ(w)∥O , ∀w ∈ L2(Qω ),

where C =C
(

N,∥ũ∥L2(Qω ),∥zd∥L2(Q),∥y0∥L2(0,A),∥ f∥L2(Q)

)
> 0

Using (65), we have: ∣∣∣∣∫Q
Tγ (ũγ )ȳ(w)dtdadx

∣∣∣∣≤C∥ȳ(w)∥O , ∀w ∈ L2(Qω )

Whence

∥Tγ (ũγ )∥O = ∥ 1
√

γ
pγ +

1
γ

ξ̃ (0)S(a, ũγ )∥O ≤C (67)

Finally, we use the reasoning of Proof 1 and the inequality (67) to obtain:

∥q̃γ

2∥L2(QT,A;H1
k (0,1))

≤C (68)

Thus, from (63) and (67), we deduce (59).

6. Characterization of the No-regret control

Proposition 6.1. The adapted Low-regret control ũγ converges toward the No-regret control ũ in L2(Qω ).

Proof 14. Using (52)-(56), there exists a subsequence of (ũγ , ỹγ , ξ̃γ ,S(., ũγ )) still denoted (ũγ , ỹγ , ξ̃γ ,S(., ũγ )) and ū ∈ L2(Qω ), ỹ ∈
L2(U ;H1

k (0,1)), ξ̃ ∈ L2(U ;H1
k (0,1)), λ ∈ L2(0,A), ζ ∈ L2(QT,1) such that

ũγ ⇀ ū weakly in L2(Qω ) (69)
1
√

γ
S(a, ũγ )⇀ λ weakly in L2(0,A) (70)

S(., ũγ )→ 0 strongly in L2(0,A) (71)

ỹγ ⇀ ỹ weakly in L2(QT,A;H1
k (0,1)) (72)

ξ̃γ ⇀ ξ̃ weakly in L2(QT,A;H1
k (0,1)) (73)

ξ̃ (.,0, .)⇀ ζ weakly in L2(QT,1) (74)

We multiply the first equation of (42) by ϕ ∈C∞(Q) and the first equation of (43) by ψ ∈C∞(Q) and integrate by parts over Q:

∫
Q

ϕ

(
∂ ỹγ

∂ t
+

∂ ỹγ

∂a
− (k(x)ỹγx)x +µ ỹγ

)
dtdadx =

∫
Q

ϕ( f + ũγ χω )dtdadx

and

∫
Q

ψ

(
−

∂ ξ̃γ

∂ t
−

∂ ξ̃γ

∂a
− (k(x)ξ̃γx)x +µξ̃γ

)
dtdadx =

∫
Q

ψ(ỹγ − zd)dtdadx.

We obtain respectively:

∫
Q

ỹγ

(
−∂ϕ

∂ t
− ∂ϕ

∂a
− (k(x)ϕx)x +µϕ

)
dtdadx =

∫
Q

ϕ( f + ũγ χω )dtdadx

and ∫
Q

ξ̃γ

(
∂ψ

∂ t
+

∂ψ

∂a
− (k(x)ψx)x +µψ

)
dtdadx =

∫
Q

ψ(ỹγ − zd)dtdadx
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The limit of these two latter identities while γ → 0 and using (69),(72) and (73) leads respectively to:∫
Q

ỹ
(
−∂ϕ

∂ t
− ∂ϕ

∂a
− (k(x)ϕx)x +µϕ

)
dtdadx =

∫
Q

ϕ( f + ūχω )dtdadx

and ∫
Q

ξ̃

(
∂ψ

∂ t
+

∂ψ

∂a
− (k(x)ψx)x +µψ

)
dtdadx =

∫
Q

ψ(ỹ− zd)dtdadx

We integrate these two latter identities by parts over Q and we get:∫
Q

ϕ

(
∂ ỹ
∂ t

+
∂ ỹ
∂a

− (k(x)ỹx)x +µ ỹ
)

dtdadx =
∫

Q
ϕ( f + ūχω )dtdadx

and

∫
Q

ψ

(
−∂ ξ̃

∂ t
− ∂ ξ̃

∂a
− (k(x)ξ̃x)x +µξ̃

)
dtdadx =

∫
Q

ψ(ỹ− zd)dtdadx

Thus

∂ ỹ
∂ t

+
∂ ỹ
∂a

− (k(x)ỹx)x +µ ỹ = f + ūχω a.e. in Q (75)

and

−∂ ξ̃

∂ t
− ∂ ξ̃

∂a
− (k(x)ξ̃x)x +µξ̃ = ỹ− zd a.e. in Q (76)

Then ỹ, ξ̃ ∈ L2(QT,A;H1
k (0,1)) implie ỹ|QT,A

, ξ̃ |QT,A
exist a.e.(t,a) ∈ QT,A and belong to L2(QT,A). Using (75) and (76) on the other hand,

we deduce that ỹ, ξ̃ ∈ L2(QT,A;H1
k (0,1)) involve

∂ ỹ
∂ t

+
∂ ỹ
∂a

∈ L2(QT,A;H−1
k (0,1)) and −∂ ξ̃

∂ t
− ∂ ξ̃

∂a
∈ L2(QT,A;H−1

k (0,1)). Which implies

ỹ ∈ W (T,A) and ξ̃ ∈ W (T,A). Thus using Lemma 1, the traces ỹ(.,0, .), ỹ(0, ., .) exist and belong respectively to L2(QT,1) and to L2(QA,1).
Too the traces ξ̃ (.,A, .), ξ̃ (T, ., .) exist and belong respectively to L2(QT,1) and to L2(QA,1).
Now multiply the first equation of (42) by ϕ ∈C∞(Q) such that ϕ = 0 on QT,A, ϕ(T, ., .) = 0 in QA,1 and ϕ(.,A, .) = 0 in QT,1 and the first
equation of (43) by ψ ∈C∞(Q) such that ψ = 0 on QT,A, ψ(0, ., .) = 0 in QA,1 then integrate by parts on Q:

−
∫

QA,1

y0
ϕ(0,a,x)dadx+

∫
Q

ỹγ

(
−∂ϕ

∂ t
− ∂ϕ

∂a
− (k(x)ϕx)x +µϕ

)
dtdadx =

∫
Q

ϕ( f + ũγ χω )dtdadx

and∫
QT,1

ξ̃γ (t,0,x)ψ(t,0,x)dtdx+
∫

Q
ξ̃γ

(
∂ψ

∂ t
+

∂ψ

∂a
− (k(x)ψx)x +µψ

)
dtdadx =

∫
Q

ψ(ỹγ − zd)dtdadx

Passing these two latter identities to the limit while γ → 0 using (69),(72),(73) and (74), we get respectively, ∀ϕ ∈C∞(Q̄) such that ϕ = 0
on QT,A, ϕ(T, ., .) = 0 on QA,1 and ϕ(.,A, .) = 0 on QT,1:

−
∫

QA,1

y0
ϕ(0,a,x)dadx+

∫
Q

ỹ
(
−∂ϕ

∂ t
− ∂ϕ

∂a
− (k(x)ϕx)x +µϕ

)
dtdadx =

∫
Q

ϕ( f + ûχω )dtdadx

and, ∀ψ ∈C∞(Q̄) such that ψ = 0 on QT,A, ψ(0, ., .) = 0 on QA,1∫
QT,1

ζ ψ(t,0,x)dtdx+
∫

Q
ξ̃

(
∂ψ

∂ t
+

∂ψ

∂a
− (k(x)ψx)x +µψ

)
dtdadx =

∫
Q

ψ(ỹ− zd)dtdadx

which after an integration by parts over Q give respectively∫
Q

ϕ( f + ûχω )dtdadx =
∫

QA,1

(ỹ(0,a,x)− y0)ϕ(0,a,x)dadx+
∫

Q
ϕ

(
∂ ỹ
∂ t

+
∂ ỹ
∂a

− (k(x)ỹx)x +µ ỹ
)

dtdadx+
∫

QT,1

(ỹ(t,0,x)ϕ(t,0,x)dtdx

and∫
Q

ψ(ỹ− zd)dtdadx =
∫

QT,1

(ζ − ξ̃ (t,0,x))ψ(t,0,x)dtdx+
∫

Q
ψ

(
−∂ ξ̃

∂ t
− ∂ ξ̃

∂a
− (k(x)ξ̃x)x +µξ̃

)
dtdadx+

∫
QT,1

ξ̃ (t,A,x))ψ(t,A,x)dtdx

+
∫

QA,1

ξ̃ (T,a,x))ψ(T,a,x)dadx

∀ϕ ∈C∞(Q) such that ϕ = 0 on QT,A,ϕ(T, ., .) = 0 in QA,1 and ϕ(.,A, .) = 0 in QT,1 and using (75) and (76), it leads to:

0 =
∫

QA,1

(ỹ(0,a,x)− y0)ϕ(0,a,x)dadx+
∫

QT,1

(ỹ(t,0,x)ϕ(t,0,x)dtdx (77)
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and f orallψ ∈C∞(Q) such that ψ = 0 on QT,A and ψ(0, ., .) = 0 in QA,1:

0 =
∫

QT,1

(ζ − ξ̃ (t,0,x))ψ(t,0,x)dtdx+
∫

QT,1

ξ̃ (t,A,x))ψ(t,A,x)dtdx+
∫

QA,1

ξ̃ (T,a,x))ψ(T,a,x)dadx (78)

Then, we deduce:

ỹ(0,a,x) = y0 in QA,1

ỹ(t,0,x) = 0 in QT,1 (79)

and

ξ̃ (T,a,x) = 0 in QA,1

ξ̃ (t,0,x) = ζ , ξ̃ (t,A,x) = 0 in QT,1 (80)

Then, according to (69),(72), (74), (80) and (53), we have from Lemma 2 that

S(., ũγ )⇀ S(., ū) weakly in D ′(A).

Hence, using (71) and the uniqueness of the limit that

S(., ũγ )→ S(., ū) strongly in L2(0,A).

Therefore, ∫ A

0
S(., ũγ )g(a)da →

∫ A

0
S(., ū)g(a)da = 0.

Thus ū ∈ Uad and we also have ∥S(., ū)∥L2(0,A) = 0. Since ũ is a No-regret control and ū ∈ Uad , it follows from (28)-(29) that

J(ũ,0)− J(0,0)≤ J(ū,0)− J(0,0), (81)

Observing that ũγ solves the problem inf
v∈L2(Qω )

J̃γ (v), we have

J̃γ (ũγ )≤ J̃γ (ũ) = J(ũ,0)− J(0,0) (82)

which in view of the definition of J̃γ given by (41) implies that

J(ũγ ,0)− J(0,0)+∥ũγ − ũ∥2
L2(Qω )

≤ J̃γ (ũγ )≤ J̃γ (ũ) = J(ũ,0)− J(0,0)

Using the convexity and lower semi-continuity of J on L2(Qω ), (69) and (72), we obtain:

J(ū,0)− J(0,0)+∥ū− ũ∥2
L2(Qω )

≤ liminf
γ→0

J̃γ (ũγ )≤ J(ũ,0)− J(0,0). (83)

which combining with (81) gives
∥ū− ũ∥2

L2(Qω )
≤ 0

Hence,

ū = ũ in Qω . (84)

Thus the adapted Low-regret control converges in L2(Qω ) to the No-regret control ũ ∈ Uad .
Further, ỹ, ξ̃ ∈ L2(QT,A;H1

k (0,1)) involve:

ỹ(t,a,0) = ỹ(t,a,1) = 0

ξ̃ (t,a,0) = ξ̃ (t,a,1) = 0 (85)

Now using successively (75), (76), (79),(84) and (85) we deduce, on one hand side that ỹ = y(ũ,0) ∈ L2(QT,A;H1
k (0,1)) unique solution of:

∂ ỹ
∂ t +

∂ ỹ
∂a − (k(x)ỹx)x +µ ỹ = f + ũχω in Q

ỹ(t,a,1) = ỹ(t,a,0) = 0 on QT,A
ỹ(0,a,x) = y0 in QA,1
ỹ(t,0,x) = 0 in QT,1

and on the other hand side that ξ̃ = ξ (ũ) ∈ L2(QT,A;H1
k (0,1)) is the unique solution of:

− ∂ ξ̃

∂ t −
∂ ξ̃

∂a − (k(x)ξ̃x)x +µξ̃ = ỹ− zd in Q
ξ̃ (t,a,1) = ξ̃ (t,a,0) = 0 on QT,A
ξ̃ (T,a,x) = 0 in QA,1
ξ̃ (t,A,x) = 0 in QT,1

In what follows, we will try to characterize the unique no regret control ũ.
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Proposition 6.2. The No-regret control ũ solution of problem (3) is characterized by the quadruplet {ỹ, ξ̃ , p̃, q̃} such that:
∂ ỹ
∂ t +

∂ ỹ
∂a − (k(x)ỹx)x +µ ỹ = f + ũχω in Q

ỹ(t,a,1) = ỹ(t,a,0) = 0 on QT,A
ỹ(0,a,x) = y0 in QA,1
ỹ(t,0,x) = 0 in QT,1

(86)


− ∂ ξ̃

∂ t −
∂ ξ̃

∂a − (k(x)ξ̃x)x +µξ̃ = ỹ− zd in Q
ξ̃ (t,a,1) = ξ̃ (t,a,0) = 0 on QT,A
ξ̃ (T,a,x) = 0 in QA,1
ξ̃ (t,A,x) = 0 in QT,1

(87)


∂ p̃
∂ t +

∂ p̃
∂a − (k(x)p̃x)x +µ p̃ = 0 in Q

p̃(t,a,1) = p̃(t,a,0) = 0 on QT,A
p̃(0,a,x) = 0 in QA,1
p̃(t,0,x) = k1 in QT,1

(88)


− ∂ q̃

∂ t −
∂ q̃
∂a − (k(x)q̃x)x +µ q̃ = y(ũ,0)− zd + k2 in Q

q̃(t,a,1) = q̃(t,a,0) = 0 on QT,A
q̃(T,a,x) = 0 in QA,1
q̃(t,A,x) = 0 in QT,1

(89)

and

Nũ+ q̃ = 0 in Qω (90)

where

k1 = lim
γ→0

1
√

γ

∫ A

0
y(t,a,x; ũγ ,0)S(a, ũγ )da and k2 = lim

γ→0

1
√

γ
p̃γ +

1
γ

S(a, ũγ )ξ (ũγ )(t,0,x)

Proof 15. The results (86) and (87) have been demonstrated during the proof of the previous proposition. It remains the demonstration of
(88)-(90). For this, we will proceed by steps:
Step 1: show that p is solution of (88).
Using relations (61), (53), and (54) on the one hand side, we can deduce that there exists a constant C > 0 such that:∫

QT,1

∣∣∣∣ 1
√

γ

∫ A

0
y(t,a,x; ũγ ,0)S(a, ũγ )da

∣∣∣∣2 dtdx ≤ 1
γ
∥S(., ũγ )∥2

L2(0,A)∥ỹγ∥2
L2(Q) ≤C (91)

And on the other hand side, noting that p̃γ = p̃(uγ , .) satisfies the system (44), we deduce that there exists an other constant C > 0 such that:

∥p̃γ∥L2(Q) ≤C (92)

With regard to estimates (91) and (92), we deduce that there exists k1 ∈ L2(0,A) and p̃ ∈ L2(Q) such that:

1
√

γ

∫ A

0
y(t,a,x; ũγ ,0)S(a, ũγ )da ⇀ k1 weakly in L2(0,A) (93)

p̃γ ⇀ p̃ weakly in L2(Q) (94)

Now multiply the first equation of (44) by a test function ϕ ∈C∞(Q) such that ϕ = 0 on QT,A, ϕ(T, ., .) = 0 in QA,1 and ϕ(.,A, .) = 0 in
QT,1. Then we integrate by parts on Q:

0 =
∫

Q
ϕ

(
∂ p̃γ

∂ t
+

∂ p̃γ

∂a
− (k(x)p̃γx)x +µ p̃γ

)
dtdadx

=
∫

Q
p̃γ

(
−∂ϕ

∂ t
− ∂ϕ

∂a
− (k(x)ϕx)x +µϕ

)
dtdadx

passing to the limit when γ → 0 in the last equation and using (94), we obtain:

0 =
∫

Q
p̃
(
−∂ϕ

∂ t
− ∂ϕ

∂a
− (k(x)ϕx)x +µϕ

)
dtdadx

We integrate this last equality by parts on Q:

0 =
∫

Q
ϕ

(
∂ p̃
∂ t

+
∂ p̃
∂a

− (k(x)p̃x)x +µ p̃
)

dtdadx
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So we deduce that:

∂ p̃
∂ t

− ∂ p̃
∂a

− (k(x)p̃x)x +µ p̃ = 0 a.e. in Q (95)

Then, p̃ ∈ L2(QT,A;H1
k (0,1)) implies p̃|QT,A

exists a.e.(t,a) ∈ QT,A and belongs to L2(QT,A). Using (95) on the other hand, we deduce that

p̃ ∈ L2(QT,A;H1
k (0,1)) involves

∂ p̃
∂ t

+
∂ p̃
∂a

∈ L2(QT,A;H−1
k (0,1)). Which implies p̃ ∈ W (T,A). Thus using Lemma 1, the traces p̃(.,0, .)

and p̃(0, ., .) exist and belong respectively to L2(QT,1) and to L2(QA,1).
Consider now ϕ ∈C∞(Q) such that ϕ = 0 on QT,A, ϕ(T, ., .) = 0 in QA,1 and ϕ(.,A, .) = 0 in QT,1. Multiply the first equation of (44) by ϕ

then integrate by parts on Q:

0 =
∫

Q
p̃γ

(
−∂ϕ

∂ t
− ∂ϕ

∂a
− (k(x)ϕx)x +µϕ

)
dtdadx+

∫
QT,1

p̃(.,A, .)ϕ(.,A, .)dtdx−
∫

QT,1

p̃γ (.,0, .)ϕ(.,0, .)dtdx

+
∫

QA,1

p̃γ (T, ., .)ϕ(T, ., .)dadx−
∫

QA,1

p̃γ (0, ., .)ϕ(0, ., .))dadx+
∫

QT,A

[k(x)p̃γ ϕx]
1
0dtda−

∫
QT,A

[k(x)p̃γxϕ]10dtda

which gives, by taking into account the boundary and/or limits conditions:

0 =
∫

Q
p̃γ

(
−∂ϕ

∂ t
− ∂ϕ

∂a
− (k(x)ϕx)x +µϕ

)
dtdadx−

∫
QT,1

p̃γ (.,0, .)ϕ(.,0, .)dtdx

=
∫

Q
p̃γ

(
−∂ϕ

∂ t
− ∂ϕ

∂a
− (k(x)ϕx)x +µϕ

)
dtdadx−

∫
QT,1

ϕ(.,0, .)
(

1
√

γ

∫ A

0
y(t,a,x; ũγ ,0)S(a, ũγ )da

)
dtdx.

Using (91) and (93), the Lebesgue-dominated convergence theorem permits to deduce:

0 =
∫

Q
p̃
(
−∂ϕ

∂ t
− ∂ϕ

∂a
− (k(x)ϕx)x +µϕ

)
dtdadx−

∫
QT,1

k1ϕ(.,0, .)dtdx

We integrate this latter equality by parts on Q:

0 =
∫

Q
ϕ

(
∂ p̃
∂ t

+
∂ p̃
∂a

− (k(x)p̃x)x +µ p̃
)

dtdadx−
∫

QT,1

ϕ(.,0, .)k1dtdx−
∫

QT,1

p̃(.,A, .)ϕ(.,A, .)dtdx+
∫

QT,1

p̃(.,0, .)ϕ(.,0, .)dtdx

−
∫

QA,1

p̃(T, ., .)ϕ(T, ., .)dadx+
∫

QA,1

p̃(0, ., .)ϕ(0, ., .))dadx−
∫

QT,A

[k(x)p̃ϕx]
1
0dtda+

∫
QT,A

[k(x)p̃xϕ]10dtda

by taking into account the boundary and/or limits conditions:

0 =
∫

QT,1

ϕ(.,0, .)(p̃(.,0, .)− k1)dtdx+
∫

QA,1

ϕ(0, ., .)p̃(0, ., .)dadx

∀ϕ ∈C∞(Q) such that ϕ = 0 on QT,A,ϕ(T, ., .) = 0 in QA,1 and ϕ(.,A, .) = 0 in QT,1

we obtain:

p̃(.,0, .) = k1 in QT,1 (96)

p̃(0, ., .) = 0 in QA,1 (97)

By combining (95), (96), (97) and the fact that p̃ ∈ L2(QT,A;H1
k (0,1)), we deduce that p̃ is solution of system:

∂ p̃
∂ t +

∂ p̃
∂a − (k(x)p̃x)x +µ p̃ = 0 in Q

p̃(t,a,1) = p̃(t,a,0) = 0 on QT,A
p̃(0,a,x) = 0 in QA,1
p̃(t,0,x) = k1 in QT,1

Step 2: We will show now that q̃γ converges toward q̃ solution of (89)
Let q̃1

γ and q̃2
γ be respective solutions of:

− ∂ q̃1
γ

∂ t − ∂ q̃1
γ

∂a − (k(x)q̃1
γx)x +µ q̃1

γ = ỹγ − zd in Q
q̃1

γ (t,a,1) = q̃1
γ (t,a,0) = 0 on QT,A

q̃1
γ (T,a,x) = 0 in QA,1

q̃1
γ (t,A,x) = 0 in QT,1

(98)

and
− ∂ q̃2

γ

∂ t − ∂ q̃2
γ

∂a − (k(x)q̃2
γx)x +µ q̃2

γ = 1√
γ

p̃γ +
1
γ

ξ̃ (0)S(a, ũγ ) in Q

q̃2
γ (t,a,1) = q̃2

γ (t,a,0) = 0 on QT,A
q̃2

γ (T,a,x) = 0 in QA,1
q̃2

γ (t,A,x) = 0 in QT,1

(99)
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Then q̃γ = q̃1
γ + q̃2

γ is solution of (45).
We proceed as for Proof 4 and we use the inequality (60). There exists constant C > 0 such that:

∥q̃1
γ∥L2(QT,A;H1

k (0,1))
≤C (100)

So, there exists q̃1 ∈ L2(QT,A;H1
k (0,1)) such that:

q̃1
γ ⇀ q̃1 weakly in L2(QT,A;H1

k (0,1)) (101)

Let now ϕ1 ∈C∞(Q) be a test function. Multiply the first equation of (98) by ϕ1 then integrate by parts on Q:

∫
Q

ϕ1

(
−

∂ q̃1
γ

∂ t
−

∂ q̃1
γ

∂a
− (k(x)q̃1

γx)x +µ q̃1
γ

)
dtdadx =

∫
Q

ϕ1(ỹγ − zd)dtdadx

we obtain:∫
Q

q̃1
γ

(
∂ϕ1

∂ t
+

∂ϕ1

∂a
− (k(x)ϕ1x)x +µϕ1

)
dtdadx =

∫
Q

ϕ1(ỹγ − zd)dtdadx

passing to the limit when γ → 0 in the last equality and using, we get:∫
Q

q̃1
(

∂ϕ1

∂ t
+

∂ϕ1

∂a
− (k(x)ϕ1x)x +µϕ1

)
dtdadx =

∫
Q

ϕ1(ỹ− zd)dtdadx

We integrate the latter equality by parts on Q:∫
Q

ϕ1

(
−∂ q̃1

∂ t
− ∂ q̃1

∂a
− (k(x)q̃1

x)x +µ q̃1
)

dtdadx =
∫

Q
ϕ1(ỹ− zd)dtdadx

we deduce that:

−∂ q̃1

∂ t
− ∂ q̃1

∂a
− (k(x)q̃1

x)x +µ q̃1 = ỹ− zd (102)

As q̃1 ∈ L2(QT,A;H1
k (0,1)), then q̃1|QT,A

exists and belongs to L2(QT,A) a.e.(t,a) ∈ QT,A. On the other hand side, relation (102) and the

fact that q̃1 ∈ L2(QT,A;H1
k (0,1)) implie that −∂ q̃1

∂ t
− ∂ q̃1

∂a
∈ L2(QT,A;H−1

k (0,1)). Whence q̃1 ∈ W (T,A). Then according to Lemma 1, the

traces q̃1(T, ., .) and q̃1(.,A, .) exist and belong respectively to L2(QA,1) and to L2(QT,1).
Consider ϕ1 ∈C∞(Q) knowing that ϕ1 = 0 on QT,A, ϕ1(.,0, .) = 0 on QT,1 and ϕ1(0, ., .) = 0 on QA,1. Multiply the first equation of (98) by
ϕ1 then integrate by parts on Q:∫

Q
ϕ1(ỹγ − zd)dtdadx =

∫
Q

q̃1
γ

(
∂ϕ1

∂ t
+

∂ϕ1

∂a
− (k(x)ϕ1x)x +µϕ1

)
dtdadx−

∫
QT,1

q̃1
γ (.,A, .)ϕ1(.,A, .)dtdx+

∫
QT,1

q̃1
γ (.,0, .)ϕ1(.,0, .)dtdx

−
∫

QA,1

q̃1
γ (T, ., .)ϕ1(T, ., .)dadx+

∫
QA,1

q̃1
γ (0, ., .)ϕ1(0, ., .))dadx−

∫
QT,A

[k(x)q̃1
γ ϕ1x]

1
0dtda+

∫
QT,A

[k(x)q̃1
γxϕ1]

1
0dtda

by taking into account the boundary / limits conditions:∫
Q

ϕ1(ỹγ − zd)dtdadx =
∫

Q
q̃1

γ

(
∂ϕ1

∂ t
+

∂ϕ1

∂a
− (k(x)ϕ1x)x +µϕ1

)
dtdadx

passing to the limit when γ → 0 in the last equality and taking into account (101) and (72), we get:∫
Q

ϕ1(ỹ− zd)dtdadx =
∫

Q
q̃1
(

∂ϕ1

∂ t
+

∂ϕ1

∂a
− (k(x)ϕ1x)x +µϕ1

)
dtdadx

If we integrate the latter equality by parts over Q, we obtain:∫
Q

ϕ1(ỹγ − zd)dtdadx =
∫

Q
ϕ1

(
−∂ q̃1

∂ t
− ∂ q̃1

∂a
− (k(x)q̃1

x)x +µ q̃1
)

dtdadx+
∫

QT,1

q̃1(.,A, .)ϕ1(.,A, .)dtdx−
∫

QT,1

q̃1(.,0, .)ϕ1(.,0, .)dtdx

+
∫

QA,1

q̃1(T, ., .)ϕ1(T, ., .)dadx−
∫

QA,1

q̃1(0, ., .)ϕ1(0, ., .))dadx+
∫

QT,A

[k(x)q̃1
γ ϕ1x]

1
0dtda−

∫
QT,A

[k(x)q̃1
γxϕ1]

1
0dtda

∀ϕ1 ∈C∞(Q) such that ϕ1 = 0 on QT,A, ϕ1(0, ., .) = 0 on QA,1 and ϕ1(.,0, .) = 0 in QT,1.

by taking into account the boundary and/or limits conditions:∫
Q

ϕ1(ỹ− zd)dtdadx =
∫

Q
ϕ1

(
−∂ q̃1

∂ t
− ∂ q̃1

∂a
− (k(x)q̃1

x)x +µ q̃1
)

dtdadx+
∫

QT,1

q̃1(.,A, .)ϕ1(.,A, .)dtdx+
∫

QA,1

q̃1(T, ., .)ϕ1(T, ., .)dadx

∀ϕ1 ∈C∞(Q) such that ϕ1 = 0 on QT,A, ϕ1(0, ., .) = 0 on QA,1 and ϕ1(.,0, .) = 0 on QT,1.
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We obtain successively:

q1(T, ., .) = 0 in QA,1 (103)

q1(.,A, .) = 0 in QT,1 (104)

By combining (102), (103), (104) and the fact that q̃1 ∈ L2(QT,A;H1
k (0,1)), we deduce that q̃1 is solution of system

− ∂ q̃1

∂ t − ∂ q̃1

∂a − (k(x)q̃1
x)x +µ q̃1 = ỹ− zd in Q

q̃1(t,a,1) = q̃1(t,a,0) = 0 on QT,A
q̃1(T,a,x) = 0 in QA,1
q̃1(t,A,x) = 0 in QT,1

(105)

We are now trying to show that q̃2 satisfies system:
− ∂ q̃2

∂ t − ∂ q̃2

∂a − (k(x)q̃2
x)x +µ q̃2 = k2 in Q

q̃2(t,a,1) = q̃2(t,a,0) = 0 on QT,A
q̃2(T,a,x) = 0 in QA,1
q̃2(t,A,x) = 0 in QT,1

(106)

For the sequel, we use the results and the Hilbert space O define in Proof 13.
According to inequalities (67) and (68), there exists k2 ∈ L2(Q) and q̃2 ∈ L2(QT,A;H1

k (0,1)) such that:

1
√

γ
p̃γ +

1
γ

ξ̃ (0)S(a, ũγ )⇀ k2 weakly in L2(Q) (107)

q̃2
γ ⇀ q̃2 weakly in L2(QT,A;H1

k (0,1)) (108)

Furthermore, using the same reasoning as for q̃1, we prove by using (107) and (108) that q̃2 satisfies (106).
Now back to equality q̃γ = q̃1

γ + q̃2
γ . Using (64) and (68), we deduce that

∥q̃γ∥L2(QT,A;H1
k (0,1))

≤C (109)

Then, there exists q̃ ∈ L2(QT,A;H1
k (0,1)) such that:

q̃γ ⇀ q̃ weakly in L2(QT,A;H1
k (0,1)) (110)

By proceeding in the same way as for q̃1 and q̃2 and using (110), we show that q̃ is the solution of (89).
Finally, passing to the limit in (46) and using (69), (84) and (110) , we deduce (90).

Conclusion

We considered a population dynamics problem with missing data on the birth rate. This nonlinear problem is presented in its divergent form.
We used the concepts of No-regret control and Low-regret control of J.L.Lions to solve the problem. After showing the existence of the
adapted Low-regret control, we found a singular optimality system to characterize it. Then, we proved the existence of the No-regret control
as the limit of a serie of adapted Low-regret controls. At end, we established a singular optimality system to characterize it.
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